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Zhen Yang2* and Liang-an Chen1,2*

1School of Medicine, Nankai University, Tianjin, China, 2Department of Respiratory and Critical Care
Medicine, Eighth Medical Center, Chinese PLA General Hospital, Beijing, China, 3Department of
Thoracic Surgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China, 4Medical
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Background: There is a clinical need for accurate noninvasive evaluation of the

malignancy of pulmonary ground−glass nodules (GGNs) to reduce risks of

overdiagnosis and overtreatment. This study aimed to develop and validate a

clinic-biomarker-combined deep radiomic model for the prediction of

GGN malignancy.

Materials and methods: This study recruited patients with GGNs from seven

medical centers across five cities in China. The participants included in this study

were divided into the training-validation and the test groups on the basis of the

centers from which they were recruited. The malignancy of GGNs was

determined based on pathological results. Clinical, radiological, and biomarker

features with significant differences were used to establish predictive models. Six

types of models based on different features were developed on the training-

validation group: clinical-radiological (CR), biomarker-combined CR (B-CR),

deep radiomic (DR), clinic-combined DR (C-DR), biomarker-combined DR (B-

DR), and clinic-biomarker-combined DR (CB-DR) models. Themodels were then

evaluated on the test group for discrimination, calibration, and clinical utility.

Results: A total of 501 participants with 571 GGNs were included in the study.

Four hundred and seven participants with 454 GGNs were assigned to the

training-validation group, whereas 94 participants with 117 GGNs were

assigned to the test group. Significant differences were observed in sex,

smoking history, triosephosphate isomerase-1 and microRNA-206 between

patients with and without malignant GGNs. And size, location, and lobulation

were significantly different between benign and malignant GGNs. Among all the

models, the CB-DR model achieved the highest performance in classifying

GGNs, with an AUC of 0.90 (95% CI: 0.81-0.97). At the optimal cutoff, the
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corresponding accuracy, sensitivity, and specificity were 0.89 (95% CI: 0.83–

0.94), 0.90 (95% CI: 0.84–0.96), and 0.82 (95% CI: 0.62–1.00), respectively.

Furthermore, malignancy evaluation based on the CB-DR model would have

reduced overtreatment for 82.4% (14/17) of benign GGNs and enabled timely

interventions for 90.0% (90/100) of malignant GGNs.

Conclusion: The CB-DR model developed in this study exhibited satisfactory

performance in predicting the malignancy of GGNs and holds potential as a

valuable tool for aiding clinical decision-making in GGN management.
KEYWORDS

lung cancer, ground-glass nodule (GGN), predictive model, multimodality, radiomics,
triosephosphate isomerase-1, MicroRNA-206
Introduction

Lung cancer remains the leading cause of cancer-related death

worldwide (1). Early detection through CT screening has

significantly improved patient prognosis and reduced mortality

rates (2). In screening and incidental detection, an ever-growing

number of pulmonary ground−glass (GGNs) are identified (3, 4).

Consequently, the management of GGNs has become a critical

concern in clinical practice. GGNs present as hazy opacities on CT

scans that do not obscure underlying structures, such as blood

vessels and bronchi (5). GGNs can be further classified into pure

GGNs (pGGNs) and mixed GGNs (mGGNs) based on the absence

or presence of solid components. In comparison to solid nodules,

GGNs are associated with an increased risk of malignancy (4, 6, 7).

However, most lung cancers manifesting as GGNs stay in the early

stage of the disease, exhibit relatively favorable prognoses, and can

be treated with minimally invasive interventions (8–10). The

natural progression of malignant GGNs involves a transition

from pGGNs to mGGNs, and finally to solid nodules (11). As

such, the GGN stage represents the optimal window for lung cancer

intervention. Nonetheless, GGNs are not exclusive to lung cancer.

Many benign lesions, such as infections and inflammation, also

appear as GGNs (12). Benign GGNs typically do not necessitate

invasive interventions. Therefore, accurate classification of benign

and malignant GGNs is a critical issue in the management of GGNs.

Currently, evaluating GGNs relies primarily on radiological

assessments and follow-up observations (5). However, owing to

the overlapping radiological characteristics of benign and malignant

GGNs, distinguishing them is challenging, which leads significant

risks of overdiagnosis and overtreatment. Moreover, long-term CT

follow-ups contribute to increased radiation exposure, heightened

patient anxiety, and elevated healthcare costs (13, 14).

Radiomics, a methodology that extracts extensive image

features through high-throughput computational analysis of voxel

distribution patterns, has demonstrated great potential in

addressing these challenges (15). Recently, deep radiomics, which
02
is based on deep learning techniques such as convolutional neural

networks (CNNs), has yielded promising results in medical imaging

analysis. Compared with conventional handcrafted radiomics,

which relies on predefined image analysis theories, deep

radiomics adaptively extracts image features and offers substantial

potential for accurately identifying malignant pulmonary nodules

(16). For example, Liu et al. developed an attention-gated CNN

model to classify pulmonary nodules (17). The model achieved a

high AUC of 0.89.

To further improve accuracy, biomarkers have emerged as

important tools (18). Liang et al. developed a predictive model based

on DNAmethylation for malignant lung nodules, the PulmoSeek (19).

Building on this model, He et al. developed a combinedmodel of clinic,

radiology, and DNA methylation biomarkers, the PulmoSeek Plus,

which showed improved performance and greater potential for aiding

in the early diagnosis of lung cancer (20).

Despite considerable advances in deep radiomics and

biomarkers, satisfactory results have yet to be achieved in the

prediction of the malignancy of GGNs. We believe that a

multimodal analysis of clinical features, biomarkers, and

radiomics could improve the evaluation of GGNs. This study

aimed to develop and validate a clinic-biomarker-combined deep

radiomic model to predict the malignancy of GGNs.
Materials and methods

Participant recruitment and grouping

This was a multicenter prospective model development and

validation study, which was approved by the ethics committee of

Chinese PLA General Hospital (S2020-173-01) and then registered

at ChiCTR.org.cn (ChiCTR2100044576).

The participants were recruited between June 2021 and May 2023

from seven medical centers across five cities in China (Figure 1). The

involved centers included: the First Medical Center of the PLA General
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Hospital (Center 1), the Qinhuangdao People’s Hospital (Center 2), the

Fourth Medical Center of the PLA General Hospital (Center 3), the

Second Affiliated Hospital of Dalian Medical University (Center 4), the

Second Affiliated Hospital of the Army Medical University (Center 5),

the Sixth Medical Center of the PLA General Hospital (Center 6), and

the Qingdao Municipal Hospital (Center 7). The participant inclusion

criteria were as follows (1): patients or their legal representatives

consented to participate and signed informed consent; (2) patients

were aged between 18 and 80 years; (3) patients with clinically detected

GGNs; and (4) patients were scheduled for minimally invasive biopsy

or surgical intervention. The participant exclusion criteria were as

follows: (1) participants with no pathological report; (2) participants

with no peripheral blood sample or lung CT image with a slice

thickness ≤1.5 mm; (3) participants with a history of lung cancer; (4)

participants who withdrew from the study; and (5) participants with

poor compliance.

The participants included in this study were divided into the

training-validation and the test groups on the basis of the center

from which they were recruited. The participants from centers 1

and 2 were assigned to the training-validation group, whereas those

from centers 3, 4, 5, and 6 were assigned to the test group.

Participant information was entered and uploaded through a

secure verification-required website. And the malignancy of GGNs

was determined based on pathological results.
CT image acquisition and blood
sample collection

Prior to initial treatment, CT imaging and blood sample

collection were conducted.
Frontiers in Oncology 03
CT scans were performed using SOMATOM Definition Edge

(Siemens AG, Germany), LightSpeed Volume CT (General Electric

Company, USA), and Brilliance iCT (Royal Philips, Netherlands)

scanners. The tube voltage was generally set at either 100 or 120

kVp, with the tube current adjusted automatically or manually

based on patient-specific factors. The reconstruction matrix was set

at 512 × 512, with a slice thickness of 1.0–1.5 mm and a pixel

interval of 0.5–0.8 mm. CT images from other centers were shipped

to the Big Data Research Laboratory of the Department of

Pulmonary and Critical Care Medicine at Chinese PLA General

Hospital using encrypted USB drives. All the CT images acquired

for the study were unenhanced.

Blood samples were drawn in the morning after an overnight

fast to minimize variations in blood metabolites. Venipuncture was

performed by trained nursing staff at each center using sterile

techniques. Whole blood samples were collected in EDTA tubes

and gently inverted to mix with the anticoagulant. For the serum

samples, blood was collected in plain tubes, allowed to clot at room

temperature for 30 minutes, and then centrifuged at 3000 × g for 10

minutes at 4°C. Following preprocessing, samples from other

centers were shipped to the Laboratory of the Department of

Pulmonary and Critical Care Medicine at Chinese PLA General

Hospital and immediately stored at -80°C until analysis.
GGN segmentation and
image preprocessing

The GGNs were manually segmented by a senior pulmonologist

via 3D Slicer (version 5.6.1; slicer.org). The pulmonologist was

blinded to the pathological results of GGNs.
FIGURE 1

Flowchart of participant recruitment and grouping in this study. A total of 514 participants were recruited from seven medical centers. Thirteen
participants were excluded, and 501 participants with 571 GGNs were finally included in this study. Four hundred and seven participants with 454
GGNs were assigned to the training-validation group, whereas 94 participants with 117 GGNs were assigned to the test group.
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The voxel spacing of the CT images was reconstructed into 1.0 ×

1.0 × 1.0 mm. The image patch with 64 × 64 × 64 voxels was

cropped from the reconstructed CT image. CT values were

converted to density values using Equation 1. Density values less

than 0 were clipped to a minimum of 0.

Density values  =  
CT values  + 1000

1000
(1)
Biomarker measurement

In our previous unpublished study, we conducted multi-omics

analysis to compare the molecular expression profiles of

participants with malignant GGNs before and after surgery.

Triosephosphate isomerase-1 (TPI-1) and microRNA-206 (miR-

206) were identified as promising biomarkers for predicting the

malignancy GGNs. The current study assessed the value of

combining these biomarkers for classifying GGNs.

The procedure for measuring the serum TPI-1 concentration

was conducted briefly as follows: prewashed magnetic beads were

added to the serum to enrich low-abundance proteins. After

incubation, the supernatant was discarded, and the magnetic

beads were washed. The magnetic beads were placed in urea lysis

buffer to lyse and release the bound proteins. Dithiothreitol (DTT)

was added to reduce disulfide bonds, and iodoacetamide (IAA) was

added to alkylate cysteine residues. Following centrifugation at

10,000 × g for 5 minutes, the supernatant was collected, and the

proteins were digested with trypsin. The resulting peptides were

desalted via a C18 solid-phase extraction column (Sigma, USA).

The peptide concentrations were quantified by measuring the

ultraviolet absorbance at 280 nm using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, USA). Indexed

retention time (iRT) calibration peptides were spiked into each

sample. Peptides from each sample were analyzed using a timsTOF

mass spectrometer (Bruker, USA) coupled to an Evosep One liquid

chromatography platform (Evosep, Denmark) in data-independent

acquisition (DIA) mode. The DIA data were analyzed using

Spectronaut 16 (Biognosys, Switzerland).

The relative expression of miR-206 in the blood was quantified

according to the manufacturer’s instructions. Briefly, total RNA was

extracted from blood using TRIzol LS reagent (Thermo Fisher

Scientific, USA). The extracted miRNA was reverse transcribed

into cDNA using the miRcute Plus miRNA First-Strand cDNA Kit

(TIANGEN BIOTECH, China). qRT−PCR was performed using

the KAPA SYBR FAST qPCR Kit (Roche, Switzerland). The relative

expression of miR-206 was calculated by the DCT method with U6

as the endogenous control (Ct-RNAminus Ct-U6). The primers for

miR-206 were CAACACAATGGAATGTAAGGAAGT and

TATGGTTGTTCTGCTCTCTGTCTC. The primers for U6 were

GCTTCGGCAGCACATATACTAAAT and CGCTTCACG

AATTTGCGTCTCAT.
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Model development

PyCaret (version 3.3.2; pycaret.org) was used to automate the

development of clinical-radiological models. Six machine learning

algorithms were used to construct models: logistic regression (LR),

support vector machine (SVM), decision tree (DT), random forest

(RF), extreme gradient boosting (XGBoost), and light gradient

boosting machine (LightGBM).

Deep radiomic models were built based on RegNet, which is a

CNN optimized by neural architecture search (NAS) and has better

performance than ResNet (21). To accommodate CT images, a

three-dimensional version of RegNet was used in this study. Three

RegNet models with different complexity levels of 4, 16, and 64 were

selected as candidates, and the corresponding model structure

parameters were derived from the original Y-400MF, Y-1.6GF,

and Y-6.4GF RegNet models, respectively. In addition to the CT

image, the distance map was innovatively used as additional input

to guide the models to learn the concepts of locations and regions.

The distance map is a map that marks the signed distance from each

voxel point to the nodule surface (negative inside and positive

outside), which is computed by SimpleITK (version 2.3.1;

simpleitk.org). For the combined models, the additional clinical

features and/or biomarkers were concatenated with deep radiomic

features for prediction (Supplementary Figure 2).

Conventional methods, such as Gaussian noise, random

cropping, minority oversampling, and class weighting, were used

to compensate for the limited amount of data and the imbalanced

distribution of classes. Additionally, the manifold mixup technique

was employed to enhance the abilities of the deep radiomic models

to learn more effective representations. This technique generates

new samples by linearly interpolating both the extracted features

and the corresponding labels of raw samples, which may help

models learn smoother and more robust representations (22).

To enable the deep radiomic models to acquire foundational

radiological knowledge, the models were pretrained on the Lung

Nodule Analysis 16 (LUNA16) dataset, a subset of the Lung Image

Database Consortium and Image Database Resource Initiative

(LIDC-IDRI) dataset (23). The dataset includes 1,186 nodules and

the corresponding annotations provided by four radiologists. The

pretraining task involved predicting nodule attributes such as

margin, lobulation, spiculation, and malignancy scores (see

Supplementary Table 1 for the results).

Besides, the class activation mapping (CAM) was used to

visualize the decision-making process of the deep radiomic

models (24). And the deep radiomic models used in this study

were implemented with the PyTorch framework (version

2.3.1; pytorch.org).

Fivefold cross-validation was performed on the training-

validation set to determine the optimal algorithms and

hyperparameters for each model type. The optimal models were

then trained on the full training-validation set and evaluated on the

test set (Figure 2).
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Model calibration

The models were calibrated via isotonic regression with fivefold

cross-validation on the training-validation set. The calibrated result

was computed by averaging the outputs from all five folds. The final

prediction was adjusted by Equation 2, where w represents the

proportion of benign GGNs in the training-validation set. This

adjustment was applied to mitigate the impact of class imbalance

(25).

padjusted =
praw

praw + 1−praw
w

(2)
Statistical analysis

Statistical analyses were conducted using R (version 4.4.1; r-

project.org) and Python (version 3.11.5; python.org). Categorical

variables were compared between groups using the chi-square test.

For continuous variables, the Student’s t-test was applied when the

assumption of normality was met; otherwise, the Kruskal-Wallis

test was used. Differences between model predictions and observed

outcomes were assessed with the Spiegelhalter’s z-test. The

incremental predictive values of the models were assessed using

the net reclassification index (NRI) and integrated discrimination

improvement (IDI), while the model calibration was evaluated with

the Brier score. A p-value of <0.05 was considered statistically

significant. Confidence intervals for evaluation metrics were

estimated using the bootstrap method with 1,000 resamples.
Frontiers in Oncology 05
Results

Patient and nodule characteristics

A total of 514 participants were recruited. Among all

participants, 1 participant had no pathological report, 3

participants had no peripheral blood sample, and 9 participants

had no compliant CT image. Finally, 501 participants with 571

GGNs were included in this study. Four hundred and seven

participants with 454 GGNs were assigned to the training-

validation group, whereas 94 participants with 117 GGNs were

assigned to the test group (Figure 1).

There were 307 female (61.3%) and 194 male (38.7%)

participants, and the median age was 57.0 years. There were 216

pure (37.8%) and 355 mixed (62.2%) GGNs, and the median size

was 11.8 mm. Pathologically, there were 59 benign (10.3%) and 512

malignant (89.7%) GGNs. The pathologies of the benign GGNs

included chronic inflammation (n=35), fibrous hyperplasia (n=12),

organizing pneumonia (n=3), sclerosing pneumocytoma (n=1),

pleomorphic adenoma (n=1), and atypical adenomatous

hyperplasia (n=7). The pathologies of the malignant GGNs

included adenocarcinoma in situ (n=37), minimally invasive

adenocarcinoma (n=132), invasive adenocarcinoma (n=339),

squamous cell carcinoma (n=3), and lymphoma (n=1).

Statistical analysis revealed significant differences between

participants with and without malignancies in sex, smoking

history, TPI-1, and miR-206 (Table 1). Additionally, benign and

malignant GGNs exhibited significant differences in size, location,

and lobulation (Table 2).
FIGURE 2

Workflow of model development and evaluation. The optimal algorithms and hyperparameters for each model type were determined in fivefold
cross-validation on the training-validation set. The optimal models were then trained on the complete training-validation set and evaluated on the
test set.
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Model construction

The clinical-radiological (CR) models employed sex, smoking

history, size, and lobulation as input features. Based on the cross-

validation results (Figure 3), the optimal CR model was developed

using the SMV algorithm. The biomarker-combined CR (B-CR)

models incorporated additional biomarkers, TPI-1 and miR-206.

And the final B-CR model was constructed with the

XGBoost algorithm.

For the deep radiomic (DR) models, cross-validation results

indicated a positive correlation between model complexity and

performance. And incorporating the distance map improved the

performance of models across all complexity levels. Further

experiments demonstrated that the manifold mixup technique

also contributed to performance enhancement. Notably, the

pretraining strategy enhanced model performance only when

applied in conjunction with the mixup technique. Based on these

findings, the final DR model was constructed using the most

complex model architecture. And the distance map, the manifold

mixup technique, and the pretraining strategy were all applied

during the model construction.

The clinic-combined DR (C-DR) model, the biomarker-

combined DR (B-DR) model, and the clinic-biomarker-combined

DR (CB-DR) model were established using the same

hyperparameters and settings of the final DR model.
Model evaluation

The discrimination of the models was evaluated (Figures 4A, B).

The CR model had an AUC of 0.66 (95% CI: 0.51–0.79). After

incorporating biomarkers, the AUC of the B-CR model increased to

0.75 (95% CI: 0.60–0.88). And the IDI and NRI of the B-CR model

compared to the CR model were 0.235 and 0.190, respectively.

Similarly, the AUC of the C-DR model, the B-DR model, and the

CB-DR models was higher than that of the DR model. The
Frontiers in Oncology 06
corresponding IDI and NRI were 0.004, 0.052, and 0.139, and

0.078, 0.079, and 0.196, respectively. These results suggested that

the multimodal models provided better discrimination between

benign and malignant GGNs. Among all the models, the CB-DR

model achieved the highest AUC of 0.90 (95% CI: 0.81–0.97). At the

optimal cutoff, the accuracy, sensitivity, and specificity of the CB-

DR model were 0.89 (95% CI: 0.83–0.94), 0.90 (95% CI: 0.84–0.96),

and 0.82 (95% CI: 0.62–1.00), respectively (Table 3). This indicated

that the CB-DR model could provide an accurate basis for clinical

decision-making.

The reliability diagram was plotted to visualize the consistency

between the predicted malignancy probabilities and the actual

observations (Figures 4C, D). The diagrams revealed that all the

models underestimated the malignancy risk of GGNs to varying

degrees. Among all the models, the multimodal models showed

relatively better calibration. The CR model exhibited the most

significant underestimation, with a Brier score of 0.23 (95% CI:

0.20–0.27). In contrast, the CB-DR model demonstrated the best

calibration and achieved a Brier score of 0.07. Additionally, the

Spiegelhalter’s z-test indicated no significant difference between the

predictions by the CB-DR model and the observed outcomes

(p=0.23). These results indicated that the CB-DR model was a

properly calibrated model.

The CB-DR model was further evaluated for its clinical utility.

The decision curves were plotted to analyze the net benefit under

different threshold probabilities (Figure 5A). The curves showed

that the CB-DR model had a greater net benefit than the all-

malignancy and none-malignancy reference when the threshold

probability was between 0.00 and 0.96. This suggested that the CB-

DR model had a wide range of clinical utility.

To improve clinical applicability, the sensitivity-preferred (for

high sensitivity) and specificity-preferred (for high specificity)

cutoff values, set at 0.16 and 0.95 respectively, were applied to

stratify GGNs into low-, medium-, and high-risk. On the basis of

this risk stratification, the distributions of low-, medium-, and high-

risk were 2.0% (2/100), 8.0% (8/100), and 90.0% (90/100) in
TABLE 1 Characteristics of participants included in this study.

Total Without Malignancy With Malignancy
p

(n = 501) (n = 37) (n = 464)

Sex: 0.030

Female 307 (61.3%) 16 (43.2%) 291 (62.7%)

Male 194 (38.7%) 21 (56.8%) 173 (37.3%)

Age 57.0 [49.0;64.0] 52.0 [46.0;61.0] 57.0 [49.0;64.0] 0.142

Smoking history 112 (22.4%) 16 (43.2%) 96 (20.7%) 0.003

Personal tumor history 23 (4.59%) 1 (2.70%) 22 (4.74%) 1.000

Family lung tumor history 51 (10.2%) 4 (10.8%) 47 (10.1%) 0.782

CEA (mg/L) 1.73 [1.12;2.61] 1.51 [1.30;1.94] 1.74 [1.09;2.69] 0.363

TPI-1 (ng/L) 270 [215;335] 245 [190;300] 270 [220;340] 0.023

miR-206 2.31 [0.90;7.19] 1.20 [0.30;4.06] 2.40 [0.95;7.70] 0.015
The bold values indicate p<0.05.
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malignant GGNs, and 64.7% (11/17), 17.7% (3/17), and 17.7% (3/

17) in benign GGNs (Figure 5B). In a hypothetical clinical

management framework, the following strategies could be

implemented based on risk levels: low-risk GGNs would undergo

extended-interval follow-up, medium-risk GGNs would receive

routine surveillance, and high-risk GGNs would be subject to

invasive intervention. In this simulated clinical decision scenario,

the CB-DR model demonstrated the potential to reduce

overtreatment for 82.4% (14/17) of benign GGNs and enable

timely interventions for 90.0% (90/100) of malignant GGNs.

Furthermore, the predictive performance of the CB-DR model

for GGNs of different types was assessed (Figure 6). The results

indicated that the CB-DR model performed better in predicting the

malignancy of mGGNs compared to pGGNs (AUC: 0.99 vs. 0.83).

The CB-DR model correctly classified 81.0% (47/58) of pGGNs and

96.6% (57/59) of mGGNs. Specifically, the model achieved correct

classification for 72.7% (8/11) of benign pGGNs and 83.0% (39/47)

of malignant pGGNs, whereas 100.0% (6/6) benign mGGNs and

96.2% (51/53) of malignant mGGNs were correctly classified by

the model.
Prediction demonstration

Two GGNs were selected to demonstrate the predictions by the

CB-DR model. The first GGN was a benign pGGN with a diameter
Frontiers in Oncology 07
of 22.0 mm. It was from a 52-year-old female participant with no

smoking history. Her serum TPI-1 concentration and relative

expression of miR-206 were 250.0 ng/L and 1.2, respectively. The

second GGN was a malignant pGGN with a diameter of 10.8 mm. It

was from a 30-year-old female participant with no smoking history.

The values of TPI-1 and miR-206 of the participant were 300.0 ng/L

and 159.0, respectively. The CB-DR model correctly predicted that

the first GGN was a medium-risk benign GGN with malignancy

risk of 0.54, and the second GGN was a high-risk malignant GGN

with malignancy risk of 0.97.

The CAM diagrams were generated to explain the visual basis of

the CB-DR model for the predictions (Figure 7). The diagrams

showed that the model was activated mainly by the voxels located in

the GGNs. The voxels around the GGNs also activated the model to

some extent. However, the voxels in the other regions had little

effect on the model. This indicated that the predictions were based

on voxels in reasonable regions.
Discussion

Accurate classification of malignant and benign GGNs is essential

for the effective clinical management of GGNs. At present, the

evaluation of GGN malignancy primarily depends on dynamic

radiological follow-ups. However, GGNs tend to progress slowly

and possibly require surveillance over a span of 5–10 years (5).
TABLE 2 Characteristics of GGNs included in this study.

Total Benign Malignant
p

(n = 571) (n = 59) (n = 512)

Size (mm) 11.8 [9.15;17.0] 10.0 [7.45;17.4] 12.0 [9.30;17.0] 0.020

Location: 0.033

Left lower lobe 76 (13.3%) 5 (8.47%) 71 (13.9%)

Left upper lobe 151 (26.4%) 14 (23.7%) 137 (26.8%)

Right lower lobe 100 (17.5%) 16 (27.1%) 84 (16.4%)

Right middle lobe 54 (9.46%) 10 (16.9%) 44 (8.59%)

Right upper lobe 190 (33.3%) 14 (23.7%) 176 (34.4%)

Type: 0.367

pGGN 216 (37.8%) 26 (44.1%) 190 (37.1%)

mGGN 355 (62.2%) 33 (55.9%) 322 (62.9%)

Lobulation 106 (18.6%) 3 (5.08%) 103 (20.1%) 0.008

Spiculation 53 (9.28%) 2 (3.39%) 51 (9.96%) 0.158

Vacuole 65 (11.4%) 3 (5.08%) 62 (12.1%) 0.164

Pleural retraction 82 (14.4%) 4 (6.78%) 78 (15.2%) 0.119

Vascular convergence 38 (6.65%) 7 (11.9%) 31 (6.05%) 0.098

Air bronchogram 18 (3.15%) 0 (0.00%) 18 (3.52%) 0.241

Well-defined boundary 510 (89.3%) 53 (89.8%) 457 (89.3%) 1.000
The bold values indicate p<0.05.
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This prolonged period of diagnostic uncertainty, coupled with

frequent CT follow-ups, can place significant psychological, social,

and financial burdens on patients, increasing the risk of overdiagnosis

and overtreatment (13, 14). Therefore, the development of accurate

noninvasive methods for accurately classifying GGNs is crucial.

Previous studies on predicting the malignancy of GGNs have

primarily relied on unimodal or bimodal features. For example,

Zhang et al. developed a predictive model based on handcrafted

radiomic features, achieving an AUC of 0.73 (26). Liang et al.

integrated clinical and radiomic features to predict the malignancy

of GGNs, with an AUC of 0.70 (27). And Huang et al. utilized a deep
Frontiers in Oncology 08
radiomics approach to construct a predictive model, achieving an

AUC of 0.89 (28). In this study, we developed and validated a

predictive model for the malignancy of GGNs, the CB-DR model.

The model exhibited satisfactory performance and achieved an AUC

of 0.90 (95% CI: 0.81-0.97). The performance of the model is at an

advanced level compared to similar studies. It correctly classified

82.4% of the benign GGNs and 90.0% of the malignant GGNs. And

clinical decision-making supported by the CB-DR model would have

reduced risks of overdiagnosis and overtreatment.

Radiological features provide significant convenience and

accessibility and play an important role in the clinical
FIGURE 3

Performance of the models in fivefold cross-validation. The ROC curves of the CR models (A, B), the B-CR models (C, D), and the DR models (E, F)
on the training set and the validation set. For the DR models, the tag wd/wod specifies whether the model used the distance map as an additional
input; the tag wp/wop denotes whether the model was initialized with pretrained weights; the tag wm/wom refers to whether the model employed
the manifold mixup technique during training. *The optimal model.
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FIGURE 4

Discrimination and calibration of the models. (A, B) The ROC curves of the models on the training-validation set and the test set. (C, D) The reliability
diagrams of the models on the training-validation set and the test set.
TABLE 3 Classification metrics of the models.

Model AUC Accuracy Sensitivity Specificity

CR:

Training-validation set 0.80 [0.73, 0.86] 0.75 [0.71, 0.79] 0.75 [0.71, 0.79] 0.74 [0.60, 0.87]

Test set 0.66 [0.52, 0.80] 0.62 [0.54, 0.71] 0.63 [0.54, 0.72] 0.59 [0.33, 0.82]

B-CR:

Training-validation set 0.98 [0.96, 0.99] 0.91 [0.88, 0.94] 0.91 [0.88, 0.93] 0.95 [0.88, 1.00]

Test set 0.75 [0.59, 0.87] 0.79 [0.71, 0.86] 0.82 [0.74, 0.89] 0.59 [0.35, 0.82]

DR:

Training-validation set 0.97 [0.94, 0.99] 0.89 [0.87, 0.92] 0.89 [0.86, 0.92] 0.95 [0.88, 1.00]

Test set 0.85 [0.74, 0.94] 0.85 [0.79, 0.91] 0.88 [0.82, 0.94] 0.65 [0.41, 0.87]

C-DR:

Training-validation set 0.96 [0.92, 0.98] 0.86 [0.83, 0.89] 0.85 [0.82, 0.89] 0.93 [0.85, 1.00]

Test set 0.87 [0.77, 0.96] 0.83 [0.75, 0.89] 0.84 [0.76, 0.91] 0.76 [0.54, 0.94]

B-DR:

Training-validation set 0.95 [0.91, 0.98] 0.90 [0.87, 0.92] 0.90 [0.87, 0.92] 0.88 [0.77, 0.97]

Test set 0.88 [0.77, 0.97] 0.87 [0.80, 0.92] 0.90 [0.84, 0.96] 0.71 [0.46, 0.91]

CB-DR:

Training-validation set 0.98 [0.95, 1.00] 0.90 [0.87, 0.93] 0.90 [0.87, 0.92] 0.98 [0.92, 1.00]

Test set 0.90 [0.81, 0.98] 0.89 [0.83, 0.94] 0.90 [0.84, 0.96] 0.82 [0.62, 1.00]
F
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management of GGNs. Previous studies indicated that large size,

mGGN, lobulation, spiculation, vacuole, and well-defined margin

are associated with malignant GGNs (29). In this study, we

observed similar findings; however, only size and lobulation

exhibited significant differences between benign and malignant

GGNs. Notably, compared to solid nodules, GGNs have a lower

positive rate for radiological signs (26). In our study, the positive

rates for radiological signs ranged from 5% to 20%. This partially

limits the predictive performance of radiological features and their

applicability in GGN management. Additionally, recent studies

have demonstrated that parameters derived from PET/CT hold

certain diagnostic value for malignant GGNs (30, 31). However,

considering economic constraints and clinical feasibility, our study

employed CT imaging, which is more widely accessible and

routinely used in clinical practice, to predict the malignancy

of GGNs.

With the deepening understanding of the molecular

mechanisms underlying lung cancer and the development of
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advanced biomolecular detection technologies, an increasing

number of studies have explored the diagnostic potential of

serum proteins and miRNAs in lung cancer (32, 33). In our

previous research, we identified two biomarkers, TPI-1 and miR-

206, with potential value in differentiating malignant and benign

GGNs. TPI-1 is an enzyme involved in glycolysis that catalyzes the

conversion of dihydroxyacetone phosphate (DHAP) to

glyceraldehyde 3-phosphate (GAP). Prior studies have shown that

TPI-1 is overexpressed in lung cancer and plays a key role in

tumorigenesis (34). And miR-206 was initially identified as a

muscle-specific microRNA; however, subsequent research has

suggested its association with lung cancer, although its role in

lung cancer remains inconclusive (35). In this study, we observed

significant differences in TPI-1 and miR-206 between patients with

or without GGNs. Furthermore, combining these biomarkers with

other features improved the predictive performance for the

malignancy of GGNs. To the best of our knowledge, no studies

have previously reported the use of TPI-1 in the differentiation of
FIGURE 5

Clinical utility of the CB-DR model. (A) The decision curves of the CB-DR model on the test set. In a threshold probability range of 0.00 to 0.96, the
CB-DR model exhibited a greater net benefit than the all-malignancy and none-malignancy reference. (B) The corresponding stratification matrix of
the CB-DR model. The CB-DR model stratified 2.0% (2/100), 8.0% (8/100), and 90.0% (90/100) of malignant GGNs and 64.7% (11/17), 17.7% (3/17),
and 17.7% (3/17) of benign GGNs into the low-, medium-, and high-risk groups.
FIGURE 6

Performance of the CB-DR model for GGNs of different types. (A) The ROC curves of the CB-DR model on pGGNs and mGGNs in the test set. (B, C) The
corresponding classification matrices of the CB-DR model on pGGNs and mGGNs. The overall accuracy of the CB-DR model on pGGNs and mGGNs were
81.0% (47/58) and 96.6% (57/59), respectively. For pGGNs, the CB-DR model correctly classified 72.7% (8/11) of benign pGGNs and 83.0% (39/47) of
malignant pGGNs. And for mGGNs, the CB-DR model achieved correct classification for 100.0% (6/6) benign mGGNs and 96.2% (51/53) of
malignant mGGNs.
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malignant and benign pulmonary nodules. For miR-206, Liu’s study

suggested that it may serve as a biomarker for the early diagnosis of

lung cancer (36). However, Liu reported a decreased relative

expression of miR-206 in the serum of lung cancer patients. This

contradicts our findings. This discrepancy is likely due to

substantial heterogeneity between the study populations. Liu’s

research focused on elderly male smokers, a group not typically

associated with GGNs, whereas our study involved primarily

younger female nonsmokers.

Deep radiomics offers significant advantages in the adaptive

extraction of imaging features. In our study, the DR model

outperformed the CR model. The integration of clinical features

and biomarkers further improved the performance. This indicated

the robust capability of deep radiomics to learn complex patterns.

However, deep radiomics generally requires large datasets for

optimal performance. To mitigate the risk of overfitting due to

the limited sample size, we set the candidate gradient for model

complexity starting at a low level. Surprisingly, models with higher

complexity performed better. In the training of deep models,

regularization is typically employed by default to prevent

overfitting. The AdamW optimizer used in this study for training

employed L-2 regularization, which likely helped minimize the

impact of overfitting in our deep radiomic analysis. Thus, rather

than overfitting, the ability to extract superior features, potentially

through more complex models, may have a greater influence on

performance. Previous studies have shown that using complete

image patches improved model performance by incorporating

microenvironmental information surrounding the nodules (17).

However, GGNs are relatively difficult to be identified accurately

by deep models (37). We suspected that using only complete image

patches might cause models to fit too many features from irrelevant

regions. Therefore, the distance map was considered in this study as

an additional input to guide models to focus on relevant regions.

Our results show that this is an effective method to improve

performance. Moreover, we utilized the manifold mixup

technique and the pretraining strategy to reduce the reliance on

large datasets. Our findings showed that these training tricks

effectively enhanced performance with the limited sample size.
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For deep radiomic models, both model architectures and

appropriate training techniques are crucial to achieving

optimal performance.

Different modalities, such as clinical features, CT images, and

biomarkers, provide unique types of information and generally

capture only specific aspects of lesions. Therefore, unimodal data

may have limitations in reflecting the full spectrum of lesion

characteristics. Multimodal data can compensate for these

limitations and enable models to capture a more comprehensive

understanding of pathology. In this study, we integrated clinical,

biomarker, and deep radiomic features to construct a multimodal

model. The model exhibited superior classification performance.

Previous studies similarly demonstrated that multimodal features

increased model performance (20). In their study, incorporating

DNA methylation biomarkers into clinical and radiological features

increased the AUC of their model from 0.85 to 0.90. Thus,

multimodal approaches may represent a promising direction.

This study has several limitations. First, the sample size was

limited. Second, to ensure accurate labeling of GGNs, we included

only GGNs with confirmed pathological results, which resulted in a

dataset predominantly composed of malignant GGNs. Although we

employed data augmentation, pretraining, and other techniques to

mitigate these limitations, they might still represent bottlenecks to

performance. Finally, GGN segmentation in this study was

performed manually. Manual segmentation is time-consuming,

limits clinical applicability, and introduces a degree of

subjectivity. We are currently conducting another clinical study

on GGNs, and in future research, we plan to expand the sample size,

increase the proportion of benign nodules, and develop an

automated GGN segmentation model to further refine our

current CB-DR model.
Conclusion

This study developed and validated a clinic-biomarker-

combined deep radiomic model to predict the malignancy of

GGNs. The model demonstrated satisfactory performance and
FIGURE 7

Prediction demonstration of the CB-DR model. The CT images and CAM diagrams of two selected GGNs. (A) The first GGN was a benign pGGN
with a diameter of 22.0 mm. The CB-DR model predicted that the GGN was a medium-risk benign GGN with malignancy risk of 0.54. (B) The
second GGN was a malignant pGGN with a diameter of 10.8 mm. The CB-DR model predicted that the GGN was a high-risk malignant GGN with
malignancy risk of 0.97.
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shows potential as a valuable tool for assisting clinical decision-

making in the management of GGNs.
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