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clinical model for preoperative
differentiation of intrahepatic
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intrahepatic bile duct stones
with cholangitis: a machine
learning approach
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Shaoxing, China, 3Department of Ultrasound, Shaoxing People’s Hospital, Shaoxing, China, 4School of
Medicine, Zhejiang University, Hangzhou, Zhejiang, China, 5School of Medicine, Shaoxing University,
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Background: This study aimed to develop and validate a predictive model

integrating radiomics features and clinical variables to differentiate intrahepatic

bile duct stones with cholangitis (IBDS-IL) from intrahepatic cholangiocarcinoma

(ICC) preoperatively, as accurate distinction is crucial for determining appropriate

treatment strategies.

Methods: A total of 169 patients (97 IBDS-IL and 72 ICC) who underwent surgical

resection were retrospectively analyzed. Radiomics features were extracted from

ultrasound images, and clinical variables with significant differences between

groups were identified. Feature selection was performed using LASSO regression

and recursive feature elimination (RFE). The radiomics model, clinical model, and

combinedmodel were constructed and evaluated using the area under the curve

(AUC), calibration curves, decision curve analysis (DCA), and SHAP analysis.

Results: The radiomics model achieved an AUC of 0.962, and the clinical model

achieved an AUC of 0.861. The combined model, integrating the Radiomics

Score with clinical variables, demonstrated the highest predictive performance

with an AUC of 0.988, significantly outperforming the clinical model (p < 0.05).

Calibration curves showed excellent agreement between predicted and

observed outcomes, and the Hosmer-Lemeshow test confirmed a good

model fit (p = 0.998). DCA revealed that the combined model provided the

greatest clinical benefit across a wide range of threshold probabilities. SHAP

analysis identified the Radiomics Score as the most significant contributor,

complemented by abdominal pain and liver atrophy.
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Conclusion: The combined model integrating radiomics features and clinical

data offers a powerful and reliable tool for preoperative differentiation of IBDS-IL

and ICC. Its superior performance and clinical interpretability highlight its

potential for improving diagnostic accuracy and guiding clinical decision-

making. Further validation in larger, multicenter datasets is warranted to

confirm its generalizability.
KEYWORDS

intrahepatic cholangiocarcinoma, intrahepatic bile duct stones, intrahepatic lithiasis,
radiomics, nomogram
1 Introduction

Intrahepatic bile duct stones combined with intrahepatic

lithiasis (IBDS-IL), and intrahepatic cholangiocarcinoma (ICC)

are two significant conditions that pose diagnostic challenges in

clinical practice (1–3). ICC is the second most common primary

liver malignancy after hepatocellular carcinoma, and its global

incidence is steadily increasing, with notable geographic

variations. In particular, regions such as Thailand exhibit a higher

incidence due to factors like parasitic infections and the high

prevalence of IBDS-IL (4).

Patients with intrahepatic bile duct stones often develop

cholangitis, a chronic inflammatory condition that can lead to

localized liver atrophy and increase the risk of carcinogenesis (5).

The risk factors for ICC are complex, but IBDS-IL has recently been

identified as a strong risk factor (6). Several studies have shown that

a considerable proportion of patients with IBDS-IL eventually

develop cholangiocarcinoma, complicating the diagnostic process

for clinicians (7). Accurate differentiation between cholangitis and

ICC is essential for effective clinical management. Misdiagnosing

ICC as benign cholangitis can delay treatment and lead to disease

progression, while mistaking cholangitis for malignancy may result

in unnecessary surgical interventions, such as performing

lymphadenectomy inappropriately (8). This distinction plays a

critical role in guiding appropriate treatment strategies and

optimizing patient outcomes.
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Current imaging modalities, particularly ultrasound, play a

critical role in the initial assessment of patients with biliary

symptoms. However, conventional ultrasound techniques often

struggle to differentiate between cholangitis and ICC effectively,

resulting in diagnostic uncertainty and potential treatment errors

(9). Although computed tomography (CT) can provide useful

imaging findings for ICC, classic CT features are observed in only

a portion of cases, and the diagnostic accuracy for distinguishing

IBDS-IL complicated by ICC remains low, typically ranging from

30% to 65% (10, 11).

In recent years, the emerging field of radiomics, which involves

the quantitative extraction of high-throughput imaging features, has

shown great potential (12, 13). By analyzing subtle imaging patterns

that are difficult to detect with the naked eye, radiomics has

demonstrated the ability to enhance the accuracy of disease

diagnosis, pathological grading, prognosis evaluation, and

treatment response prediction (14, 15). Although radiomics has

achieved favorable outcomes in the clinical management of various

cancers, there remains a lack of specific tools to distinguish IBDS-IL

from ICC.

This study aims to develop and validate a radiomics-based

model using ultrasound images for the preoperative identification

of ICC among patients with IBDS-IL. By identifying key imaging

features that differentiate cholangitis from ICC, we hope to advance

non-invasive diagnostic approaches for hepatobiliary diseases and

ultimately improve patient outcomes.
2 Materials and methods

2.1 Study population

Our study retrospectively analyzed patients who underwent

liver resection and were pathologically diagnosed with IBDS-IL or

ICC at our institution between September 2015 and September

2024. The inclusion criteria were: (1) Age ≥ 18 years; (2) abdominal

ultrasound performed within two weeks before surgery; (3)

postoperative pathological confirmation of IBDS-IL or ICC; (4)

Patients and family consent to participate in the study. The
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exclusion criteria were: (1) incomplete pathological data; (2)

incomplete clinical data; (3) missing or suboptimal quality

ultrasound images. Ultimately, 169 patients were included in the

study, consisting of 97 with IBDS-IL and 72 with ICC. The patients

were randomly divided into a training group (118 individuals) and a

validation group (51 individuals), ensuring both groups were

representative and suitable for further investigations and analyses.

Table 1 compares the overall clinical characteristics of IBDS-IL

and ICC, as well as the clinical data of IBDS-IL and ICC within both

the training and validation groups. Abdominal pain was defined as

upper abdominal discomfort or pain reported by the patient during

hospital visits, as documented in clinical records. Liver atrophy was

assessed by experienced radiologists based on available imaging

data and diagnosed according to morphological features such as

reduced liver volume, irregular contour, and segmental atrophy.

A flowchart of the included and excluded patients is shown

in Figure 1.
2.2 Image acquisition

All ultrasound examinations were performed by experienced

radiologists following a standardized protocol to ensure consistency

and reliability of the imaging data. Patients were positioned in

either the supine or lateral decubitus position with their arms raised

to fully expose the liver area for optimal imaging. A coupling gel was

applied between the ultrasound probe and the skin to enhance

sound wave transmission and minimize interference. After

identifying the lesion with conventional 2D ultrasound, the

images were adjusted to obtain the best view of the lesion.

Multiple images were captured from different angles of the lesion

for each patient, and all images were stored in digital imaging and

communications in medicine (DICOM) format for subsequent

analysis. Details of the ultrasound equipment used are provided

in the Supplementary Material.
2.3 Image segmentation

The delineation of the region of interest (ROI) was performed

by two ultrasound physicians using ITK-SNAP software (Version

4.0.0, http://www.itksnap.org) (16). The two radiologists

independently outlined the ROIs along the tumor boundaries

without access to clinical data, and then repeated the ROI

delineation on the same patient’s ultrasound images one week

later to assess inter-observer and intra-observer consistency. The

procedure steps were as follows: 1) The maximum slice of the lesion

in DICOM format was imported into ITK-SNAP software and

saved as a “NiFTI” format for further use; 2) The PolygonMode was

selected, and the ROI was carefully delineated along the tumor’s

edge. Afterward, the Paintbrush Mode was used to make

adjustments to ensure precise coverage of the lesion; 3) The ROI

image was exported and saved in “NiFTI” format for subsequent

analysis (Figure 2).
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2.4 Feature extraction and
dimension reduction

Before feature extraction, the images underwent a meticulous

standardization process to ensure uniformity and consistency

across the dataset: resampling the images to achieve a consistent

spatial resolution of 3 × 3 × 3 mm³, normalizing intensity values to

32 gray levels using a scale of 255, and effectively removing

machine-specific artifacts or noise. After aligning the tumor’s

maximum slice with the ROI’s NiFTI images, feature extraction

was performed using the open-source radiomics toolkit

PyRadiomics. Extracted features included shape features, first-

order statistical features, and texture features. Additionally, image

filtering techniques (such as wavelet, square, square root, logarithm,

exponential, gradient, and local binary patterns) were applied to the

original images. Features including first-order statistics and texture

features were also extracted from the filtered images. After feature

extraction, the data were standardized using Z-score normalization.

After feature extraction, the reliability of the features was assessed

using intra-class correlation coefficient analysis. Both intra-observer

and inter-observer intra-class correlation coefficients were calculated

to evaluate the consistency of the extracted features. Features with an

intra-class correlation coefficient exceeding 0.8 were deemed reliable

and selected for further analysis.

To further streamline the dataset, a comprehensive

dimensionality reduction process was carried out. Initially, features

with high collinearity (correlation coefficient > 0.75) were removed to

eliminate redundancy and multicollinearity. This was followed by a t-

test to identify features with significant differences between groups (p-

value < 0.05), ensuring the retention of statistically relevant features.

Next, least absolute shrinkage and selection operator (LASSO)

regression was applied to shrink and select key features by

penalizing less important variables. Finally, recursive feature

elimination (RFE) was employed to rank and iteratively eliminate

less important features. This multi-step approach effectively reduced

the dimensionality of the dataset while retaining the most predictive

features for further model development.
2.5 Model construction and evaluation

The predictive models were developed in three components: the

radiomics model, the clinical model, and the combined model. For the

radiomics model, multiple machine learning algorithms were utilized,

and the optimal hyperparameters were identified through a

combination of Random Search and Grid Search to ensure optimal

performance. The clinical model was constructed by including

variables that demonstrated significant differences (p-value < 0.05)

between ICC and IBDS-IL in the training set. These variables were first

screened using univariate logistic regression, followed by multivariate

logistic regression to build the final clinical model. Lastly, the

combined model was created by integrating the best-performing

radiomics model with the clinical model, aiming to harness the

strengths of both approaches for enhanced predictive capability.
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TABLE 1 Demographic and clinical characteristics of patients.

Variables IBDS-IL(n=97) ICC(n=72) p Training Group(n=118) p Testing Group(n=51) p

IBDS-IL(n=30) ICC(n=21)

002* 64.72 ± 7.91 65.82 ± 9.15 0.656

792 22.45 ± 2.58 21.86 ± 3.05 0.47

107 2.16 ± 1.12 43.21 ± 185.62 0.249

075 10.82(5.26-23.07) 49.56(14.36-306.91) 0.036*

01* 2.78 ± 1.28 37.83 ± 98.6 0.067

046* 12.17(10.0-16.02) 17.61(10.44-33.96) 0.073

02* 82.17 ± 151.91 43.52 ± 54.73 0.27

099 82.61 ± 185.87 46.05 ± 44.43 0.38

134 109.9(88.4-153.4) 166.0(86.35-220.85) 0.031*

662 185.87 ± 213.04 342.07 ± 496.85 0.143

402 22.14 ± 17.37 25.67 ± 45.43 0.709

321 9.75 ± 11.37 11.99 ± 29.96 0.719

436 37.51 ± 5.46 36.67 ± 4.15 0.561

057 12.77 ± 1.35 12.86 ± 1.08 0.792

379 1.05 ± 0.12 1.03 ± 0.08 0.487

002* 0.097

16 7

13 15

0.05* 0.001*

7 16

22 6

0.05* 0.246

18 17

11 5

826 1

29 22

(Continued)
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IBDS-IL(n=67) ICC(n=51)

Age 62.79 ± 9.26 67.07 ± 9.3 0.004* 61.97 ± 9.67 67.62 ± 9.32 0

BMI 22.32 ± 2.81 22.04 ± 3.09 0.546 22.26 ± 2.9 22.11 ± 3.1 0

AFP 2.23 ± 1.17 18.84 ± 106.73 0.13 2.26 ± 1.2 8.12 ± 29.43 0

CA199 13.82(6.32-31.74) 62.14(12.61-2761.52) 0.034* 16.64(7.9-33.74) 85.4(14.17-2761.52) 0

CEA 2.15(1.62-3.45) 4.76(2.58-10.96) 0.004* 2.1(1.56-3.24) 4.84(2.89-9.36) 0

CA125 12.2(9.15-16.54) 21.98(12.44-100.6) 0.009* 12.2(9.02-16.76) 24.21(13.88-105.62) 0

ALT 38.0(20.1-125.7) 20.45(15.55-40.95) 0.008* 45.65(18.55-172.55) 19.75(15.55-36.55) 0

AST 133.83 ± 367.1 52.22 ± 68.07 0.066 155.68 ± 419.41 54.93 ± 76.02 0

ALP 102.8(73.6-158.1) 119.3(86.0-217.5) 0.013* 139.31 ± 96.67 176.68 ± 168.21 0

GGT 181.2 ± 253.08 214.98 ± 335.22 0.459 179.21 ± 268.33 159.06 ± 207.29 0

TBIL 25.01 ± 25.84 34.04 ± 92.37 0.364 26.24 ± 28.61 37.72 ± 106.46 0

DBIL 11.69 ± 18.64 19.61 ± 70.54 0.295 12.52 ± 20.93 22.96 ± 82.06 0

ALB 37.5 ± 5.78 37.78 ± 4.21 0.731 37.5 ± 5.91 38.27 ± 4.15 0

PT 12.48 ± 1.17 12.83 ± 1.4 0.079 12.36 ± 1.06 12.82 ± 1.51 0

INR 1.03 ± 0.1 1.04 ± 0.12 0.735 1.02 ± 0.08 1.04 ± 0.13 0

Gender <0.05* 0

Female 64 28 48 21

Male 33 44 20 29

Abdominal Pain <0.05* <

No 18 52 11 36

Yes 79 20 57 14

Combined with Common Bile Duct Stones <0.05* <

No 48 58 30 41

Yes 49 14 38 9

Weight Loss in the Past 3 Months 0.831 0

No 96 71 67 49
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TABLE 1 Continued

Variables IBDS-IL(n=97) ICC(n=72) p Training Group(n=118) p Testing Group(n=51) p

IBDS-IL(n=30) ICC(n=21)

0 0

.045* 0.121

24 14

5 8

.006* 0.906

22 17

7 5

.671 0.773

27 20

2 2

.835 0.77

20 16

9 6

.016* 0.007*

29 17

0 5

.007* 0.017*

29 18

0 4

.826 1

29 22

0 0

0.05* <0.05*

6 18

23 4

.072 0.08
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IBDS-IL(n=67) ICC(n=51)

Yes 1 1 1 1

Smoking 0.011* 0

No 83 50 59 36

Yes 14 22 9 14

Drinking Alcohol 0.033* 0

No 84 53 62 36

Yes 13 19 6 14

Diabetes 0.802 0

No 85 64 58 44

Yes 12 8 10 6

Hypertension 0.737 0

No 65 50 45 34

Yes 32 22 23 16

Hepatitis B <0.05* 0

No 94 58 65 41

Yes 3 14 3 9

Combined with Other Tumors 0.001* 0

No 90 53 61 35

Yes 7 19 7 15

Family History of Tumors 0.831 0

No 96 71 67 49

Yes 1 1 1 1

Liver Atrophy <0.05* <

No 21 59 15 41

Yes 76 13 53 9

Liver Cirrhosis 0.014* 0
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2.6 Statistical analysis

All radiomics procedures and statistical analyses were

conducted using Python (Version 3.10), while R software

(Version 4.3.1, R Foundation for Statistical Computing, Vienna,

Austria) was used for constructing the nomogram and generating

calibration curves. Continuous variables were reported as mean ±

standard deviation or median (range), depending on the data

distribution. Group comparisons for continuous variables were

performed using the t-test or Mann-Whitney U test, as

appropriate. Model performance differences were assessed using

the DeLong test. Calibration curves were employed to evaluate the

agreement between predicted and observed outcomes. Additionally,

decision curve analysis (DCA) was carried out to assess the clinical

utility of the models. A two-tailed p-value < 0.05 was considered

statistically significant for all analyses.
3 Results

3.1 Patient characteristics

A total of 169 patients were included in the study, comprising

97 with IBDS-IL and 72 with ICC. The clinical characteristics of the

patients, including comparisons between IBDS-IL and ICC, as well

as between the training and validation groups, are summarized in
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FIGURE 1

Flowchart of included and excluded patients.
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Table 1. No significant differences in demographic or baseline

clinical characteristics were observed between the training and

validation groups (Supplementary Material), ensuring consistency

for model development.

In the training set, several variables demonstrated significant

differences between IBDS-IL and ICC. These included age,

carcinoembryonic antigen (CEA), cancer antigen 125 (CA125),

alanine aminotransferase (ALT), gender, presence of abdominal pain,

combined bile duct stones, smoking status, alcohol consumption,

history of other tumors, and liver atrophy (p < 0.05 for all).
3.2 Clinical model

Variables that exhibited significant differences between the

IBDS-IL and ICC groups were analyzed using univariate logistic

regression. Those with a p-value < 0.05 in the univariate analysis

were subsequently included in a multivariate logistic regression to

identify independent predictors. The final clinical model was

constructed using abdominal pain and liver atrophy as the most
Frontiers in Oncology 07
significant predictors. The detailed results of the univariate and

multivariate logistic regression analyses are presented in Table 2.

The clinical model demonstrated strong predictive

performance, achieving an AUC of 0.881 (0.815–0.947) in the

training group and 0.861 (0.79–0.932) in the validation

group (Figure 3).
3.3 Radiomics model

Prior to constructing the radiomics model, an extensive feature

reduction process was implemented to minimize the risk of

overfitting. Initially, 1431 features were extracted from both the

original and filtered images. Intra-observer reliability, as measured

by the intra-class correlation coefficient, exceeded 0.8 for all

features, while 1376 features demonstrated an intra-class

correlation coefficient greater than 0.8 for inter-observer

reliability, indicating strong consistency.

To refine the feature set, several key steps were undertaken.

First, features exhibiting high collinearity (correlation > 0.75) were
TABLE 2 Univariate and multivariate logistic analysis of clinical factors.

Variables Univariate logistic analysis results Multivariate logistic analysis results

OR (95% CI) p-value OR (95% CI) p-value

Age 1.068 (1.022 - 1.116) 0.004* 1.056 (0.987 - 1.129) 0.111

CEA 1.567 (1.247 - 1.970) <0.05* 1.376 (0.927 - 2.043) 0.113

CA125 1.033 (1.012 - 1.054) 0.002* 1.027 (0.994 - 1.061) 0.107

ALT 0.995 (0.991 - 1.000) 0.029* 0.999 (0.992 - 1.006) 0.770

Gender 3.230 (1.510 - 6.905) 0.002* 0.815 (0.155 - 4.294) 0.810

Abdominal Pain 0.079 (0.033 - 0.191) <0.05* 0.178 (0.040 - 0.781) 0.022*

Combined with Bile Duct Stones 0.188 (0.081 - 0.434) <0.05* 0.362 (0.075 - 1.742) 0.205

Smoking 3.973 (1.406 - 11.229) 0.009* 0.650 (0.053 - 8.010) 0.737

Drinking Alcohol 3.973 (1.406 - 11.229) 0.009* 6.910 (0.782 - 61.043) 0.082

Combined with Other Tumors 3.177 (1.226 - 8.230) 0.017* 1.443 (0.275 - 7.562) 0.665

Liver Atrophy 0.065 (0.026 - 0.161) <0.05* 0.067 (0.016 - 0.279) <0.05*
CEA, carcinoembryonic antigen; CA125, cancer antigen 125; ALT, alanine transaminase; *p<0.05.
FIGURE 2

ROI delineation on ultrasound images. (A) Original grayscale ultrasound image of a patient with intrahepatic cholangiocarcinoma (ICC) combined
with bile duct stones. (B) The region of interest (ROI) was manually delineated (red area) along the tumor margin. This case demonstrates the
challenge in differentiating ICC with bile duct stones from intrahepatic bile duct stones with cholangitis (IBDS-IL) based on imaging alone.
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removed to reduce multicollinearity. Next, t-tests were performed

to identify significant features, followed by LASSO regression with

10-fold cross-validation for further dimensionality reduction.

Detailed information on the LASSO process and cross-validation

results can be found in the Supplementary Materials.

Despite retaining 16 features after these steps, the model still

exhibited a potential risk of overfitting, owing to the relatively

small sample size (n = 118) in the training set. To address this

issue, RFE was applied, using Random Forest as the evaluation

model to select the top ten most significant features for the final

model (Figure 4).

To construct the radiomics model, we explored a variety of machine

learning algorithms, including Support VectorMachine, Random Forest,

K-Nearest Neighbor, Logistic Regression, Decision Tree, Artificial Neural

Network, AdaBoostClassifier, GradientBoostingClassifier, and XGBoost.

Both RandomizedSearchCV and GridSearchCV were employed to

identify the optimal hyperparameters for each algorithm, ensuring the

best possible model performance (the specific optimal parameters are

detailed in the Supplementary Materials). ROC curves were plotted to

evaluate the performance of the models, and the AUC was calculated
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(Figure 5). Among all the algorithms tested, the Random Forest model

achieved the highest AUC of 0.962 (0.904-1), demonstrating its superior

predictive ability.

Although the AUC of the best-performing radiomics model was

higher than that of the clinical model, the DeLong test revealed no

statistically significant difference between the AUCs of the

radiomics model (Random Forest, 0.962) and the clinical model

(0.861; p = 0.111). This suggests that both models demonstrate

comparable predictive accuracy.
3.4 Combined model

The combined model was constructed by integrating the

predicted values of the best-performing radiomics model

(Random Forest) as the Radiomics Score with the clinical model.

This integrated model was visualized using a nomogram

(Figure 6A), which provides an intuitive tool for predicting

individual probabilities based on the combined model.

To assess the calibration of the combined model, a calibration

curve was plotted (Figure 6B). The curve demonstrated excellent

agreement between predicted and observed outcomes, indicating

the reliability of the model’s predictions. Additionally, the Hosmer-

Lemeshow test yielded a p-value of 0.998, confirming that there was

no significant deviation from a perfect fit.

The predictive performance of the combined model was

evaluated alongside the radiomics and clinical models using ROC

curves (Figure 7A). The combined model achieved the highest AUC

of 0.988 (0.967–1), significantly outperforming the clinical model

(p < 0.05, DeLong test) but showing no statistically significant

difference compared to the radiomics model. To further illustrate

the models’ clinical utility, DCA was performed (Figure 7B). The

combined model demonstrated the greatest net benefit across a

wide range of threshold probabilities, indicating its superior value in

guiding clinical decision-making. To provide a comprehensive

evaluation of the models, a radar chart (Figure 7C) was generated

to compare key metrics, including precision, specificity, sensitivity,

AUC, F1 score, accuracy, and recall. The combined model
FIGURE 4

Recursive Feature Elimination (RFE) selected feature importance. The plot displays the top 10 features selected using RFE with Random Forest as the
evaluation model. Feature importance values are represented along the x-axis, with individual features listed on the y-axis.
FIGURE 3

Receiver operating characteristic curve analysis of the
clinical model.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1546940
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qian et al. 10.3389/fonc.2025.1546940
consistently outperformed the other models across these metrics,

further highlighting its predictive and clinical effectiveness.

Finally, confusion matrices were generated for all three models

(Figure 7D), providing a detailed visualization of their classification

performance. The results clearly demonstrated the superiority of the

combined model, which achieved the highest accuracy with no

misclassified ICC cases. In contrast, the clinical model showed a

tendency to misclassify ICC as IBDS-IL, which may have significant

clinical implications. The radiomics model performed better but

still resulted in minor misclassifications. The combined model’s

ability to completely avoid misclassifying ICC highlights its

potential clinical value in ensuring accurate diagnosis and

timely intervention.

To further interpret the combined model, we performed

SHapley Additive exPlanations (SHAP) analysis to quantify the

contribution of each feature to the model’s predictions. The SHAP

summary plot (Figure 8) revealed that the Radiomics Score was the

most significant contributor to the model, indicating that the
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radiomics features played a dominant role in distinguishing

IBDS-IL from ICC. Other clinical factors, including abdominal

pain and liver atrophy, also contributed to the model but to a

lesser extent.
3.5 Bootstrap validation

To further validate the robustness and reliability of all predictive

models, including the radiomics model, clinical model, and

combined model, we performed a bootstrap analysis with 1000

resamples for each model. The bootstrap-derived AUC and 95%

confidence intervals were highly consistent with those obtained

using the original validation group (Supplementary Materials),

confirming the stability and reliability of each model’s predictive

performance. These findings further demonstrate the robustness of

the combined model, as well as the radiomics and clinical models,

across different evaluation methods.
FIGURE 6

(A) The nomogram for the combined model integrates clinical factors (Abdominal Pain and Liver Atrophy) and the Radiomics Score to predict the
probability of intrahepatic bile duct stones with cholangitis (IBDS-IL) and intrahepatic cholangiocarcinoma (ICC). (B) Calibration curve of the
combined model. The dotted line represents the apparent performance, the solid line indicates the bias-corrected results, and the dashed line
represents the ideal performance.
FIGURE 5

Receiver operating characteristic curve analysis of the modeling methods. The Random Forest model showed the best diagnostic performance, with
AUC values of 1.0 (1.0–1.0) in the training group (A) and 0.962 (0.904–1) in the validation group (B).
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4 Discussion

To the best of our knowledge, our study is the first to integrate

ultrasound radiomics features with clinical characteristics for the

preoperative differentiation of IBDS-IL and ICC. By combining the

strengths of radiomics and clinical data, the proposed combined

model achieved outstanding predictive performance, with an AUC

of 0.988, significantly outperforming the clinical model and

demonstrating comparable accuracy to the radiomics model. This

novel approach highlights the added value of integrating imaging-

based features, which capture subtle tumor characteristics, with

clinical variables that reflect patient-specific factors. The

visualization of the combined model using a nomogram provides

an intuitive tool for individualized risk prediction, facilitating its

application in clinical practice. Additionally, the calibration curve

and DCA demonstrated not only the reliability of the model’s

predictions but also its substantial clinical utility, underscoring the

potential of this approach to improve preoperative decision-making

and patient management.
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In this study, we chose ultrasound radiomics over contrast-

enhanced imaging modalities due to its unique advantages in

clinical practice. Ultrasound is widely accessible, cost-effective,

and non-invasive, making it a practical tool for routine clinical

use, especially in resource-limited settings (17, 18). Furthermore, it

provides real-time, dynamic imaging of biliary structures, offering

unique insights into lesion characteristics that are not readily

captured by other imaging modalities (19, 20). While contrast-

enhanced CT or MRI can offer valuable diagnostic information,

these modalities are not always available and their diagnostic

accuracy for distinguishing IBDS-IL complicated by ICC remains

limited, as shown in previous studies (21). Our primary objective

was to enhance the diagnostic utility of ultrasound, which is already

a first-line imaging modality for biliary diseases. By applying

radiomics analysis to ultrasound, we sought to overcome the

limitations of conventional ultrasound techniques and improve

diagnostic accuracy in a widely accessible manner.

During the construction of the clinical model, abdominal pain

and liver atrophy were ultimately included as key predictors, while
FIGURE 7

(A) Receiver Operating Characteristic (ROC) curves for the three models. The combined model achieved the highest AUC (0.988), followed by the
radiomics model (0.962) and the clinical model (0.861), demonstrating superior predictive performance of the combined model. (B) Decision Curve
Analysis (DCA) for the three models. The combined model (yellow line) provided the greatest net benefit across a wide range of threshold
probabilities, indicating its superior clinical utility compared to the radiomics model (red line) and clinical model (blue line). (C) Radar chart
comparing key performance metrics (precision, specificity, sensitivity, AUC, F1 score, accuracy, and recall) for the three models. (D) Confusion
matrices for the clinical model, radiomics model, and combined model. The combined model showed the best classification performance, with
fewer misclassifications, particularly in identifying ICC cases (0 misclassified).
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traditional tumor biomarkers such as CA199 and CEA were

excluded. CA199 is known to be easily influenced by

inflammation, which likely compromises its specificity in

differentiating IBDS-IL from ICC (22, 23). However, the

exclusion of CEA, a biomarker typically regarded as more specific

for malignancy, warrants further discussion (24). CEA has long

been associated with various gastrointestinal malignancies,

including cholangiocarcinoma, and is considered a useful marker

for cancer diagnosis and prognosis (25). Its lack of significance in

this study may be due to several factors. First, the overlap in CEA

levels between early-stage ICC and benign conditions such as IBDS-

IL could reduce its discriminatory power (26). Second, our study

population consisted exclusively of surgical candidates, where CEA

levels may not differ significantly between groups due to the early or

resectable stage of the disease (27). Third, the relatively small

sample size may have limited the statistical power to detect CEA’s

potential contribution. The findings in our study suggest that the

predictive value of CEA in this specific context may be limited,

particularly in distinguishing between IBDS-IL and early-stage ICC

in surgical candidates, highlighting the importance of considering

the clinical and pathological context when interpreting

biomarker significance.

The clinical model, with an AUC of 0.861, demonstrated

moderate predictive performance, which reflects its reliance on

observable clinical features such as abdominal pain and liver

atrophy. While these features provide valuable diagnostic insights,

they may lack sensitivity in distinguishing subtle differences

between IBDS-IL and ICC, particularly in early or resectable

stages. In comparison, the radiomics model achieved a higher

AUC of 0.962, highlighting its ability to capture imaging-derived

microstructural and textural features that are difficult to assess

clinically (28, 29). These features provide a deeper understanding of

the tumor’s biological and morphological characteristics, offering a

distinct advantage in differentiating between IBDS-IL and ICC.

However, despite its high accuracy, the radiomics model lacks the

contextual information provided by clinical data, which can be

crucial for practical decision-making (30, 31). The combined model

demonstrated the highest AUC of 0.988, significantly

outperforming the clinical model and showing comparable

performance to the radiomics model. This improvement can be
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attributed to the integration of complementary data sources, where

radiomics features provide high sensitivity for subtle imaging

patterns, and clinical data enhance the model’s interpretability

and applicability in clinical practice (32).

Furthormore, the results of the confusion matrices highlight the

clinical significance of the combined model, particularly in

addressing the limitations of the clinical model. The clinical

model showed a tendency to misclassify ICC cases as IBDS-IL,

which could have serious implications for patient prognosis.

Missing an ICC diagnosis may delay appropriate surgical

treatment and lead to disease progression, significantly affecting

patient outcomes (33). In contrast, the combined model

demonstrated 100% accuracy in identifying ICC cases, with no

misclassifications. This achievement underscores the importance of

integrating radiomics features with clinical variables. The radiomics

score, as indicated by the SHAP analysis, played a dominant role in

the combined model by providing imaging-based insights that

effectively distinguish between the two conditions. By reducing

the risk of misdiagnosis, the combined model not only improves

diagnostic accuracy but also holds significant clinical value in

ensuring timely and appropriate intervention for ICC patients.

We believe this improvement could have a profound impact on

patient management, particularly in guiding surgical decision-

making and optimizing treatment strategies.

The integration of radiomics features with clinical variables

further strengthened the model’s predictive capability while

demonstrating superior clinical utility, as supported by the DCA

and SHAP analysis results. The DCA showed that the combined

model provided the greatest net benefit across a wide range of

threshold probabilities, reinforcing its potential value in guiding

clinical decision-making. This indicates that the combined model

can offer more accurate risk stratification and better inform

treatment decisions compared to the radiomics or clinical models

alone. SHAP analysis further illuminated the contribution of

individual features to the combined model. Among all features,

the Radiomics Score emerged as the most significant contributor,

underscoring the dominant role of radiomics in capturing imaging-

based characteristics critical for differentiating IBDS-IL from ICC.

Clinical features, such as abdominal pain and liver atrophy, also

contributed to the model’s predictions, albeit to a lesser extent.
FIGURE 8

SHapley Additive exPlanations (SHAP) summary plot illustrating the contribution of individual features to the combined model’s output. The x-axis
represents the SHAP values, reflecting the impact of each feature on the model’s predictions. Positive SHAP values indicate a higher likelihood of
predicting ICC, while negative SHAP values correspond to IBDS-IL.
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Although the combined model demonstrated excellent

predictive performance, its integration into clinical practice

remains a significant challenge and is far from being realized. The

current model is research-oriented and has not yet been validated in

real-world clinical workflows or for complex cases, such as patients

presenting with both IBDS-IL and malignant transformation (e.g.,

coexisting IBDS-IL and ICC). In this study, such cases were

classified into the ICC group, as malignant transformation is the

primary clinical concern due to its prognostic and therapeutic

implications. However, the limited sample size prevented separate

validation for this specific scenario, which remains a potential

limitation. Future research should focus on validating the model

with larger, multicenter datasets and evaluating its performance in

more nuanced contexts. Additionally, prospective studies are

needed to explore its clinical feasibility, including embedding

predictive outputs like the Radiomics Score into clinical systems

such as picture archiving and communication systems or electronic

health records. Substantial efforts will be required to optimize the

model’s efficiency, interpretability, and integration into clinical

workflows to bridge the gap between research and practical

application, ultimately improving patient management

and outcomes.

Despite the superior performance of the combined model,

several limitations of this study should be addressed. First, the

sample size was relatively small, particularly for a study employing

machine learning methods. A limited sample size can introduce

potential bias and reduce the statistical power of the results,

potentially affecting the stability of feature selection and the

generalizability of the model. Additionally, small datasets increase

the risk of overfitting, where the model may perform well on the

training data but struggle to generalize to unseen data. To address

these concerns, future studies should consider expanding the

dataset by incorporating multi-center data or collecting additional

cases from diverse populations. Such efforts would not only enhance

the statistical power but also improve the robustness and

reproducibility of the model. Independent validation using

external datasets is also essential for evaluating the model’s

applicability in different clinical settings. Second, this study

focused exclusively on surgical candidates, introducing a potential

selection bias that may limit the applicability of the findings to

patients with more advanced disease stages who are not eligible for

surgery. Future research should aim to address these limitations by

including a more diverse patient population and incorporating

external validation with datasets from multiple centers. Third,

Abdominal pain and liver atrophy were included as clinical

predictors of ICC in this study. While statistically significant,

these variables are not strictly objective. Abdominal pain was

recorded based on patient reports and physician documentation

without standardized severity grading, introducing potential

variability. Liver atrophy was qualitatively assessed by radiologists

based on imaging findings rather than precise volumetric

measurements. Future studies should incorporate standardized

pain scoring systems and quantitative imaging analysis to
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improve reproducibility and minimize subjectivity in clinical

assessments. Additionally, integrating other data modalities, such

as genomic or molecular profiling, may further enhance the

predictive power and clinical utility of the model. These steps will

help refine the combined model and facilitate its translation into

routine clinical practice.
5 Conclusion

In summary, our study demonstrates that integrating radiomics

features with clinical variables significantly enhances the

preoperative differentiation of IBDS-IL and ICC. The inclusion of

clinically relevant features, such as abdominal pain and liver

atrophy, alongside imaging-derived radiomics scores, underscores

the importance of a multimodal approach in disease differentiation.

Moreover, the combined model demonstrated excellent calibration

and substantial clinical utility, making it a promising tool for

clinical decision-making. However, further validation with larger,

multicenter datasets and inclusion of diverse patient populations is

necessary to confirm its robustness and generalizability.
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