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Oncolytic viruses represent a distinct class of viruses that selectively infect and

destroy tumor cells while sparing normal cells. Despite their potential, oncolytic

viruses encounter several challenges as standalone therapies. Consequently, the

combination of oncolytic viruses with other therapeutic modalities has emerged

as a prominent research focus. This paper summarizes the tumor-killing

mechanisms of oncolytic viruses, explores their integration with radiotherapy,

chemotherapy, immune checkpoint inhibitors, CAR-T, and CAR-NK therapies,

and provides an overview of related clinical trials. By synthesizing these

advancements, this study seeks to offer valuable insights for the clinical

translation of oncolytic virus combination therapies.
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1 Introduction

Oncolytic viruses offer a novel and promising approach to cancer therapy. They

selectively infect and destroy tumor cells, sparing normal cells in the process (1). As the

number of oncolytic viruses approved by the Food and Drug Administration (FDA) for

clinical use continues to grow, interest in this therapeutic strategy has markedly increased.

Oncolytic viruses can be administered as monotherapy or combined with radiotherapy,

chemotherapy, immunotherapy, or cell-based therapies, presenting promising prospects

for cancer treatment. Currently, Several oncolytic viruses are employed, such as adenovirus

(Ad) (2), herpes simplex virus (HSV) (3), vaccinia virus (VV) (4), reovirus (5), poliovirus

(6), coxsackie virus (CV) (7), Newcastle disease virus (NDV) (8), vesicular stomatitis virus

(VSV) (9), myxoma virus (10) and some Senteroviruses (11).

Research on oncolytic viruses began in the early twentieth century, revealing that

certain wild-type or naturally attenuated viral strains could effectively treat cancer (12).
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Over recent decades, significant advancements had been achieved in

cancer therapy with oncolytic viruses, and the milestones are

summarized in Figure 1.

The antitumor effects of oncolytic viruses extend beyond

receptor expression, potential mutations or transcriptional

resistance. Furthermore, these viruses can stimulate non-

autoantigen responses and amplify antitumor immune (13, 14).

Preclinical and clinical evidence demonstrates that oncolytic

viruses can inhibit tumor growth through via multiple mechanisms.

Nonetheless, several challenges limit their clinical translation.

However, the clinical application of oncolytic viruses is hindered

by challenges such as safety concerns, immune evasion, large-scale

production, and clinical trials design (1, 15). Integrating oncolytic

viruses with complementary therapies may enhance their efficacy

and address existing challenges.

2 Factors influencing the anti-tumor
effects of oncolytic viruses

2.1 Induction of tumor cell lysis

Oncolytic viruses proliferate rapidly within tumor cells competing

for biomolecules and energy, ultimately leading to host cell damage.

Oncolytic virus releases progeny viruses after lysis of tumor cells,

which infect nearby tumor cells and gradually metastasize to distal

tumor cells until cleared by the host immune system (16). Viral

replication of whin tumor cells alters their metabolic profile, inhibiting

DNA repair, disrupts cell cycle regulation, and promotes apoptosis.

Finally, tumor cells destroyed by oncolytic viruses also release

damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs), which intensify the

immune response against the surrounding tumor cells (Figure 2).

While oncolytic virus generally spare healthy cells, excessive

oncolytic activity may result in off-target effects or heightened

toxicity, potentially causing damage to normal tissues (17). The

efficacy of oncolytic viruses is affected by factors such as virus type,

injection dose, tumor cells sensitivity, and genetic modifications

(18, 19).
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2.2 Tumor immune response

Oncolytic viruses can elicit specific B-cell and T-cell responses

against tumor antigens, and potentially prevent long-term tumor

recurrence. B lymphocytes primarily secrete antibodies and

eliminate tumor cells through antibody-mediated mechanisms.

Cytotoxic T lymphocytes (CTLs) directly recognize and

destroy tumor cells, while helper T cells regulate and amplify

the immune response. Innate immune cells, such as macrophages,

natural killer (NK) cells and dendritic cells (DCs) can also directly

kill tumor cells and secrete cytokines that amplify adaptive

immune responses or sensitize tumor cells to viruses (20, 21).

Oncolytic viruses induce the release of toll-like receptor (TLR)

ligands, PAMPs and DAMPs from the infected tumor cells, which

then activate antigen-presenting cells (APCs), NK cells and T cells.

TLR ligands can counteract tumor-induced immunosuppression by

modulating cytokines (22). Furthermore, DCs expressing the Major

Histocompatibility Complex-1(MHC-1) and MHC-2 receptors

respectively activate the CD8+ and CD4+T cells by presenting

antigens. NK cells and activated CD8+T cells synergistically

release perforin, granzyme and cytokines that directly kill tumor

cells (Figure 3).

Oncolytic viruses elicit a host immune response that

suppresses the tumor-killing effects, but this can be mitigated

by combining oncolytic virus with low-dose chemotherapy

or transforming growth factor beta (TGF-b) (23, 24). These

agents can transiently suppress immune response, thus ensuring

survival of the virus particles till they reach the tumor

site. However, the precise safe dosage of these drugs still

required further investigation.

While anti-viral immunity impairs efficacy, tumor-killing

responses can be enhanced by immune stimulation. Tumor

regression can be enhanced by increasing their therapeutic dose,

immunostimulants immunostimulants as adjuvants (25, 26), or

engineering recombinant viruses to express immunostimulatory

genes or modified promoter elements (27). Interestingly, a virus

that is oncogenic in one host may exert oncolytic properties against

various tumors in another host (28).
FIGURE 1

Significant milestones in the development of oncolytic viruses.
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The expression of cytotoxic proteins can also boost the efficacy

of oncolytic viruses. For instance, adenovirus death protein (ADP)

is a glycoprotein that effectively lyses cells and releases viral particles

during advanced stages of infection. Consequently, viruses

overexpressing ADP can spread more rapidly and efficiently

within tumors (29).

In a Phase I clinical trial, patients with malignant pleural

mesothelioma received intrathoracic oncolytic virus therapy,

which reduced tumor cell density and increase the density of

multiple immune cells (30).
2.3 Recombinant oncolytic virus

Recombinant oncolytic virus strains are develop by

incorporating target genes or expression elements in the viral

genome. These engineered viruses produce supplementary

proteins in the host tumor cells, which enhance the anti-tumor

efficacy of oncolytic viruses or confer additional therapeutic

attributes (31).

The oncolytic vaccinia virus represents a promising

recombinant strain. Studies have shown that vaccinia virus, when

armed with IL-2, IL-15 or HBD2 is highly effective at recognizing

and killing tumor cells (32–34). Notably, recombinant vaccinia
Frontiers in Oncology 03
virus strains expressing bacterial flagellin have demonstrated

oncolytic effects in solid tumor models (35).

Newcastle disease virus (NDV) is the longest-used oncolytic

virus in clinical trials and has a well-established safety record as a

monotherapy, attributed to its robust induction of antiviral

responses in non-transformed mammalian cells (36). NDV can

also be recombined in many ways, for instance, an NDV strain

expressing matrix metalloproteinase (MMP) 8 enhances viral

accumulation in tumors, thereby improving oncolytic efficacy.

Additionally, NDV strains have been engineered to promote the

release of IFNg from virus-infected melanomas cells (37, 38).

In addition, many oncolytic viruses have been successfully

reprogrammed, and it is believed that more successful novel

oncolytic viruses will be designed for preclinical and clinical trials

in the future.
2.4 The tumor microenvironment

The tumor microenvironment (TME) is a complex network of

tumor and stromal cells that fosters the growth and survival of cancer

cells. Depending on cytokine profile and infiltration of immune cells,

the TME can be categorized as immunologically “cold” or “hot”.

A cold TME is defined by elevated levels of inhibitory cytokines

and immune checkpoint molecules, along with high infiltration of
FIGURE 2

Mechanisms of oncolytic viruses. (A) The oncolytic virus has no destructive effect on normal cells. (B) The oncolytic virus selectively infects tumor
cells, initiating viral replication within them. (C) Oncolytic viruses proliferate and lyse tumor cells. (D) The released oncolytic viruses then infect
nearby tumor cells and lyse them. (E) Tumor cells lysed by oncolytic viruses release Cytokines, TAAs, DAMPs and PAMPs, which induce anti-tumor
immunity against proximal and metastatic tumors. (F) After lysing tumor cells to release antigens and cytokines, oncolytic viruses further infect and
kill metastatic tumors.
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immunosuppressive cells, which hinder the immune system from

accurately identifying and killing tumor cells (39). Conversely, a hot

TME facilitates detection and elimination of tumor cells via

immune effector cells, pro-inflammatory cytokines, and

immunostimulatory molecules.

Since hot tumors respond better to immunotherapy,

transforming the TME from “cold” to “hot” can increase the

effectiveness of oncolytic viruses by enhancing immune

recognition and destruction of tumor cells (40).

Oncolytic viruses can transform the TME from “cold” to “hot”,

and evoke an adaptive antitumor immune response by releasing

tumor-associated antigens (TAAs), PAMPS, and DAMPS. These

immunostimulatory molecules recruit antigen-presenting cells

(APCs) to the tumor site (41), resulting in antitumor and

antiviral responses (Figure 4). Thus, oncolytic viruses are a

promising immunotherapeutic agent for tumor control.

Evidence indicates that viruses can transport genes encoding

immunostimulatory molecules, such as cytokines, chemokines, and

co-stimulatory receptors, to the TME, thereby enhancing antitumor

immunity (42).

Viral particles and gene products released upon tumor cell lysis

can also activate the immune system. Furthermore, oncolytic

viruses can inhibit tumor angiogenesis, reduce tumor blood

supply, and induce tumor hypoxia and nutrient deficiency by

inactivating pro-angiogenic factors secreted by tumor cells. Virus-

infected cells often trigger an inflammatory response that can lead

to tissue damage. Oncolytic viruses can modulate the tumor
Frontiers in Oncology 04
microenvironment by regulating the production and release of

inflammatory factors, reducing surrounding tissue damage, and

thereby enhancing therapeutic efficacy.

Oncolytic adenoviruses engineered to locally express

inflammatory cytokines IL-12 and PD-L1 blocking antibodies can

repolarize TME, enhance CD8 T cell activity, and can kill tumor

cells by altering the tumor microenvironment (43, 44).
3 Limitations of oncolytic
virus monotherapy

Oncolytic viruses, as a novel anticancer approach, function by

selectively infecting and lysing tumor cells. Despite their potential,

the clinical efficacy of oncolytic virus monotherapy is significantly

constrained by several factors:
3.1 Tumor heterogeneity

Oncolytic virus infection depends on specific viral receptors, the

expression of which varies widely among tumor types and patients.

This heterogeneity markedly impacts the efficacy of oncolytic

viruses, complicating efforts to achieve consistent outcomes across

tumors. Moreover, the high mutation rates of solid tumors

frequently undermine the long-term effectiveness of oncolytic

virus monotherapy (45).
FIGURE 3

Oncolytic viruses can enhance the anti-tumor immune response and improve the effect of immunotherapy. (A) The destruction of tumor cells
releases DAMPs, PAMPs and cytokines. (B) APCs, such as DCs, are activated and release IL-2, IL-6, and tumor necrosis factor (TNF). (C) After
dendritic cells mature, they activate CD4+ and CD8+ T cells through MHC. (D) Oncolytic virus infection leads to increased expression of the
immune checkpoint molecules PD-1, PD-L1 and CTLA-4, as well as enhanced sensitivity of tumor cells to immune checkpoint inhibitors (ICIs).
(E) NK cells, together with activated CD8+T cells, can release cytokines, perforin and granzyme to kill tumor cells.
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3.2 Immune response

Infection of tumor cells by oncolytic viruses activates host

immune responses, resulting in viral clearance and diminished

tumor-killing efficacy. Tumors suppress immune responses via

mechanisms like elevated PD-L1 expression or recruitment of

regulatory T cells (Tregs), further reducing oncolytic virus efficacy

(43, 46, 47).

3.3 Limitations in local and
systemic efficacy

While effective at lysing local tumors, oncolytic viruses show

limited efficacy in controlling metastatic tumors. Monotherapy

frequently fails to comprehensively target metastatic lesions.

3.4 Balancing viral load and safety

Increasing the viral dose may improve therapeutic efficacy but

also heightens the risk of adverse effects, including inflammatory

responses, organ failure, and, in severe cases, death (17).
Frontiers in Oncology 05
Monotherapy struggles to balance the need for therapeutic

efficacy with ensuring patient safety.
4 Combination of oncolytic virus
therapy with other
treatment approaches

Given the limitations of oncolytic virus monotherapy,

combination therapy has become a pivotal approach in cancer

treatment. Integrating multiple therapeutic approaches achieves

synergistic effects, effectively killing tumor cells while addressing

the limitations of monotherapy.

For example, radiotherapy and chemotherapy disrupt tumor

barriers, enhancing viral penetration; immune checkpoint inhibitors

modulate host immune responses, reducing the clearance of oncolytic

viruses. Furthermore, the combination of oncolytic viruses with CAR-

T or CAR-NK cells not only improves the tumor microenvironment

but also releases viral particles and cytokines that further activate and

enhance the functions of CAR-T and CAR-NK cells, ultimately

improving the overall therapeutic efficacy.
FIGURE 4

In immune “hot” TME, tumor cells infected with oncolytic virus are more easily recognized and cleared by the immune system. While oncolytic virus
lyses tumor cells, it also draws various types of immune cells into the tumor microenvironment, transforming “cold” tumors into “hot” tumors and
increasing the sensitivity of tumor cells to the immune checkpoint inhibitors ICIs. At the same time, TAA, PAMPs and DAMPs will also enter the “hot”
tumor, TAA enhances the recognition and killing of tumor cells by the host immune system, whereas PAMPs and DAMPs enhance anti-tumor
cellular immune responses.
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4.1 Combination of oncolytic viruses with
radiotherapy or chemotherapy

Although radiotherapy is routinely used for local tumors and

early-stage disease, it has several disadvantages, including off-target

effects on normal cells and the development of radio-resistance in the

tumor cells, which compromise therapeutic outcomes. Furthermore,

radiotherapy is largely ineffective against metastatic growth. Similarly,

chemotherapeutic agents are typically non-selective, affecting normal

tissues and resulting in systemic toxicity and side effects that can

significantly impact patients’ quality of life. In addition, tumor cells

frequently mutate, generating drug-resistant clones that diminish or

nullify the therapeutic effects of chemotherapeutic drugs.

On the other hand, oncolytic viruses selectively infect and lyse

tumor cells. Furthermore, while radiotherapy and chemotherapy

are typically localized, oncolytic viruses can target metastatic

tumors due to their ability to infect tumor cells. Thus, combining

oncolytic viruses with chemotherapy or radiotherapy can provide

both local and systemic disease control (48, 49).

Numerous preclinical studies have investigated the combination

of oncolytic virus with radiotherapy and chemotherapy. Recent studies

have shown that the combination of temozolomide or vincristine with

oncolytic viruses can significantly kill mouse tumors (50, 51). At the

same time, oncolytic viruses have been shown to enhance the efficacy

of mitomycin and hydroxycamptothecin (52).

In clinical trials, H101, an oncolytic virus approved by China’s

State Drug Administration, has been widely tested in combination

with chemoradiotherapy. A number of clinical studies demonstrate

the significant efficacy of oncolytic viruses in treating various

tumors when combined with chemoradiotherapy (53–56).

Researchers have also combined a novel telomerase oncolytic

virus with radiotherapy to treat patients with esophageal cancer,

integrating recombinant technology with combination therapy (57).

Additionally, a prospective randomized phase 2 trial combining

oncolytic viruses with radiotherapy reported a significant reduction

in positivity in local biopsies (58). Reovirus has also demonstrated

efficacy in clinical patients when combined with radiotherapy and

chemotherapy (59, 60).

Numerous clinical studies on the combination of oncolytic viruses

with chemoradiotherapy have reported favorable therapeutic

outcomes with minimal side effects. Some clinical trials of oncolytic

virus combined with chemoradiotherapy have been listed in Table 1.
4.2 Combination of oncolytic viruses and
immune checkpoint inhibitors

The expression of immune checkpoint molecules on immune

cells will inhibit their function preventing the body from generating

an effective antitumor immune response. These checkpoints can be

exploited by tumors to evade immune surveillance. can be exploited

by tumors to evade immune surveillance. Immune checkpoint

inhibitors (ICIs), also referred to as immune system modulators,

target immune checkpoints to enhance the immune response or to

relieve immune suppression. Commonly used ICIs include

Nivolumab, Ipilimumab, Pembrolizumab and Atezolizumab.
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ICIs re-engage T cell anti-tumor activity of T cells by reversing the

immunosuppressive tumor microenvironment. Oncolytic viruses can

stimulate immune response and promote immune cell infiltration,

while ICIs amplify this effect by reducing inhibitory signals, thereby

enhancing immune response and therapeutic effect. The response to

ICIs depends heavily on the TME, where “hot” tumors respond better

to treatment, whereas “cold” tumors are less responsive. Therefore,

improvingTME is a key strategy for enhancing treatment efficacy (61).

At present, the combination of oncolytic viruses and ICIs has

demonstrated significant anti-tumor effects in preclinical studies

across various tumor types. Recent studies have further validated

this approach (62–64).

Numerous clinical trials have been conducted on combination

therapies. At present, a variety of ICIs combined with oncolytic

viruses are currently being evaluated in clinical trials.

Nivolumab, a PD-1 inhibitor, was the first approved

immunotherapy drug in China. Nivolumab has been combined with

various recombinant oncolytic viruses in multiple tumor types,

demonstrating sufficient safety and significant tumor regression (65–67).

Ipilimumab, a monoclonal antibody targeting CTLA-4,

enhances the immune system’s ability to kill cancer cells by

inhibiting an immunosuppressive checkpoint. HF10 is a

biologically selected replicating oncolytic virus derived from

herpes simplex virus type 1 (HSV-1). So far, numerous clinical

trials have evaluated the combination of HF10 and Ipilimumab

demonstrating remarkable efficacy (68–70).

Pembrolizumab is the only PD-1 inhibitor globally and in

China that has received first-line three indications and single-

agent indications for advanced non-small cell lung cancer

(NSCLC). Numerous clinical trials combining Pembrolizumab

with oncolytic viruses have shown sustained responses, with

clinical benefits observed even in refractory patients (71–73).

Atezolizumab, a PD-L1 inhibitor, was approved by the US FDA in

2016. Atezolizumab binds to PD-L1 on tumor cells and block its

interaction with PD-1 on T cells and antigen presenting cells, thereby

relieving immunosuppressionandenhancingTcell-mediated tumorcell

destruction. At present, clinical studies have proved that Atezolizumab

combined with oncolytic virus is very effective and safe (74, 75).

Of course, in addition to the above major classes of immune

checkpoint inhibitors, other ICIs such as the PD-1 antibody

Camrelizumab and the PD-L1 antibodies Durvalumab and

Avelumab also show promising research prospects, with several

ongoing preclinical and clinical trials. The results of the experiment

are also being expected.

Therefore, combining oncolytic virus with ICIs may enhance

anti-tumor immune responses. Some clinical trials of oncolytic

viruses combined with immune checkpoint inhibitors are listed

in Table 2.
4.3 Combination of oncolytic viruses with
CAR-T cells

T cells are genetically engineered to express a chimeric antigen

receptor (CAR) transgene and become chimeric antigen receptor T

cells (CAR-T cells). CAR proteins are comprised of three
frontiersin.org
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components: the extracellular antigen-recognition domain of the

single-chain fragment variable region (scFv), a transmembrane

domain, and the intracellular CD3z domain (76). The design of

CAR-T cells is complex and has evolved through five generations.

Oncolytic viruses activate CAR-T cells and also guide them to

the infected tumor cells. In turn, the activated CAR-T cells release

cytokines, such as IL-2, IFN-g and TNF-a, which enhance
Frontiers in Oncology 07
replication and infectivity of oncolytic viruses, thereby amplifying

the overall therapeutic effect (Figure 5).

CAR-T cell therapy is a new cellular immunotherapy technique

that integrates synthetic receptors into T cells, enabling them to

recognize and kill tumor cells using homologous targeting ligands

(77, 78). However, it was soon discovered that CAR-T therapy has

limitations and side effects such as systemic toxicity and
TABLE 1 Clinical trials of oncolytic virus combined with radiotherapy and chemotherapy.

Oncolytic Virus Cancers Stage of Clini-
cal
Development

Therapy Administration Status Trail No.

Ad (H101) Genital Neoplasms Not Applicable radiotherapy Intratumoral Completed NCT05051696

Ad (Enadenotucirev) Locally Advanced Rectal Cancer Phase I radiotherapy Intravenous Completed NCT03916510

Herpes simplex virus
(GM-CSF)

Melanoma Stage IV Phase I radiotherapy Intratumoral Completed NCT05068453

Ad (ADV/HSV-tk) Metastatic Non-small Cell Lung Cancer/
Metastatic Triple-negative Breast Cancer

Phase II radiotherapy Intratumoral Completed NCT03004183

Ad (NSC-CRAd-S-p7) Glioma Phase I radiotherapy/
chemotherapy

Intratumoral Completed NCT03072134

Vaccinia virus
(GL-ONC1)

Cancer of Head and Neck Phase I radiotherapy/
chemotherapy

Intravenous Completed NCT01584284

Ad(Ad-39yCD
/mutTKSR1rep-ADP)

Non-small Cell Lung Cancer Stage I Phase I radiotherapy Intratumoral Completed NCT03029871

HSV(G207) Recurrent/progressive pediatric high-
grade gliomas

Phase ll radiotherapy Intratumoral Ongoing NCT04482933

Ad(AIOCELYVIR) Diffuse Intrinsic Pontine Glioma
/Medulloblastoma

Phase I& II radiotherapy Intravenous Ongoing NCT04758533

Ad (LOAd703) Pancreatic Cancer Phase I& II chemotherapy Intratumoral Ongoing NCT02705196

Vaccinia virus(KM1) Ovarian Cancer Phase I chemotherapy Intraperitoneal Ongoing NCT05684731

Vaccinia virus(TG6002) Glioblastoma/Brain Cancer Phase I& II chemotherapy Intravenous Completed NCT03294486

Vaccinia virus(GL-ONC1) Ovarian Cancer Phase I& II chemotherapy Intraperitoneal Completed NCT02759588

Ad(LOAd703) Pancreatic Adenocarcinoma
/Ovarian Cancer/
Biliary Carcinoma
/Colorectal Cancer

Phase I& II chemotherapy Intratumoral Completed NCT03225989

Ad(CG0070) Non Muscle Invasive Bladder Cancer Phase II& III chemotherapy Intratumoral Completed NCT01438112

HSV-2(OH2) Melanoma Phase III chemotherapy Intratumoral Ongoing NCT05868707

Measles virus (MV-NIS) Ovarian/Fallopian/Peritoneal Cancer Phase II chemotherapy Intraperitoneal Ongoing NCT02364713

HSV-1(HF10) Pancreatic Cancer Stage Phase I chemotherapy Intratumoral Ongoing NCT03252808

Ad(H101) Intrahepatic Cholangiocarcinoma Phase IV chemotherapy Intratumoral Ongoing NCT05124002

Vaccinia virus(GL-ONC1) Ovarian Cancer Phase III chemotherapy Intraperitoneal Ongoing NCT05281471

Ad(enadenotucire) Locally Advanced Rectal Cancer Phase I radiotherapy/
chemotherapy

Intravenous Completed NCT03916510

Herpes simplex 1 virus
(Talimogene
laherparepve)

Triple Negative Breast Cancer Phase I& II chemotherapy Intratumoral Completed NCT02779855

Vaccinia virus (Pexa-Vec) Hepatocellular Carcinoma Phase III chemotherapy Intratumoral Completed NCT02562755

Reovirus(REOLYSIN) Metastatic Colorectal Cancer Phase I chemotherapy Intravenous Completed NCT01274624
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TABLE 2 Clinical trials of oncolytic viruses combined with immune checkpoint inhibitors.

Oncolytic
Virus

Cancers Stage of
Clinical
Development

Combination
Drug Effect

Administration Status Trail No.

RT-01 Advanced Solid Tumor Phase I Nivolumab& ANTI-
PD-1

Intravenous/
Intravenous&
Intratumoral

Completed NCT05228119

RT-01 Advanced Solid Tumor Phase I Nivolumab& ANTI-
PD-1

Intravenous/
Intravenous&
Intratumoral

Completed NCT05122572

HSV-1(RP3) Advanced Solid Tumor Phase 1 Nivolumab& ANTI-
PD-1

Intratumoral Completed NCT04735978

HSV-1(RP1) Solid tumors Phase I& II Nivolumab& ANTI-
PD-1

Intratumoral Completed NCT03767348

HSV-1
(Talimogene
laherparepvec)

Breast Cancer Phase I Nivolumab& ANTI-
PD-1 Ipilimumab&
ANTI-CTLA4

Intratumoral Completed NCT04185311

HSV-1(RP3) Squamous Cell Carcinoma of Head
and Neck

Phase II Nivolumab& ANTI-
PD-1

Intratumoral Ongoing NCT05743270

Vaccinia virus
(Pexa-Vec)

Metastatic Tumor/Advanced Tumor Phase I Ipilimumab&
ANTI-CTLA4

Intratumoral Completed NCT02977156

Coxsackie
virus (A21)

Uveal Melanoma Phase I Ipilimumab&
ANTI-CTLA4

Intravenous Completed NCT03408587

HSV-1(HF10) Malignant Melanoma Phase II Ipilimumab&
ANTI-CTLA4

Intratumoral Completed NCT02272855

HSV-1(HF10) Melanoma Stage III/IV Phase II Ipilimumab&
ANTI-CTLA4

Intratumoral Completed NCT03153085

Vesicular
stomatitis virus
(VSV-
hIFNb-NIS)

B-Cell Non-Hodgkin Lymphoma/
Histiocytic and Dendritic Cell Neoplasm/
Myelodysplastic Syndrome/
Previously Treated

Phase I Nivolumab& ANTI-
PD-1 Ipilimumab&
ANTI-CTLA4

Intravenous Ongoing NCT03017820

HSV-2(OH2) Melanoma Phase I& II Pembrolizumab&
ANTI-PD-1

Intratumoral Completed NCT04386967

Ad(DNX-2401) Glioblastoma/Gliosarcoma Phase II Pembrolizumab&
ANTI-PD-1

Intratumoral Completed NCT02798406

APS9801 Advanced Metastatic Solid Tumors Phase I Pembrolizumab&
ANTI-PD-1

Intratumoral Completed NCT03954067

Chimeric
orthopox virus
(CF33-hNIS)

Metastatic/Advanced Solid Tumors Phase I Pembrolizumab&
ANTI-PD-1

Intravenous Ongoing NCT05346484

Ad (TILT-123) Ovarian Cancer Phase I Pembrolizumab&
ANTI-PD-1

Intratumoral/
Intraperitoneal

Ongoing NCT05271318

Vaccinia virus
(TBio-1)

Solid Tumor Phase I& II Pembrolizumab&
ANTI-PD-1

Intratumoral/
Intravenous

Completed NCT04301011

Coxsackie
virus
(CAVATAK)

Non-Small Cell Lung Cancer Phase I Pembrolizumab&
ANTI-PD-1

Intravenous Completed NCT02824965

Vaccinia virus
(BT-001)

Metastatic/Advanced Solid Tumors Phase I& II Pembrolizumab&
ANTI-PD-1

Intratumoral Ongoing NCT04725331

Vesicular
stomatitis virus
(VSV-
IFNb-NIS)

Metastatic/Advanced Solid Tumors Phase I& II Pembrolizumab&
ANTI-PD-1

Intravenous Completed NCT03647163

(Continued)
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neurotoxicity, and the therapeutic effect may not be durable. At the

same time, the complex construction process of CAR-T cells

presents significant challenges for their application (79, 80).

Experimental data demonstrate the substantial clinical efficacy

of CAR-T cells in treating hematologic malignancies (81). However,

significant challenges remain in using CAR-T cells to treat advanced

solid tumors. These challenges are primarily due to the low

transport efficiency of CAR-T cells to TME, issues with antigen

recognition, and structural differences between the structure of

other solid tumors and hematologic tumors. Single therapy with

CAR-T cells may not overcome these problems smoothly (82).

However, with the FDA approval of the first oncolytic virus, T-

VEC,the combination of oncolytic virus and CAR-T cells has
Frontiers in Oncology 09
officially opened the prelude. Recombinant oncolytic viruses may

suppress local immunity, resulting in better therapeutic efficacy and

persistence of CAR-T cells (83).

Oncolytic virus serve as reliable adjuvant forCAR-T cell therapy in

solid tumors (84). Preclinical experiments have shown that oncolytic

viruses loaded with IL-7 and CXCL11, in combination with CAR-T

cells, significantly enhance tumor cell killing (85, 86).

At the same time, an interesting study in which oncolytic

viruses expressing PD-L1 blocking micro-antibodies with CAR-T

cells successfully controlled solid tumor growth (87). Another study

combined CAR-T cells with oncolytic viruses equipped with the

chemokine RANTES and the cytokine IL15, which improved the

survival rate of tumor-bearing mice (88). Additionally, innovative
TABLE 2 Continued

Oncolytic
Virus

Cancers Stage of
Clinical
Development

Combination
Drug Effect

Administration Status Trail No.

HSV(M032) Glioblastoma Multiforme Phase I& II Pembrolizumab&
ANTI-PD-1

Intratumoral Ongoing NCT05084430

MG1-MAGEA3 Metastatic Melanoma/Squamous Cell
Skin Carcinoma

Phase III Pembrolizumab&
ANTI-PD-1

Intravenous Completed NCT03773744

Reovirus
(REOLYSIN)

Pancreatic Adenocarcinoma Phase I Pembrolizumab&ANTI-
PD-1

Intravenous Completed NCT02620423

MG1-MAGEA3 Non-Small Cell Lung Cancer Phase I& II Pembrolizumab&
ANTI-PD-1

Intravenous Completed NCT02879760

Ad (LOAd703) Pancreatic Cancer Phase I& II Atezolizumab& ANTI-
PD-L1

Intratumoral Ongoing NCT02705196

HSV-1
(RP2, RP3)

Metastatic Colorectal Cancer Phase II Atezolizumab& ANTI-
PD-L1

Intratumoral Ongoing NCT05733611

Ad (LOAd703) Malignant Melanoma Phase I& II Atezolizumab& ANTI-
PD-L1

Intratumoral Completed NCT04123470

HSV-1 (RP3) Hepatocellular Carcinoma Phase II Atezolizumab& ANTI-
PD-L1

Intratumoral Ongoing NCT05733598

Ad (TILT-123) Melanoma/Head and Neck Squamous
Cell Carcinoma

Phase I Avelumab& ANTI-
PD-L1

Intratumoral Ongoing NCT05222932

Reovirus
(PeLareorEp)

Breast Cancer Metastatic Phase II Avelumab& ANTI-
PD-L1

Intravenous Completed NCT04215146

Ad (H101) Recurrent Cervical Cancer Phase II Camrelizumab& ANTI-
PD-1

Intratumoral Ongoing NCT05234905

Ad (H101) Bladder Cancer Phase II Camrelizumab& ANTI-
PD-1

Intravesical Ongoing NCT05564897

M1-c6v1 Advanced/Metastatic
Hepatocellular Carcinoma

Phase I SHR-1210 Intravenous Completed NCT04665362

MEDI5395 Advanced Solid Tumors Phase I Durvalumab& ANTI-
PD-L1

Intravenous Completed NCT03889275

Vaccinia virus
(Pexa-Vec)

Refractory Colorectal Cancer Phase I& II Durvalumab& ANTI-
PD-L1
Tremelimumab&ANTI-
CTLA4

Intravenous Completed NCT03206073
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strategies have been developed to encapsulate oncolytic viruses

within CAR-T cells for treating solid tumors, yielding promising

results (89).

Current studies suggest that the combination of oncolytic virus

and CAR-T cells enhances therapeutic efficacy by enabling the virus

to replicate and destroy tumor cells, stimulate immunity, and

modulate the tumor’s immunosuppressive microenvironment,

thus promoting CAR-T cell survival and activity.

Despite encouraging preclinical results, only one clinical trial

investigating the combination of CAR-T cells and oncolytic viruses

is ongoing, and further clinical trials are expected to follow. This

may be due to the immunosuppressive tumor microenvironment, T

cell depletion, or the absence of suitable antigen targets.

The summary of clinical trials of oncolytic virus combined with

CAR-T cells for cancer treatment is shown in Table 3.

The slow progress of clinical trials combining CAR-T cells and

oncolytic virus may be attributed to the systemic toxicity and

neurotoxicity caused by CAR-T cells, which compromise their

safety. In recent years, numerous patient deaths in CAR-T cells

clinical trials have led to the emergency suspension of the

experiment by FDA. In this way, attention has shifted to the
Frontiers in Oncology 10
carrier function of CAR T cells, using them to deliver oncolytic

viruses to tumors to produce the effect of killing tumor cells. Studies

have shown that CAR-T cells can deliver low doses of oncolytic

viruses without affecting T cells quantity or function. CAR-T cells

can be used as a carrier to release the virus to multiple tumor

targets, thus further enhancing the role of killing tumor cells (90).
4.4 Combination of oncolytic viruses with
CAR-NK cells

Due to concerns about the safety of CAR-T cells, attention has

shifted to NK cells that express a low level of PD-1, which promote

the migration of dendritic cells and cause less immunosuppression.

Genetically modified NK cells express CAR transgenes are termed

Chimeric Antigen Receptor NK cells (CAR-NK cells).CAR-NK cells

are engineered to recognize and annihilate cancer cells (Figure 6).

The viral particles released from the lysed tumor cells can stimulate

CAR-NK cells in a manner similar to the CAR-T cells.

CAR-NK cells are easier to construct than CAR-T cells and

avoid issues such as alloreactivity, cytokine release syndrome,
TABLE 3 Clinical trials of oncolytic viruses combined with CAR-T cells.

Oncolytic Virus Cancers Stage of Clinical Development Patient type Administration Status Trail No.

Ad(CAdVEC) Solid Tumors Phase I HER2-positive Intratumoral Ongoing NCT03740256
FIGURE 5

The anti-tumor mechanism of oncolytic viruses and CAR-T cells. (A) T cells are genetically modified to express CAR transgenes. (B) CAR-T cells can
release IL-2, IFN-g, and TNF-a after activation. (C) These molecules can intensify the inflammatory response in tumor cells, thereby increasing their
susceptibility to viral infection. (D) CAR-T cells can release perforin to kill tumor cells. (E) Oncolytic viruses can release viral particles after they
replicate and lyse tumor cells. (F) These viral particles can stimulate and activate CAR-T cells to produce effects.
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and graft-versus-host reactions. As long as NK cells are used,

CAR-NK can be mass-produced. CAR-NK therapy is also

significantly safer and does not induce strong neurotoxicity. At

the same time, the survival cycle of NK cells is much shorter than

that of T cells, and any off-target effects are rapidly cleared

(91, 92).

As mentioned above, the shorter lifespan of NK cells

necessitates multiple drug injections for CAR-NK therapy. But

once the drug is injected multiple times, it will inevitably reduce

safety. The continuous stimulation of immunity by oncolytic

viruses helps extend the duration of CAR-NK cells without

repeatedly injecting drugs.

At present, relevant preclinical studies have confirmed this

view. EGFR-CAR constructs have been designed and transduced

into NK cells to generate CAR-NK cells. The combination of

second-generation EGFR-CAR NK cells and oncolytic herpes

simplex virus to in treating breast cancer brain metastases in

mouse models demonstrated significant tumor cell killing and

improved survival (93). Another study showed that oncolytic

viruses expressing IL15/IL15Ra, when combined with EGFR-CAR

NK cells, induced a strong anti-tumor response in glioblastoma

treatment (94).

In recent years, preclinical trials combining CAR-NK cells and

oncolytic viruses have shown encouraging results. There are more
Frontiers in Oncology 11
and more clinical trials on CAR-NK cells, but the safety and efficacy

of CAR-NK cells for clinical use remain subjects of debate. At

present, no clinical trials have been conducted combining oncolytic

viruses with CAR-NK cells.
5 Conclusions

In recent years, oncolytic viruses have received widespread

attention as a promising cancer therapy. Meanwhile, genetic

modification of oncolytic viruses can substantially enhance their

anti-tumor efficacy.

This article reviews the factors influencing the anti-tumor

efficacy of oncolytic viruses and their application in combination

with other therapies, while also listing ongoing or completed

clinical trials. The results showed that the combination of

oncolytic viruses with other treatments was more effective

than monotherapy. In the future, the design of more oncolytic

viruses and their use in combination with other therapeutic

approaches are expected to further enhance clinical efficacy and

safety. In the future, We expect that oncolytic viruses will

increasingly be combined with CAR-T cells and CAR-NK cells

in clinical trials.
FIGURE 6

The anti-tumor mechanism of the combination of oncolytic viruses and CAR-NK cells. (A) NK cells are genetically modified to express CAR-
Transgenes. (B) The CAR expressed on CAR-NK cells can recognize tumor antigens and kill tumor cells. (C) Oncolytic viruses can release viral
particles after they replicate and lyse tumor cells (D) Viral particles can also activate CAR-NK cells (E) CAR-NK cells can kill nearby tumor cells
together with viral particles.
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For the genetically modified part of the oncolytic viruses,

utilizing better-targeted nanomaterials as a carrier to deliver the

virus may enhance its efficacy, representing an innovative and more

effective treatment strategy when combined with nanomaterials. At

present, a team has started similar experiments, but further studies

are needed to evaluate their effects (95).
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