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S-palmitoylation is a reversible and dynamic post-translational modification of

proteins. A palmitoyl group is covalently attached to a cysteine residue of the

protein by a thioester link. It regulates the transcription and expression of

downstream target genes and cell signaling, influencing cellular functions.

Research indicates a substantial correlation between S-palmitoylation and

tumorigenesis and immunotherapy, where it plays a pivotal role in modulating

T cell activation, cytokine signaling, autophagy, phagocytosis, and death.

Moreover, palmitoylation contributes to drug resistance and immunological

evasion in tumor cells, enabling them to circumvent the effects of

chemotherapeutic drugs and immune surveillance. Inhibitors that target S-

palmitoylation have demonstrated significant potential in enhancing the

efficacy of tumor immunotherapy, offering a novel strategy for cancer

treatment. Nonetheless, obstacles such as inhibitor specificity and efficacy

persist, requiring more extensive investigations into the exact mechanisms of

S-palmitoylation to develop more effective targeted therapeutics. This article

summarizes recent developments in S-palmitoylation concerning tumor

immunity and treatment. The article examines the regulatory function of S-

palmitoylation, its modifying enzymes in tumor cell signaling, and novel tumor

immunotherapies that target S-palmitoylation.
KEYWORDS
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1 Introduction

Immunotherapy introduces a novel approach to cancer treatment by enhancing and

empowering the body’s immune system, allowing it to identify and eliminate tumor cells

effectively. Many clinical studies have demonstrated that immunotherapy exhibits

impressive effectiveness in treating various malignant tumors, including melanoma, non-
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small cell lung cancer, and renal cell carcinoma (1). This approach

significantly extends patient survival and substantially decreases the

disease’s recurrence rate, offering hope to countless individuals! (2).

Meanwhile, lipidation modification, an essential mode of

protein post-translational modification, allows lipoproteins to

play a pivotal role in intracellular localization, translocation,

protein-protein interactions, and stability due to their special

affinity for the phospholipid bilayer (3). S-palmitoylation, first

identified in the 1980s, is a highly conserved post-translational

modification of proteins found in all eukaryotic organisms (4).

Palmitoyl transferase enzymes (PATs) catalyze a process in which

the palmitoyl group (C16:0) is covalently attached to the sulfhydryl

group of the protein’s C-terminal cysteine (Cys) through a thioester

bond. This reversible modification allows for studying its effects on

protein function in vitro. Additionally, it plays a significant role in

regulating protein subcellular localization, enzyme activity, stability,

and protein interactions across various aspects. S-palmitoylation is,

therefore, essential in complex physiopathological processes,

including cell signaling and the development of diseases (5, 6).

S-palmitoylation also plays a vital role in immunomodulation.

It governs the activity and function of immune cells, thereby

influencing the body’s immune response. This discovery certainly

offers fresh concepts and targets for tumor immunotherapy. This

paper presents the process of S-palmitoylation, detailing its role in

immune regulation and exploring the potential of targeting S-

palmitoylation for tumor immunotherapy.
2 Protein palmitoylation
regulation process

Protein palmitoylation changes arise from alterations to

cysteine side chains and are categorized into three kinds

according to their connection (Figure 1): S-palmitoylation is the

process whereby a long-chain fatty acid, typically palmitic acid (16

carbons), covalently attaches to a Cys residue in a protein, resulting

in an unstable thioester bond. This dynamic and reversible post-

translational modification is prevalent across organisms. It plays

crucial roles in regulating protein structure, transport, cellular

localization, stability, and interactions and participating in

numerous biological processes. It is implicated in multiple

biological processes and intimately associated with various

il lnesses ’ emergence and progression (Figure 1A). N-

palmitoylation denotes the conjugation of palmitic acid to a

glycine (Gly) or Cys residue of a protein through an amide link.

While less prevalent than S-palmitoylation, this variant is seen in

specific proteins (Figure 1B). O-palmitoylation denotes the

conjugation of palmitic acid to the hydroxyl group of a serine

(Ser) or threonine (Thr) residue inside a protein. This alteration is

uncommon but may be significant in some particular proteins

(Figure 1C). Consequently, the palmitoylation alteration is

commonly designated as S-palmitoylation. Palmitoylation is the

most common of all lipidation changes, influencing over 20% of the

proteome (7).
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S-palmitoylation is a dynamic process that modulates protein

biological properties over seconds to hours. This process is

governed by PATs and acylprotein thioesterases (APTs), with

PATs being pivotal in protein palmitoylation (8). In mammals,

PATs predominantly comprise members of the zinc finger DHHC-

type family (ZDHHC), which includes 23 distinct proteins

(ZDHHC1-23) (9). Most are in the endoplasmic reticulum or

Golgi membrane, with ZDHHC5, 20, and 21 in the plasma

membrane (10, 11). ZDHHCs facilitate protein palmitoylation via

a two-step mechanism, first with self-auto palmitoylation to create

an acyl-enzyme intermediate, subsequently transferring acyl-

coenzyme A to cysteine residues in the substrate protein (12).

Protein depalmitoylation removes thioester-linked long-chain

fatty acids from cysteine residues in proteins. Acyl protein

thioesterases catalyze thioester hydrolysis for numerous S-

palmitoylated proteins, therefore solubilizing and displacing

membrane substrate proteins, aided by acyl protein thioesterases

(13). Compared to the countless PATs, only a few depalmitoylating

enzyme classes have been thoroughly investigated, namely APT1,

APT2, PPT1, PPT2, and ABHD17 (14, 15).
3 S-palmitoylation and the
immunological response

S-palmitoylation, a significant post-translational modification

of proteins, is crucial in carcinogenesis and progression by

modifying protein characteristics and functions and has surfaced

as a potential therapeutic target. S-palmitoylation significantly

influences the functionality of specific essential proteins,

particularly those involved in immune cell signaling and

activation. S-palmitoylation can influence proteins inside the T-

cell receptor (TCR) complex, consequently modulating T-cell

activation and functionality (16). S-palmitoylation can affect

cytokine receptors’ functionality, influencing immune cell

responses and mediation (Figure 2).
3.1 S-palmitoylation alters proteins
associated with the TCR signaling pathway

T cells are crucial in the adaptive immune response, mediating

antigen-specific cellular immunity, aiding B cells in antibody

generation, and facilitating the activity of other immune system

cells. The development and activation of T cells require TCR

signaling (17). S-palmitoylation is essential for regulating

immunological responses and plays a role in T-cell activation and

signal transmission (18). Upon the binding of an antigen to a major

histocompatibility complex (MHC) molecule, an antigen-MHC

complex is established, which is then recognized by the TCR,

leading to its activation and aggregation to create an

immunological synapse. Upon binding of the TCR to the antigen-

MHC complex, phosphorylation of the immunoreceptor tyrosine-

based activation motif (ITAM) occurs inside the cytoplasmic

structural domain of the CD3 subunit, subsequently initiating the
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signaling cascade via activated tyrosine kinase (19). CD45 receptor

tyrosine phosphatases modulate the phosphorylation and activation

of Lck and other Src family tyrosine kinases (20). Zeta-chain-

associated protein kinase (Zap-70) is recruited to the TCR/CD3

complex, where it aggregates and activates, subsequently facilitating

the recruitment and phosphorylation of downstream junctional or

backbone proteins. This process enables T cells to recognize and

respond to antigens via TCR signaling, thereby playing a crucial role

in the regulation and execution of the immune response, including

responses to infections and tumors (Figure 2A) (21).

3.1.1 CD4 and CD8
CD4 and CD8 are present on the surface of T lymphocytes.

Initially, they possess dual capabilities as TCR co-receptors that

bind to MHC class II and class I molecules, thus facilitating TCR

recognition of MHC-bound peptide antigens by enhancing T cell-

antigen-presenting cell interactions. Secondly, the cytoplasmic tails

of both co-receptors interact with Lck tyrosine kinase, facilitating its

activation and functional integration with the TCR signaling

machinery (22). CD4 undergoes palmitoylation at two

membrane-proximal cysteine residues, Cys396 and Cys399 (23),

while CD8 on T cells comprises disulfide-linked CD8a and CD8b
chains, which are transmembrane proteins (24). CD4 and CD8ab
are both situated within membrane lipid rafts. The palmitoylation

of CD4, in association with Lck, enhances the accumulation of CD4

in lipid rafts (25). The presence of CD4 in lipid rafts is associated

with its capacity to augment receptor tyrosine phosphorylation. On

the contrary, in mice, only CD8b undergoes palmitoylation.

Palmitoylation of Mouse CD8b is essential for optimal CD8 co-

receptor functionality since it enhances CD8’s interaction with Lck

within lipid rafts (26).

3.1.2 Lck
Lck is palmitoylated at Cys3 and Cys5 (27). Palmitoylation of

Lck is non-essential for its catalytic activity but crucial for its

localization to the plasma membrane, facilitating TCR signaling

and enabling T cell activation (28, 29). Lck is recognized to undergo

palmitoylation at Cys3 and Cys5 (27). This lipid modification is

essential for Lck to facilitate its membrane localization and

association with lipid rafts (27, 30, 31). Inhibition of the

palmitoylation site of Lck obstructs its association with the

membrane and lipid rafts, impairing its cellular functions (31,
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32). Both protein acyltransferases ZDHHC2 and ZDHHC21 have

been reported to specifically palmitoylate Lck at the plasma

membrane (33, 34). The impaired expression of ZDHHC21 did

not influence the overall protein expression level; however, it

inhibited the S-palmitoylation of crucial T-cell signaling proteins,

resulting in a marked decrease in the palmitoylation of Lck and Fyn,

a decline in the phosphorylation of several essential signaling

proteins, and a reduction in the expression of T-cell activation

markers (34).

2.1.3 Zap-70
Zap-70, a non-receptor tyrosine kinase, is essential for the

immune response of T cells. In Zap-70-deficient T cells, the

phosphorylation of LAT and SLP-76 is compromised, the

formation of the LAT signaling protein complex is obstructed,

and the activation of downstream signaling pathways is hindered

(35). Zap-70 has been shown to experience TCR-dependent

palmitoylation at the kinase structural domain Cys564 (36).

OKT3 stimulation of T cells results in enhanced S-palmitoylation

of Zap-70; however, palmitoylation does not influence the plasma

membrane localization or stability of Zap-70, nor is it necessary for

its kinase activity, but it is essential to its interaction with substrates

and for the transduction of TCR signals. Cys564 acylation-deficient

mutants of Zap-70 cannot phosphorylate LAT and SLP-76, leading

to the breakdown of the TCR signaling pathway and a marked

decrease in T cell activation and production of T cell surface

markers (36).

3.1.4 LAT
LAT is a key junctional molecule that modulates T cell growth

and functionality. It is situated at the plasma membrane and

conveys proximal signals initiated by TCR stimulation, hence

playing an essential role in T cell activation (37). Phosphorylated

LAT binds and activates growth factor receptor-binding protein 2

(GRB2), phospholipase Cg1 (PLCg1), phosphatidylinositol 3-kinase
(PI3K), and additional signaling molecules, leading to the

transmission of signals essential for T cell activation and function.

LAT undergoes palmitoylation at the Cys26 and Cys29 sites at the

interface of its transmembrane and cytoplasmic structural domains

(38). The palmitoylation of the LAT transmembrane structural

domain and the Cys26 site is crucial for its stability and localization

inside lipid rafts; the absence of LAT palmitoylation led to a marked
FIGURE 1

Types of protein palmitoylation: (A) S-palmitoylation, (B) N-palmitoylation, (C) O-palmitoylation.
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reduction in LAT production and impeded its localization in lipid

rafts (39, 40). Moreover, LAT mutants exhibited deficient

recruitment of PLCg1 and could not transmit TCR-mediated

signaling (41, 42). In antigen-specific incompetent T cells,

significantly compromised LAT palmitoylation resulted in a
Frontiers in Oncology 04
marked decrease in LAT recruitment at the immunological

synapse and inhibited TCR/CD28-induced phosphorylation,

along with subsequent activation of PLCg1, indicating that the

dynamic palmitoylation of LAT plays a role in T cell

incompetence (43).
FIGURE 2

S-palmitoylation is involved in immune response types. (A) S-palmitoylation plays a key role in the modification of TCR signaling pathway-associated
proteins (e.g. CD4, CD8, Lck, Zap-70, LAT, and PLCg1), affecting their membrane localization, stability, and signaling, and thus regulating T cell
activation and function. (B) ZDHHC19/APT1 promotes the localization of SQSTM1/P62 on phagocyte membranes by regulating its S-palmitoylation
and synergizes with LC3 for autophagosome formation and pathogen isolation. (C) Enzymes such as ZDHHC5/8/7/3 are involved in the regulation of
Gp130 and STAT3 in the IL-6 signaling pathway through S-palmitoylation modification, which affects their plasma membrane localization and
phosphorylation status, and thus promotes STAT3 activation and nuclear translocation, and ultimately regulates the differentiation of Th17 cells.
(D) Enzymes such as ZDHHC3/7/11/12/21 play important roles in apoptosis of immune and tumor cells by regulating the Fas/FasL signaling pathway,
cysteine asparaginase activity, and the function of Bcl-2 family proteins. (E) Enzymes such as ZDHHC5 and APT1 regulate the dynamic palmitoylation
process of CD36, which affects lipid recognition and phagocytosis and is critical for fatty acid uptake and immune cell function. APC, Antigen
Presenting Cell; MHC, Major Histocompatibility Complex; TCR, T Cell Receptor; Lck, Lymphocyte-specific protein tyrosine kinase; LAT, Linker for
Activation of T cells; Zap-70, Zeta-chain-associated protein kinase 70; PLCg1, Phospholipase C gamma 1; PIP2, Phosphatidylinositol (4,5)
bisphosphate; IP3, Inositol triphosphate; IP3R, Inositol 1,4,5-trisphosphate (IP3) receptor; Ras, Rat sarcoma; Erk1/2, Extracellular regulated protein
kinases; SQSTM1, Sequestosome 1; LC3, Microtubule-associated protein 1 light chain 3;Th17 cell, T helper cell 17; IL-6, Interleukin-6; IL-6R,
Interleukin 6 Receptor; gp130, Glycoprotein 130; JAK-2, Janus kinase 2; STAT3, Signal Transducer and Activator of Transcription 3; FasL, Fas ligand;
Fas/CD95, Factor-related Apoptosis; c-FLIP, cellular FLICE-inhibitory protein; FADD, Fas-associating protein with a novel death domain; APAF-1,
Apoptotic protease-activating factor-1; FFAs, Free Fatty Acids; SYK, Spleen tyrosine kinase; LYN, Lck/Yesrelated novel protein tyrosine kinase; JNK, c-
Jun N-terminal kinase; VAV, Vav guanine nucleotide exchange factor; ER, Estrogen Receptor.
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3.1.5 PLCg1
Calcium ion endocytosis serves as an essential marker of T cell

activation (44). PLCg1, an essential protein in the calcium signaling

cascade, is activated by Itk to hydrolyze phosphatidylinositide 4,5-

bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3). IP3 interacts with its receptor IP3R on the

endoplasmic reticulum membrane, triggering the release of Ca2+

from the endoplasmic reticulum.

PLCg1 has been reported to undergo palmitoylation by

ZDHHC21 and is subject to dynamic regulation by TCR signaling

(34). IP3R may undergo palmitoylation by ZDHHC6, with Cys56,

Cys849, and Cys2214 identified as possible sites for this

modification. Palmitoylation enhances the stability of IP3R

protein production, while ZDHHC6 knockdown leads to

diminished IP3R protein levels and a reduction in Ca2+ influx.

The precise impacts of palmitoylation on PLCg1 and IP3R proteins

and the regulatory mechanisms in calcium signaling require more

study (45).
3.2 Regulation of the autophagy process
through S-palmitoylation

Autophagy can modulate antigen processing and presentation

effectiveness, influencing T-cell activation and establishing

immunological memory. Cells can utilize the autophagy route to

convey internally synthesized antigens to MHC molecules,

activating T cells and engaging in specific immunological

responses (46, 47). SQSTM1, or P62, is a multifunctional protein

that plays a vital role in immunity and cellular autophagy.SQSTM1/

P62 was initially identified as an autophagy junction consisting of

the PB1/TRAF6 binding domain (TB)/LC3 interacting region

(LIR)/ubiquitin-associated (UBA) structural domains, which are

involved in autophagy and apoptosis in tumor cells (48). CRCs

expressing SQSTM1/P62 have been reported to modulate

immunosuppressive Foxp3 regulatory T cells inside the tumor

microenvironment (49). SQSTM1 is subjected to S-palmitoylation

at the Cys289 and Cys290 residues, a process modulated by the

protein acyltransferase ZDHHC19 and the acylprotein thioesterase

LYPLA1/APT1. Upon activation of autophagy, S-palmitoylation of

SQSTM1 secures SQSTM1 droplets to the phagocytic cell

membrane. S-palmitoylation facilitates the LC3-SQSTM1

association, promoting the extension of the phagocyte membrane

over the SQSTM1 droplet, which is subsequently encapsulated

within the autophagosome (Figure 2B) (50).

Nucleotide-binding oligomerization domain-like receptor

protein 3(NLRP3), an essential element of inflammatory vesicles,

serves as a pivotal pattern recognition receptor that detects various

microbial infections and endogenous danger signals, leading to the

creation of inflammatory vesicles that activate caspase-1, resulting

in the secretion of IL-1b and IL-18, as well as pyroptosis (51). S-

palmitoylation of NLRP3 at the Cys844 location is essential for

inhibiting inflammatory vesicle activation, and ZDHHC12 has been

identified as the protein acyltransferase responsible for NLRP3

palmitoylation, facilitating its destruction via the chaperone-

mediated autophagy pathway. Following inflammasome
Frontiers in Oncology 05
activation, ZDHHC12 expression is upregulated, facilitating

NLRP3 degradation through the chaperone-mediated autophagy

pathway, thus establishing a negative feedback loop that inhibits

excessive activation of the NLRP3 inflammasome. Regulated

activation of the NLRP3 inflammasome is crucial for

immunological homeostasis (52, 53).
3.3 Regulation of cytokine receptor-
mediated signaling through
S-palmitoylation

Cytokines, including interleukins and interferons, are pivotal in

tumor immune signaling. S-palmitoylation regulates many

cytokine-mediated signaling pathways.

Interleukin-6 (IL-6) facilitates the targeted development of

naïve CD4 T cells, therefore serving a crucial function in the

interplay between innate and adaptive immune responses (54). It

was shown that IL-6 binding to transforming growth factor (TGF)-

b is essential for Th17 differentiation of naïve CD4 T cells (55). IL-6

signals through two proteins, IL6R and gp130, and activates signal

transducer and activator of transcription 3 (STAT3) through Janus

kinase2 (JAK2). Recent studies have shown that several proteins

within the IL-6 signaling cascade are modulated by S-

palmitoylation. The silencing of ZDHHC5 and ZDHHC8 is

reported to influence gp130 location and subsequent STAT3

phosphorylation (56). STAT3 is regulated by a cycle of

palmitoylation and depalmitoylation. ZDHHC7 and ZDHHC3

can palmitoylate STAT3 at the Cys108 location and migrate to

the plasma membrane where gp130 and JAK2 are situated,

facilitating STAT3 phosphorylation (57). Phosphorylated STAT3

can subsequently undergo depalmitoylation by APT2, promoting its

translocation to the nucleus for gene induction, which is essential in

Th17 cell development. Consequently, the palmitoylation cycle and

depalmitoylation facilitate STAT3 activation and Th17 cell

development. Th17 cells participate in numerous autoimmune

disorders, such as inflammatory bowel disease, and the inhibition

of palmitoylation (by ZDHHC7 knockdown) or depalmitoylation

(via APT2 inhibition) would obstruct STAT3 activation and confer

protection in a murine model of colitis. This research emphasizes

the promise of targeting palmitoylation in treating autoimmune

disorders (Figure 2C) (58).
3.4 Regulation of apoptotic signaling
through S-palmitoylation

The immune system protects the body against pathogens and

aberrant cells by identifying and eliminating apoptotic cells and

modulating the intensity and duration of the immunological

response. Recent findings indicate that S-palmitoylation of

apoptosis-related proteins is disrupted in numerous human

cancers (59). The TNF receptor family member Fas (CD95)

assembles the death-inducing signaling complex (DISC) via the

interaction of its death domain (DD) with the Fas ligand (FasL)

(60). DISC comprises the Fas-associated death domain protein
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(FADD), the caspase regulator c-FLIP, and cysteinyl asparagine-8

(caspase-8); caspase-8 is cleaved into active heterotetramers and

released from DISC, whereas activated caspase-8 triggers the

apoptotic pathway (61). Cross-linking Fas with agonistic

antibodies or FasL increases the active form caspase-8, hence

inducing apoptosis (62). Fas/FasL is exposed to many post-

translational changes, with protein palmitoylation essential for

regulating Fas/FasL signaling (63, 64). Fas can be S-palmitoylated

at Cys199, a modification crucial for its location within lipid rafts

and facilitating apoptotic actions (65). The S-palmitoylation of Fas,

mediated by ZDHHC7, enhances the active form of cysteine-8 and

promotes apoptosis (64). The ligand for the death receptor is

controlled by palmitoylation. FasL can be S-palmitoylated at

Cys82, facilitating its localization to lipid rafts and triggering

apoptosis (66). Palmitoylation may also influence Fas downstream

signaling pathways. ZDHHC17 has been documented to impede

caspase-6 activation in neurons following S-palmitoylation of

caspase-6 at the Cys264 and Cys277 residues (67). In addition, S-

palmitoylation may also take place in proapoptotic members of the

Bcl-2 family. The overexpression of various ZDHHCs, specifically

ZDHHC3, 7, 11, and 12, enhances the S-palmitoylation of Bax and

promotes apoptosis. The S-palmitoylation of Bax at the Cys126 site

is essential for initiating apoptosis, as it influences its localization to

the mitochondria (68). The Cys126 mutation markedly decreased

the quantity of apoptotic cells and the activation of caspase-3 (68).

These findings indicate that S-palmitoylation is crucial to the death

of immunological and malignant cells (Figure 2D).
3.5 Regulation of phagocytosis through
S-palmitoylation

Phagocytosis by immune cells initiates with identifying and

attaching pathogens or foreign entities, typically facilitated by

receptors on the phagocyte’s surface. Thereafter, the cell encloses

the pathogen within the cell membrane to create phagocytic

vesicles, which are subsequently sent to the lysosomes in the

cytoplasm for destruction. The efficient operation of the immune

system relies on the appropriate execution of phagocytosis, which is

governed and synchronized by other immune system elements (69).

CD36 is a scavenger receptor that plays a critical role in

immunity, metabolism, and several physiological functions (70). It

identifies particular oxidized phospholipids, lipoproteins, and free

fatty acids, facilitating phagocytosis and signal transduction

mechanisms associated with these lipids. CD36 is modulated by a

complicated cycle of palmitoylation and depalmitoylation (71).

ZDHHC5 can maintain the palmitoylation of CD36 at the plasma

membrane (72). CD36 can bind fatty acids, activate the LYN signaling

pathway, and phosphorylate Y91 to decrease ZDHHC5 function.

CD36 undergoes depalmitoylation by APT1, subsequently recruiting

the tyrosine kinase SYK to phosphorylate JNK and VAV, initiating

the endocytosis of fatty acid intake. CD36 undergoes palmitoylation

by ZDHHC4 within the Golgi, facilitating translocation from the

plasma membrane. Dynamic palmitoylation of CD36 significantly

influences fatty acid absorption (Figure 2E) (73).
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4 S-palmitoylation regulates tumor
growth and metastasis

Significant cancer-related proteins undergo S-palmitoylation,

which is closely linked to carcinogenesis and tumor growth (74, 75).

The stimulation of 17b-estradiol (E2) enhances S-palmitoylation-

dependent membrane localization of Estrogen Receptor beta (ERb)
and its interaction with Caveolin-1 and p38, ultimately promoting

apoptosis in human colon adenocarcinoma DLD-1 cells via p38/

MAPK pathway activation (76). S-palmitoylation of ERb or

suppressing p38/MAPK signaling has been documented to

enhance colorectal cancer cell proliferation (77). Additionally,

Wnt signaling is pivotal in carcinogenesis, particularly in CRC

advancement (78). Wnt2B was demonstrated to be S-palmitoylated,

and this modification influenced its cellular location, thus

impacting Wnt signaling. Moreover, the levels of Wnt2B S-

palmitoylation in mitochondria negatively correlated with

intestinal tumorigenesis (79). Research indicates that the

overexpression of cytoskeleton-associated protein 4 (CKAP4) or

LDL receptor-related protein 6 (LRP6) facilitates the development

of pancreatic cancer (80). CKAP4 was identified as S-palmitoylated

by ZDHHC2 at the Cys100 position, while LRP6 was S-

palmitoylated at the Cys1394 and Cys1399 sites. S-palmitoylation

promotes the location of CKAP4 and LRP6 within detergent-

resistant membrane (DRM) fractions, activating the PI3K-AKT

pathway and enhancing pancreatic cancer cell proliferation (81).

ZDHHC12 facilitates the S-palmitoylation of claudin3 at the

Cys103, Cys106, Cys181, Cys182, and Cys184 positions,

promoting ovarian cancer progression (82). S-palmitoylation of

phosphatidylinositol 4-kinase II alpha (PI4KII alpha) has enhanced

mouse tumor growth by altering its catalytic activity and subcellular

location (83). Importantly, small chemical inhibitors of PI-273 that

target the S-palmitoylated insertion and activation loop of human

PI4KIIa demonstrate substantial suppression of breast cancer cell

proliferation both in vitro and in vivo (84). Flotillin-1 is a

membrane-bound protein that plays a role in multicellular

signaling processes within cells (85). Flotillin-1 is overexpressed

in numerous solid tumors, and its S-palmitoylation enhances its

stability and metastatic potential in breast cancer cells and

experimental metastasis models (86, 87). Consequently, targeting

the S-palmitoylation of flotillin-1 may represent a viable strategy to

combat breast cancer metastasis (88). Another important factor in

tumor metastasis is SMAD3, which, as a key protein molecule in the

transforming growth factor-b (TGF-b) signaling pathway, plays a

critical regulatory role in tumor metastasis (89). TGF-b plays an

important role in cell growth, differentiation, immune regulation,

and tumorigenesis and progression. When the TGF-b signaling

pathway is activated, SMAD3 is phosphorylated and translocated to

the nucleus, where it regulates the expression of genes related to

tumor metastasis in conjunction with other transcription factors.

TGF-b induces epithelial-mesenchymal transition (EMT), which

promotes migration, invasion, and tumor cell metastasis, as well as

suppressing the immune response by regulating immune cells in the

tumor microenvironment (90). The S-palmitoylation of SMAD3,

facilitated by ZDHHC19, enhances its activation. The interaction
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between SMAD3 and EP300 enhances the expression of

mesenchymal markers associated with the mesenchymal subtype

of glioblastoma multiforme (GBM). Consequently, inhibiting

SMAD3 S-palmitoylation may be a pivotal molecular strategy to

mitigate tumor spread (91).
5 Tumor immunotherapy

Before the 21st century, the primary modalities for cancer

treatment included surg ical resec t ion , radiotherapy ,

chemotherapy, and targeted therapy. Cancer can theoretically be

healed with the total excision of tumor tissue; however, many

tumors metastasize before detection, and most surgical resections

involve radical removal of the entire organ, resulting in significant

patient harm, despite radiation therapy’s efficacy in eliminating the

majority of tumor cells by high radiation doses, residual

micrometastatic tumor cells persist, complicating total eradication

(92). In the last twenty years, numerous therapies have been

formulated based on research discoveries in immuno-oncology.

Immunotherapy, designed to enhance the immune system’s

capacity to eliminate malignant cells, significantly advances tumor

treatment (93). Notwithstanding restricted response rates,

prolonged clinical efficacy of immunotherapy has been evidenced

across several cancer types (94–96). Numerous immunotherapies,

such as immune checkpoint inhibitors (ICIs), cancer vaccines,

adoptive cell transfer (ACT), and oncolytic virus therapy (OVT),

have demonstrated promising outcomes; yet, each of these

treatments in clinical practice possesses distinct limitations (97, 98).

Immune checkpoint compounds have garnered significant

attention in tumor immunotherapy. PD-1 on T cells interacts

with its ligands PD-L1/PD-L2 to provide inhibitory signals to T

cells. This facilitates self-tolerance and enables cancer cells to evade

immune destruction (99). Palmitoyltransferase ZDHHC3 has been

documented to facilitate S-palmitoylation of PD-L1 at the cysteine

Cys272 locus in colorectal cancer cells. PD-L1 undergoes S-

palmitoylation in its cytoplasmic structural domain, stabilizing

PD-L1 by preventing its ubiquitination and subsequent lysosomal

degradation. Consequently, inhibiting PD-L1 palmitoylation

enhances the cytotoxic T-cell-mediated destruction of cancer cells

(100). ZDHHC9 has been identified as a palmitoyltransferase for

PD-L1 in breast cancer cells. ZDHHC9 palmitoylates PD-L1, and

this palmitoylation is crucial for its capacity to trigger mTOR

signaling in cancer cells. mTOR is a protein kinase that plays a

key role in cells and is involved in processes such as cell growth,

proliferation, survival and metabolism. Although the PD-L1

signaling pathway does not directly regulate mTOR activity, PD-

L1-mediated immunosuppression may affect the overall metabolic

state and proliferative capacity of cells, thus indirectly affecting

mTOR activity (101).

The binding of specific activating receptors can initiate the

activation of NK cells. Natural killer group 2 member D (NKG2D)

is a C-type lectin receptor that activates upon recognizing cell-

surface MHC class I proteins, which are elevated in response to

physiological stress. MICA and MICB (MHC-class I-associated
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chain A/B) serve as ligands for NKG2D, which activates the NK

cell cytotoxic function by binding to the NKG2D receptors on NK

cell surfaces, thus enabling the recognition and destruction of tumor

cells that produce these molecules (102). Research indicates that

MICA molecules experience S-palmitoylation at the Cys306 and

Cys307 residues. Palmitoylation facilitates the surface expression of

MICA and augments their interaction with the NK cell receptor

NKG2D, therefore amplifying NK cell activation and tumor cell

cytotoxicity (103). The S-palmitoylation status of MICA is crucial

for tumor immunotherapy, and comprehensive research in this area

is anticipated to yield novel approaches and targets for advancing

future immunotherapeutic strategies.
6 The significance of S-palmitoylation
in antitumor immunotherapy

Recent research indicates that modulating the palmitoylation

process might boost or inhibit various immune cell functions,

improving immunotherapeutic results (104). In the tumor

microenvironment, regulatory T cells (Treg cells) facilitate

carcinogenesis and progression by inhibiting effector cell function

and enhancing tumor immune evasion through various pathways

(105). Foxp3 is a particular Treg cell marker crucial for sustaining

immunological tolerance and modulating autoimmune responses.

It suppresses autoimmune and anti-tumor immune responses by

modulating T cells’ activity and metabolic status (106). Foxp3 has

been demonstrated to be S-palmitoylated, with its palmitoylation

mediated by several members of the palmitoyltransferase ZDHHC

family. Moreover, the inhibition of Foxp3 palmitoylation markedly

diminished the intranuclear expression of Foxp3 in peripheral

immune organs and tumor-infiltrating Treg cells, thereby

impairing Treg cell function within the tumor microenvironment

and enhancing the activation and efficacy of anti-tumor T

cells (107).
6.1 S-palmitoylation influences sensitivity
and resistance to tumor immunotherapy

Many oncogenic or oncostatic proteins involved in tumorigenesis

and drug resistance are regulated by S-palmitoylation. Various

immunosuppressive pathways have been identified in the cancer

microenvironment (108), and mutations in IFN and MHC signaling

genes result in resistance to immunotherapy. Patients with colorectal

cancer infrequently display mutations in IFN and MHC signaling

genes and typically demonstrate resistance to immunotherapy (109).

Deficiency of optic nerve phosphatase has been shown to diminish

IFNGR1 and MHC-I expression, compromising T-cell immunity

(110). Reports indicate that IFNGR1 undergoes S-palmitoylation at

Cys122, interacts with Adaptor Related Protein Complex 3 Subunit

Delta 1(AP3D1), and is directed to lysosomes for destruction. Optic

nerve phosphatase unexpectedly inhibits IFNGR1 degradation by

binding to AP3D1, obstructing the recruitment of palmitoylated

IFNGR1 to lysosomes, thus preserving the integrity of IFN-g and
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MHC-I signaling (111). Consequently, pharmacological targeting of

IFNGR1 palmitoylation stabilizes IFNGR1, augments T-cell

immunity, and increases sensitivity to checkpoint treatment in

colorectal cancer (111, 112).

Hyperimmune cell infiltration induced by glioblastoma (GBM)

creates an immunosuppressive tumor microenvironment that fosters

resistance to immunotherapy (113, 114). ZDHHCs, aberrantly

produced in gliomas, may function via the phosphatidylinositol 3-

kinase/protein kinase B (PI3K/AKT) signaling pathway. Inhibition of

ZDHHCs by 2-bromopalmitate (2-BP) diminished glioma cell

survival and autophagy while enhancing apoptosis (115, 116).

Targeting ZDHHC promotes the sensitivity of glioma cells to

temozolomide (TMZ) chemotherapy (117, 118).

Previous studies indicate a significant correlation between fatty

acid synthase (FASN) expression and PD-L1 levels in cisplatin-

resistant lung cancer cells and human T-cell leukemia lines

(119, 120). The function of protein palmitoylation in conferring

resistance to cisplatin-based systemic treatment in cancer remains

unclear. Cisplatin-based systemic chemotherapy is presently the gold

standard for treating metastatic bladder cancer (BC) (121–123), with

no viable alternatives following the development of resistance. PD-L1

is extensively palmitoylated in drug-resistant cells (124, 125). The

pharmacology of FASN suppressed the palmitoylation and

expression of PD-L1, indicating a significant function for PD-L1

palmitoylation in conferring resistance to breast cancer

treatment (126).

Sorafenib is a new multi-targeted antitumor drug, belonging to

the multi-kinase inhibitors, which can exert anti-tumor effects by

inhibiting multiple protein kinases and receptors (127). Sorafenib is

now the first-line treatment for advanced hepatocellular carcinoma

(HCC). Sorafenib is currently the primary treatment for advanced

HCC. Aberrant activation of AKT signaling is a significant

mechanism behind sorafenib resistance in patients with HCC

(128, 129). The down-regulation of preprotein convertase Bacillus

subtilis protease/kexin type 9 (PCSK9) augments tumor infiltration

by cytotoxic T-cells, improves the effectiveness of anti-PD-1

therapies, and is pivotal in the anti-tumor immune response

(130). The study indicates that abnormal overexpression of

PCSK9 enhances cell proliferation and confers resistance to

sorafenib in hepatocellular carcinoma by facilitating AKT-S473

phosphorylation (131). Palmitoylation of PCSK9 at the Cys600

site, facilitated by PCSK9 via ZDHHC16, triggers lysosomal-

mediated degradation of PTEN and subsequent activation of

AKT. Consequently, the inhibition of PCSK9 palmitoylation

amplifies the anticancer efficacy of sorafenib in hepatocellular

carcinoma (HCC) (132).

The majority of pancreatic cancer patients exhibit resistance to

immune checkpoint-blocking therapies (ICBs) (133). Research

indicates that ZDHHC9 is overexpressed in pancreatic cancer

tissues and correlates with diminished antitumor immunity. The

overexpression of ZDHHC9 in pancreatic tumors inhibits host

antitumor immunity, suggesting that downregulating ZDHHC9

may be a practical immunotherapeutic approach with anti-PD-L1

therapy for pancreatic cancer (134).
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6.2 Enhanced tumor immunotherapy with
S-palmitoylation inhibitors

Protein S-palmitoylation is integral to cancer growth and

antitumor immunity, rendering it a compelling target for cancer

treatment. Palmitoylation inhibitors could be advantageous for

cancer treatment, as numerous oncogenes necessitate S-

palmitoylation alterations for appropriate location at the cell

membrane (135). Recent research indicates that palmitoylation

inhibitors regulates cancer-related pathways and influences

tumorigenesis and progression, as shown in Table 1.

The cyclic guanosine monophosphate adenosine synthase

(cGAS) and interferon gene-stimulating factor (STING) axis are

essential for defending against invading infections and preserving

immunological homeostasis. 4-Octyl itaconate (4-OI) was

discovered to limit cGAS-STING activation by directly alkylating

STING at Cys91, obstructing STING palmitoylation and

oligomerization (136). It evidenced an interaction among various

post-translational alterations of STING. This investigation

indicated that 4-OI can reduce cGAS-STING-mediated

autoimmune inflammation, offering a novel method for treating

associated autoimmune diseases (137). Targeting the blockage of

programmed cell death-1 (PD-1) and programmed cell death

ligand-1 (PD-L1) has emerged as a cornerstone of cancer

immunotherapy (145, 146). Benzosceptrin C was discovered to

augment T-cell cytotoxicity towards cancer cells by reducing the

levels of PD-L1. Benzosceptrin C may impede the palmitoylation of

PD-L1 by obstructing the activity of the ZDHHC3 enzyme, hence

initiating lysosome-mediated degradation of PD-L1. Consequently,

the amalgamation of Benzosceptrin C and anti-CTLA4 significantly

improves the effectiveness of cancer immunotherapy (138).

Antitumor immunity is augmented when autophagy inhibition is

synergized with immunotherapy (147–149). Treatment of cells with

DC661, an inhibitor of palmitoyl protein thioesterase 1 (PPT1),

activates naïve T cells and augments T-cell-mediated cytotoxicity,

necessitating the expression of Calreticulin (CALR) proteins on the

cell surface (139). This illustrates that lysosomal inhibition induces

specific types of cell-intrinsic immunogenicity, suggesting a

strategic combination of immunotherapy and lysosomal

inhibition is promising (140). Inhibition of PPT1 by

Ezurpimtrostat has been shown to decrease hepatic tumor burden

in a murine model of hepatocellular carcinoma by promoting

lymphocyte infiltration into tumors in conjunction with anti-

programmed death-1 (PD-1) therapy. Inhibition of PPT1

augments anti-PD-1 immunotherapy by elevating major

histocompatibility complex (MHC)-I expression on hepatocellular

carcinoma cell surfaces and influences immunity via the

recolonization and activation of cytotoxic CD8+ lymphocytes (141).

Aberrant activation of innate immune mechanisms correlates

with several illnesses (150). Identification and characterization of a

highly potent and selective minor molecule antagonist of the

interferon gene-stimulating factor (STING) protein, which

covalently targets the predicted transmembrane structure Cys91

to inhibit activation-induced palmitoylation of STING. This study
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illustrates that palmitoylation of STING is crucial for its assembly

into multimeric complexes within the Golgi and for the recruitment

of downstream signaling factors, thereby validating the potential of

targeted STING therapies for treating autoinflammatory diseases

(151). cGAS palmitoylation is prevalent in various tumor cell lines,

and this modification is essential for cGAS to detect DNA and

activate immunological signaling pathways (152). The LYPLAL1

protein induces cGAS depalmitoylation, hence diminishing the

enzymatic activity of cGAS. Inhibition of LYPLAL1 markedly

amplifies cGAS-mediated immune responses and augments the

effectiveness of PD-1 inhibitors (142).

Immune checkpoint inhibitors (ICIs) have revolutionized the

treatment paradigm of hepatocellular carcinoma (HCC).

Regrettably, individuals exhibiting diminished MHC-I expression

continue to be unresponsive to immune checkpoint inhibitors, and

the display of cancer antigens through MHC-I (or HLA-I) is

essential for initiating a robust anti-tumor immune response

(153). Preclinical investigations have shown that the

downregulation of MHC-I is a prevalent mechanism by which

cancer cells avoid immune monitoring. Consequently, enhancing

MHC-I expression is advantageous for facilitating cytotoxic T-cell-

mediated apoptosis of cancer cells (147, 154, 155).

Palmitoyltransferase ZDHHC21 is a crucial regulator of fatty

acid synthase (FASN) S-palmitoylation, interacting with FASN and

facilitating its palmitoylation at Cys1317. This process results in

diminished FASN protein stability and fatty acid synthesis,

impeding the advancement of diffuse large B-cell lymphoma

(143). Recent findings indicate that FASN inhibition diminishes

S-palmitoylation of MHC-I, resulting in its lysosomal destruction.
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Palmitoyltransferase DHHC3 directly interacts with MHC-I and

downregulates MHC-I protein levels. Consequently, the inhibition

of FASN using orlistat and TVB2640, which obstructs MHC-I

palmitoylation and lysosomal degradation to elevate its protein

levels, further facilitates antigen presentation and CD8+ T cell

cytotoxicity, hence augmenting the efficacy of immune checkpoint

inhibition (144).
7 Conclusions and outlook

In recent years, tumor immunotherapy has evolved rapidly,

promising results in some patients and offering potential for long-

term treatment. However, current cancer immunotherapies still

face challenges such as low response rates and the risk of serious

immune-related adverse events, and the efficacy of tumor

immunotherapy i s main ly dependent on the tumor

microenvironment (97). S-palmitoylation, an essential post-

translational modification of proteins that plays a role in various

aspects of tumor cell proliferation, apoptosis, and drug resistance,

affects the tumor microenvironment by modulating the

palmitoylation levels of specific proteins anti-tumor immune

responses in the environment (156).

Inhibition of protein palmitoylation can be achieved, on the one

hand, by developing specific inhibitors of ZDHHCs and, on the

other hand, by designing peptide inhibitors that bind ZDHHCs

competitively with substrate proteins (157). To date, no exact and

potent inhibitors against ZDHHCs have been developed. However,

considering that ZDHHCs may have multiple or even cross-
TABLE 1 Role of various palmitoylation inhibitors in tumor immunotherapy.

Acylprotein transferases
(ZDHHCs)

Target
protein

Cysteine site Inhibitor Effects of targeted palmitoylation
on tumors

References

ZDHHC2/3/7 Foxp3 Cys204/218
C280/281

Knockdown
ZDHHC2

Promoting the activation and effects of anti-tumor
T cells

(103)

ZDHHC3 IFNGR1 Cys122 Cerulean Enhanced sensitivity to immune checkpoint
therapy for colorectal cancer

(111)

ZDHHC16 PCSK9 Cys600 GFP-PCSK9-
PALM-1

Enhancing the antitumor effect of sorafenib
in HCC

(132)

/ ZDHHC9 / ZDHHC9-
siRNA nanoparticles

Enhanced anti-PD-L1 therapy for
pancreatic cancer

(134)

/ STING Cys91 4-Octyl itaconate
(4-OI)

Enhanced treatment of autoimmune diseases (136, 137)

ZDHHC3 PD-L1 Cys272 Benzosceptrin C Enhancement of tumor immunotherapy by the
combination of Benzosceptrin C and anti-CTLA4

(138)

/ PPT1 / DC661,
Ezurpimtrostat

Enhancement of anti-tumor efficacy of anti-PD-
1 antibody

(139, 140)
(141)

LYPLAL1 cGAS Cys404/405 LYPLAL1-IN-1/
Knockdown
LYPLAL1

Enhancement of cGAS-mediated immune response
to improve PD-1 efficacy

(142)

ZDHHC5 NOD1/2 Cys558/567/952
Cys395/1033

2-BP Enhancement of immune response and treatment
of autoimmune diseases

(112)

ZDHHC3/21 FANS
MHC-I

Cys1317 Orlistat and
TVB-2640

Promotes antigen presentation and cytotoxicity of
CD8+ T cells

(143, 144)
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substrates for palmitoylation, Potential inhibitors of ZDHHCs may

face unintended consequences that may reduce their translational

value in the clinic (158).

The most common S-palmitoylation inhibitor currently

available is 2-BP, which may damage all ZDHHCs and react with

other proteins. Therefore, it is necessary to resolve the structure of

ZDHHCs to develop selective inhibitors of ZDHHCs. However,

because the catalytic structural domains of ZDHHC family

members are very similar, the development of specific inhibitors

of ZDHHCs is very challenging, and targeting the C-terminus and

N-terminus of ZDHHCs with sequence diversity may be an effective

strategy for designing specific ZDHHCs inhibitors in the future.

Since each ZDHHC acts on various substrates, the impact of

explicitly inhibiting the function of a particular ZDHHC may be

multifaceted and needs to be explored in further studies.

Pa lmi toy la t ion i s an emerg ing targe t for tumor

immunotherapeutic drugs with great potential and broad

application prospects. With the deepening research on the

mechanism of palmitoylation and the emergence of novel

inhibitors, it is believed that more tumor immunotherapeutic

drugs targeting palmitoylation will be introduced, bringing new

therapeutic choices and hope to cancer patients.
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