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Multimodal ultrasound: a non-
invasive method for identifying
dedifferentiation of papillary
thyroid carcinoma during
active surveillance
Qian-Yi Dou1†, Huan-Ling Guo1†, Wan-Bing Qiu2, Ming Xu1,
Shu-Ling Chen1, Xiao-Er Zhang1, Xiao-Yan Xie1

and Jin-Yu Liang1*

1Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First
Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 2Department of Medical Ultrasonics,
Shenzhen People’s Hospital, Shenzhen, Guangdong, China
Objectives: To assess the diagnostic accuracy of multimodal ultrasound in

differentiating anaplastic thyroid carcinoma (ATC) from papillary thyroid

carcinoma (PTC) and to evaluate its capability in detecting thyroid carcinoma

(TC) aggressiveness.

Methods: Sixty nude mice were randomly assigned to ATC and PTC groups and

injected subcutaneously with KHM-5M and TPC-1 cell lines, respectively. Tumors

were analyzed using B-mode ultrasound (B-US), Color Doppler flow imaging

(CDFI), elastography, and contrast-enhanced ultrasound (CEUS). A logistic model

integrating multimodal ultrasound data was constructed, and Ki-67 and CD31

expressions in tumor tissues were analyzed immunohistochemically. Correlations

between ultrasound features and aggressiveness markers were investigated.

Results: The ATC group exhibited significantly higher strain-elastography scores

(p=0.009) and Adler grades in CDFI (p=0.045). CEUS revealed a higher frequency

of heterogeneous enhancement (95.2% vs. 48.1%, p<0.001) and perfusion

defects (90.5% vs. 63.0%, p<0.001) in ATC. Model area under the curve (AUC)

values for distinguishing ATC from PTC were 0.963 for (B-US + CEUS), 0.926 for

CEUS, 0.729 for elastography, 0.663 for CDFI, and 0.675 for B-US. The

multimodal ultrasound model demonstrated significant correlations with Ki-67

(p<0.001) and microvessel density (MVD) (p<0.001).

Conclusions:Multimodal ultrasound showing high efficacy with an AUC of 0.963

for B-US and CEUS combined in distinguishing ATC from PTC and exhibited

strong associations with Ki-67 and MVD. Incorporating multimodal ultrasound,
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with an emphasis on CEUS, into active surveillance strategies for PTC is

recommended. By providing detailed insights into tumor vascularity and

aggressiveness, multimodal ultrasound could play a crucial role in early

detection and treatment decision-making, improving patient outcomes.
KEYWORDS

papillary thyroid carcinoma, anaplastic thyroid carcinoma, multimodal ultrasound,
active surveillance, aggressiveness
1 Introduction

Papillary thyroid carcinoma (PTC), accounting for over 80% of

thyroid carcinoma (TC) cases (1), is a well-differentiated cancer

type, with a cure rate exceeding 90% (2). Owing to the indolent

nature of low-risk PTC (≤ 1 cm), active surveillance (AS) has been

globally adopted as an alternative to immediate surgery (3, 4).

However, the condition in approximately 2.9–9.7% of papillary

thyroid microcarcinoma cases has shown progression during AS

(5). Moreover, long-term untreated differentiated PTC may

undergo dedifferentiation—a biological process transforming

cancer from a highly differentiated state to a poorly differentiated

one (6), which leads to progression to anaplastic thyroid carcinoma

(ATC) (7, 8). ATC, a rare but lethal type of TC, is characterized by

rapid local growth and early distant metastasis (9). The median

overall survival for typical ATC ranges from 4 to 12 months, with

the treatment being limited to palliative or supportive care in most

patients (10, 11). These findings indicate a critical need to develop

methods to detect ATC early during AS for PTC.

During AS for PTC, disease progression—marked by tumor

enlargement, new lymph node metastasis (LNM), extrathyroidal

extension (ETE), or distant metastasis—is primarily assessed using

B-mode ultrasound (B-US) (12). While B-US effectively

distinguishes benign from malignant thyroid nodules, its

capability to differentiate pathological types is limited.

Advancements in multimodal ultrasound, including contrast-

enhanced ultrasound (CEUS) and elastography (strain-

elastography [SE] and shear wave elastography [SWE]), have

shown promise in providing tumor typing insights. CEUS

enhances visualization of lesion vascularity, whereas elastography

assesses tissue elasticity changes owing to specific pathological or
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physiological processes. For instance, Du et al. (13) highlighted the

role of multimodal CEUS in distinguishing small cell lung cancer

from non-small cell lung cancer, emphasizing that vascular patterns

observed via CEUS-based micro-blood flow imaging provide

evidence for the differential diagnosis of peripheral pulmonary

tumors. Similarly, Guo et al. (14) demonstrated significant

differences in SWE ’s maximal elasticity among various

pathological types of malignant liver lesions. Studies (15) have

reported that, compared to B-US alone, combining B-US, CEUS,

and SWE improves the differential diagnosis of thyroid nodules

smaller than 10 mm. However, the role of multimodal ultrasound in

tumor typing or identifying dedifferentiated components

remains unexplored.

Therefore, this study aimed to evaluate the diagnostic

performance of multimodal ultrasound in differentiating ATC

from PTC. Additionally, as tumor cell dedifferentiation correlates

with increased aggressiveness (16, 17), the secondary objective was

to investigate the relationship between multimodal ultrasound

features and markers of TC aggressiveness, namely Ki-67 and

microvessel density (MVD).
2 Materials and methods

2.1 Subcutaneous xenograft TC tumor in
nude mice

Ethical approval was obtained from the Research Ethics

Committee of Sun Yat-sen University (approval no. SYSU-

IACUC-2024-000678). Female BALB/c nude mice aged 5–8 weeks

were used in all experiments (Laboratory Animal Center, Sun Yat-

Sen University). The human ATC cell line KHM-5M was provided

by Professor Hai-Peng Xiao, and the PTC cell line TPC-1 was

provided by Professor Jie Li. KHM-5M cells were cultured in

Roswell Park Memorial Institute 1640 (RPMI 1640) medium and

TPC-1 cells were cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM), respectively, with 10% fetal bovine serum and 1%

penicillin/streptomycin at 37°C in a 5% CO2 incubator.

After acclimation for one week, the mice were randomly

categorized into the ATC and PTC groups and inoculated

subcutaneously with KHM-5M (2×106 cells/mouse) and TPC-1

(1×107 cells/mouse) in the right back, respectively (n=30). Tumor
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sizes were monitored every three days, and tumor volumes were

calculated using the following formula: tumor size = (length ×

width2)/2. To minimize size-related imaging interference and

ensure consistent examination timing, ultrasound examinations

were performed when the mean tumor size reached 250 mm³ (the

mean volumes of ATC and PTC groups reaching 250 mm³ in 15

and 37 days, respectively).
2.2 Multimodal ultrasound
image acquisition

All the ultrasound examinations were performed by the same

sonographer with > 10 years of experience in ultrasonography of

TC. Ultrasonographic examinations were performed using the

Aplio i900 (Canon, Tokyo, Japan) ultrasound equipment with

built-in specialized analysis software for time-intensity curve

(TIC), CEUS-matching imaging techniques, and a linear

transducer with a 5.0–10.0 MHz frequency range. Ultrasound

imaging for all the mice was performed under continuous

anesthesia with 2% isoflurane. The acoustic coupling pad, placed

over the skin region above the subcutaneous tumor, ensured

optimal acoustic coupling between the probe and the skin. The

ultrasound signal gain was set to 75%–90%, and the image depth

was set to 2–3.5 cm. The focus point was maintained as close as

possible to the lowest base of tumors. B-US was performed at the

maximum cut surface of the tumor. The cut surfaces of the color

Doppler flow imaging (CDFI), elastography, and CEUS

examinations were kept consistent with those of B-US.

For SE, vertical light pressure was applied to the tumor, which

was then decompressed to obtain an SE image. For SWE, the lesion

of interest was placed at the center of the ultrasound image. The Q-

box region was placed in the stiffest area. The experiment was

repeated three times.

Subsequently, CEUS imaging was performed. An intravenous

bolus of 0.1 mL of SonoVue (Bracco, Milan, Italy) was administered

over 2 s, followed by a bolus of 0.1 mL of saline for another 2 s

through the caudal vein. The recording started immediately at the

time of injection. Each mouse was continuously scanned for at least

2 min. All the examinations were stored digitally.
2.3 Analysis of multimodal
ultrasound image

Ultrasound images were analyzed by two sonographers who

were blinded to the grouping (H.L.G., with 10 years of experience in

ultrasound examination, and Q.Y.D., with three years of experience

in ultrasound imaging). B-US features of the TC were assessed,

including echogenicity (hyperechoic, isoechoic, or hypoechoic, as

compared with those of the nearby muscle), edges (smooth or non-

smooth), boundary (clear or unclear), and calcification

(microcalcification or non-microcalcification). Blood flow richness

was analyzed using the Adeler classification method (18): Grade 0

(no blood supply), Grade 1 (low blood supply), Grade 2 (medium

blood supply), and Grade 3 (rich blood supply).
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The identification of strain elasticity images was green for soft

and red for hard and graded according to the following semi-

quantitative assessment (19): score of 1, when the tumors and

surrounding tissues are green; 2, when the tumors are mainly green;

3, when the tumors are primarily green, with surrounding tissues

visible in red; 4, when the tumors are primarily red; and 5, when the

tumors and surrounding tissues are all red. The mean stiffness value

(E-mean) was automatically displayed using ultrasound SWE

software. SWE results of SWE were presented as the average of

three repeated experiments.

The primary features of CEUS were observed, including the

homogeneity of enhancement (homogeneous or heterogeneous),

direction of enhancement (centripetal, centrifugal, or diffuse), and

perfusion defects (present or absent). Quantitative analysis of tumor

enhancement was conducted using the ultrasound equipment in the

TIC analysis software. The regions of interest (ROI) included the

entire tumor, tumor parenchyma (excluding necrotic areas), and

the muscle next to the tumor (Supplementary Figure 1). The

following characteristics of the TICs were analyzed (20, 21): Peak

intensity (PI) was defined as the maximum intensity of the time-

intensity curve. Time to peak (TTP) was defined as the time needed

to reach PI beginning from the time the first microbubble reached

the lesion. Mean transit time (MTT) was defined as the time for

contrast media to pass through the ROI. Wash-in slope (slope) was

defined as the maximum wash-in velocity of the contrast. Area

under the curve (AUC) was proportionate to the total volume of

blood in the ROI, including wash-in area under the curve (WiAUC)

and wash-out area under the curve (WoAUC).
2.4 Immunohistochemistry

All tumor samples were collected immediately after multimodal

ultrasound examination. Tumors were sectioned along the largest

long-axis cross section, imaged, and subsequently preserved in 4%

formalin until IHC was performed to ensure that the pathology

analysis slice was consistent with the imaging section. For IHC,

paraffin sections were dewaxed and subjected to antigen retrieval.

Deparaffinized tissue sections were incubated with 3% hydrogen

peroxide for 10 min and blocked with bovine albumin for 30 min.

Next, the sections were incubated overnight at 4°C with anti-CD31

antibody (1:1000, Servicebio, GB113151) and anti-Ki-67 antibody

(1:1000; Servicebio, GB111499), respectively. After washing, the

tissue sections were incubated with horseradish peroxidase-

conjugated secondary antibody (1:200, Servicebio, GB23303) at

37°C for 50 min. The sections were then stained with

diaminobenzidine solution and counterstained with hematoxylin.

Slides were scanned using a KFBIO KF-PRO-020 digital pathology

slide scanner and analyzed using the KF-viewer software.

Ki-67 expression intensity was quantified as the percentage of

Ki-67 positive nuclei (22). Yellow or dark brown nuclei indicated

Ki-67 positivity. The number of Ki-67 positive cells per 100 tumor

cells was counted under a microscope using a high-magnification

field of view and expressed as a percentage. Randomly select 10

fields for each slide, and the average percentage of Ki-67 positive

cells for the 10 fields.
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Microvessel counting (CD31 count) was performed using

Weidner’s method (23). Specifically, the entire slide was scanned

at low magnification to find the area with the highest MVD and

then switched to high magnification to count the number of

microvasculatures. MVD was expressed as the average number of

5 random fields counted at a 20× objective magnification.
2.5 Statistical analysis

SPSS 25.0 (IBM Corporation, Armonk, NY, USA) was used for

statistical analysis. Continuous variables were expressed as the mean ±

standard deviation (SD). Normally distributed data were analyzed

using the independent-sample t-test, whereas the Mann-Whitney U

test was performed for the skewed distributed data. Binary variables

were compared using the c2-test and ordinal categorical variables were
compared using the rank-sum test. Spearman’s correlation analysis was

used to determine the correlation between multimodal

ultrasonography and immunohistochemical index counts. A

multimodal ultrasound model for distinguishing ATC from PTC was

constructed by univariate andmultivariate logistic regression. Variables

with p<0.05 in the univariate analysis were used in the multivariate

analysis, and the significant variables (p<0.05) in the multivariate

analysis were then used to construct a risk prediction model (24, 25).

Diagnostic efficiency was evaluated using an area under the receiver

operating characteristic curve (AUC), sensitivity (SEN), specificity

(SPE), accuracy (ACC), positive predictive value (PPV), and negative

predictive value (NPV). The inter-observer agreement for subjective

image reading was analyzed with the kappa test (k < 0.40: poor

agreement; 0.40 ≤ k < 0.75: good agreement; and k ≥ 0.75: excellent

agreement). Statistical significance was set at p<0.05.
3 Results

3.1 Analysis of B-US, CDFI
and elastography

The inter-observer agreement (kappa statistic) ranged from 0.736

to 0.818. The B-US, CDFI, and elastography results are shown in

Table 1. A total of 57.1% (12/21) of ATCs presented as isoechoic

masses and 77.8% (21/27) of PTCs presented as hypoechoic masses

(p=0.013). No significant differences were noted in the tumor volumes

calculated based on the ultrasound measurement data (p>0.05).

Among them, 16 (59.3%) PTCs and four (19.0%) ATCs showed

microcalcifications (p=0.005, Figures 1A, 2A). The tumors did not

differ significantly in terms of boundaries (clear or not) or edges

(smooth or not) between the two groups (p>0.05). The Adler grades of

the CDFI differed significantly among the different pathological types

of TC (p=0.045). The proportions of patients with Adler Grades 1,

2, and 3 in the ATC group were 57.1% (12/21), 19.1% (4/21), and

23.8% (5/21), respectively, whereas those in the PTC group were 81.5%

(22/27), 14.8% (4/27), and 3.7% (1/27), respectively (Figures 1B, 2B).

The SE showed significant differences between the two groups

(p=0.009). Scores of 4 (57.1% vs. 33.3%) and 5 (9.5% vs. 0.0%) based on
Frontiers in Oncology 04
TABLE 1 Comparison of characteristics on multimodal ultrasound
between PTC and ATC groups.

Characteristic PTC (n = 27) ATC (n = 21) P value

Volume
259.40
± 126.64

257.54
± 207.32

0.406

Echogenicity 0.013*

Hyperechoic 0(0%) 0(0%)

Isoechoic 6(22.2%) 12(57.1%)

Hypoechoic 21(77.8%) 9(42.9%)

Boundary 0.186

Clear 27(100%) 19(90.5%)

Unclear 0(0%) 2(9.5%)

Edge 0.342

Smooth 19(70.4%) 12 (57.1%)

Non-smooth 8(29.6%) 9(42.9%)

Calcification 0.005**

Non-microcalcification 11(40.7%) 17(81.0%)

Microcalcification 16(59.3%) 4(19.0%)

Adler grade 0.045*

Grade 0 0(0.0%) 0(0.0%)

Grade 1 22(81.5%) 12(57.1%)

Grade 2 4(14.8%) 4(19.1%)

Grade 3 1(3.7%) 5(23.8%)

SWE 0.959

Emean 32.14 ± 15.3 36.80 ± 27.88

Strain-elasticity score 0.009**

Score 1 3(11.1%) 0(0.0%)

Score 2 7(25.9%) 2(9.5%)

Score 3 8(29.6%) 5(23.8%)

Score 4 9(33.3%) 12(57.1%)

Score 5 0(0.0%) 2(9.5%)

Direction of enhancement 0.367

Centripetal 20(74.1%) 13(61.9%)

Centrifugal or diffuse 7(25.9%) 8(38.1%)

Homogeneity
of enhancement

<0.001***

Homogeneous 14(51.9%) 1(4.8%)

Heterogeneous 13(48.1%) 20(95.2%)

Perfusion defect# <0.001***

Present 17(63.0%) 19(90.5%)

Absent 10(37.0%) 2(9.5%)
fron
Data were numbers of tumors, with percentages in parentheses.
# Perfusion defect: localized non-enhancement.
PTC, papillary thyroid carcinoma; ATC, anaplastic thyroid carcinoma; SWE, shear
wave elastography.
*** p<0.001, ** p<0.01, * p<0.05.
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the SE score criteria weremore common in the ATC group (Figures 1C,

2C) than in the PTC group. No significant differences were noted in the

E-mean between the two groups (p>0.05, Figures 1D, 2D).
3.2 Analysis of CEUS

Table 1 shows the CEUS findings. Centripetal enhancement was

the dominant pattern of enhancement direction in PTCs (74.1%)
Frontiers in Oncology 05
and ATCs (61.9%; p=0.325). A total of 51.9% (14/27) of PTCs

showed homogeneous enhancement, and no perfusion defects were

observed in 63.0% (17/27) of the PTCs. Unlike PTCs (Figure 1E),

most ATCs showed heterogeneous enhancement (95.2%, p<0.001)

and appeared as perfusion defects (90.5%, p<0.001; Figure 2E). The

TIC analysis parameters of the tumor parenchyma and muscle

adjacent to the tumor were not significantly different between the

two groups, except for MTT in the tumor parenchyma (p=0.017,

Supplementary Tables 1, 2). Compared with the TIC analysis
FIGURE 1

A tumor from the PTC group. (A) B-US shows a hypoechoic mass with a clear boundary and smooth edge, and punctiform microcalcification is
observed. (B) CDFI image indicates Adler grade 1. (C) The strain elastography image shows strain-elasticity score 3. (D) The mean of the stiffest area
of the tumor on the elasticity mode is 35.65 kPa. (E) CEUS shows a homogeneous enhancement image obtained 6 s after contrast agent injection
(the dotted line represents the contour of the tumor, M indicates muscle). (F) Time-intensity curve. Purple: the entire tumor. Yellow: tumor
parenchyma. Blue: the muscle next to the tumor.
FIGURE 2

A tumor of the ATC group. (A) B-US shows an isoechoic mass with a clear boundary and non-smooth edge. (B) CDFI indicates Adler grade 3. (C) The strain
elastography shows strain-elasticity score 5. (D) The mean of the stiffest area of the tumor on the elasticity mode is 18.75 kPa. (E) CEUS shows a local
perfusion defect at 6s after contrast agent injection (the dotted line represents the contour of the tumor, white arrows represent a perfusion defect, M
indicates muscle). (F) Time-intensity curve. Purple: the entire tumor. Yellow: tumor parenchyma (excluding necrotic areas). Blue: the muscle next to
the tumor.
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parameters of the PTC group (Table 2), those of the ATC group had

a shorter MTT but higher PI and slope (p<0.05, Figures 1F, 2F).

No significant differences were noted in the TTP, AUC, WiAUC, or

WoAUC (p>0.05).
3.3 Analysis of immunohistochemistry

The ATC group exhibited a greater abundance of microvessels

and higher expression intensity of Ki-67 than the PTC group

(Figure 3). The counts of MVD were 26.70 ± 3.03 and 12.07 ±

4.23 in the ATC and PTC groups, respectively (p<0.001). The
Frontiers in Oncology 06
expression intensity of Ki-67 was 35.43 ± 4.41% and 25.44 ±

5.17% in the ATC and PTC groups, respectively (p<0.001).
3.4 Correlation between multimodal
ultrasound and
immunohistochemical markers

The correlations between multimodal ultrasound and IHC

parameters are listed in Supplementary Table 3. The relationship

between MVD and SE score, PI, slope, and the multimodal

ultrasound model was statistically significant and positive

(p<0.05). The inverse correlation between TTP, MTT, and MVD

counts was statistically significant (p<0.05). Additionally, a positive

correlation was observed between Ki-67 and PI, slope, WiAUC, and

the multimodal ultrasound model (p<0.05). However, no such

correlation was reported between the Adler grade, E-mean, AUC,

WoAUC, and IHC parameters (p>0.05).
3.5 Diagnostic performance

The diagnostic equation for distinguishing ATC from PTC

using multimodal ultrasound was as follows: -8.944 +

4.029×Echogenicity (OR, 56.221 [95%CI: 2.264, 1396.210];

p=0.014) + 6.618×Perfusion defect (OR, 747.478 [95%CI: 7.422,

75278.607]; p=0.005) + 0.00689×PI (OR, 1.007 [95%CI: 1.002,

1.012]; p=0.006). In the formula, the variable “Echogenicity” is

categorized into three levels: hypoechoic, isoechoic, and

hyperechoic. These levels are assigned numerical codes as follows:
TABLE 2 TIC parameters between PTC and ATC groups.

TIC
parameters

PTC (x ± s) ATC (x ± s) P value

PI 271.90 ± 270.36 873.81 ± 1062.58 0.001**

Slope 112.64 ± 106.13 902.41 ± 2204.16 0.009**

TTP 6.32 ± 4.08 6.50 ± 7.55 0.216

MTT 80.46 ± 65.51 59.19 ± 73.03 0.045*

AUC 28040.69 ± 36153.24 44209.43 ± 76170.15 0.893

WiAUC 1237.75 ± 1672.73 3319.70 ± 5203.38 0.112

WoAUC 26802.93 ± 34758.73 40887.60 ± 73069.75 0.843
TIC, time-intensity curve; PTC, papillary thyroid carcinoma; ATC, anaplastic thyroid
carcinoma; PI, peak intensity; TTP, time to peak; MTT, mean transit time; AUC, area
under the curve; WiAUC, wash-in area under the curve; WoAUC, wash-out area under
the curve.
** p<0.01, * p<0.05.
FIGURE 3

(A) Immunohistochemical analysis of the PTC group revealed an MVD of 14.6/HP (×20), and the ATC group revealed an MVD of 28.8/HP (×20). (B)
The microvessel density was higher in the ATC group (n = 21) than in the PTC group (n = 27). (C) Immunohistochemical analysis reveals that the PTC
group and the ATC group have a Ki-67 index of 26.1% (×20) and 32.4%, respectively (×20). (D) The expression intensity of Ki-67 in the ATC group
(n = 21) was higher than in the PTC group (n = 27). ***p<0.001.
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= 0, = 1, and = 2. The binary factor “Perfusion defect” is given a

value of 0 for absence and a value of 1 for presence. The diagnostic

SEN, ACC, and NPV of the multimodal ultrasound model were

higher than those of B-US, CDFI, Elastography and CEUS. The

details are presented in Table 3. The AUC values for B-US, CDFI,

elastography, CEUS, and multimodal US were 0.663, 0.729, 0.926,

and 0.963, respectively (Figure 4). Statistically significant differences

in the AUC values were found between CEUS and B-US (AUC,

0.926 vs. 0.675, p=0.004) and between multimodal US and B-US

(AUC, 0.963 vs. 0.675, p<0.001).
4 Discussion

This study evaluated the diagnostic performance of multimodal

ultrasound, including B-US, CDFI, CEUS, and elastography, in
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distinguishing ATC from PTC and explored their correlation with

markers of cancer aggressiveness. The rising prevalence of TC has

facilitated the detection of ATC in microcarcinoma. Concurrently,

the AS strategy for low-risk PTC has gained considerable

acceptance, while the dedifferentiation of PTC to ATC during AS

poses a significant risk associated with poor prognosis (8, 26).

Therefore, exploring the role of ultrasound in differentiating PTC

and ATC is imperative. To the best of our knowledge, this is the first

study demonstrating the effectiveness of multimodal ultrasound in

diagnosing ATC from PTC (AUC = 0.963). Moreover, ATC

exhibited significantly higher levels of MVD and Ki-67, which are

markers of TC aggressiveness, than did PTC. Quantified CEUS and

SE showed significant correlations with MVD and Ki-67.In this

study, microcalcification and echogenicity were significantly

different between the ATC and PTC groups on B-US.

Microcalcification was observed in 59.3% of PTC tumors
TABLE 3 Diagnostic performance of B-US, CDFI, elastography, CEUS and multimodal US.

AUC SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) P value#

B-US 0.675 57.1 77.8 68.8 66.7 70.0 1.000

CDFI 0.663 47.6 81.5 66.7 66.7 66.7 0.877

Elastography 0.729 47.6 92.6 72.9 83.3 69.4 0.663

CEUS 0.926 81.0 92.6 87.5 89.5 86.2 0.004**

Multimodal US 0.963 95.2 88.9 91.7 87.0 96.0 <0.001***
fr
# P value: P values of comparison of AUCs between B-US and other modal ultrasound calculated by the DeLong method.
B-US, B-mode ultrasound; CDFI, Color Doppler flow imaging; CEUS, contrast-enhanced ultrasound; AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive
predictive value; NPV, negative predictive value.
*** p<0.001, ** p<0.01.
FIGURE 4

ROC curves of B-US, CDFI, elastography, CEUS, and multimodal US in distinguishing ATC (n = 21) from PTC (n = 27).
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compared to 19.0% of ATC tumors (p=0.005). Previous studies have

shown that microcalcifications are common in PTC, likely caused

by psammoma bodies (27, 28). Echogenicity emerged as the most

sensitive indicator for differentiating ATC from PTC on B-US, but

its SEN (57.1%) and SPE (77.8%), were suboptimal owing to

overlapping features. These findings suggest that the diagnostic

performance of B-US alone in distinguishing ATC from PTC

remains limited.

In elastography, PTC tumors predominantly had SE scores of

2–4, whereas ATC tumors primarily had a score of 4–5, indicating

higher stiffness in ATC. Increased stiffness in TC is influenced by

factors such as fibrosis, calcification, and collagen content (29, 30).

The high stiffness observed in ATC may be attributed to

pronounced fibrosis and hyalinization, with spindle cells

resembling fibroblasts or myofibroblasts histologically (31).

However, SWE results showed no statistical difference, potentially

due to differences in imaging principles (32). Technically, SE values,

representing measured object stress, are more susceptible to applied

pressure influence than SWE, which measures shear wave

propagation speed and exhibits higher repeatability (33). In this

study, the small size and fast heart rate of nude mice, along with

their inability to hold their breath, caused significant interference

from cardiac motion on tumors, impacting elasticity measurement

quality. The superficial and protruding growth of subcutaneous

tumors made uniform pressure application with the probe difficult,

even with a gel pad, thus interfering with elasticity measurements.

Moreover, ATC’s higher propensity for hemorrhage and necrosis,

leading to greater heterogeneity, limited the pathological distinction

of elasticity between ATC and PTC. Therefore, further studies in

this regard are still required.

In our study, CDFI and CEUS were employed to assess TC

vascularity. CDFI detected fast-flowing vessels (>1 cm/s) in larger

vessels (>0.1 mm), providing macrovascular flow data (34), while

CEUS identified microvessels under 40 mm, addressing

microvascular assessment gaps (35). In this study, ATC exhibited

a higher prevalence of Adler Grades 2 and 3 flows than did PTC,

indicating a richer blood flow in ATC. CEUS frequently depicted

heterogeneous enhancement and perfusion defects in ATC,

contrasting with the homogeneous pattern observed in PTC.

These differences are likely due to insufficient angiogenesis,

hypoxia, and necrosis in rapidly growing malignant nodules (36).

Our immunohistochemical results indicated that the MVD was

higher in the ATC group, which suggested a greater number of new

blood vessels in ATC. This led to the rapid and substantial influx of

contrast agent into the vessels (37). Consequently, TIC showed

lower MTT, along with higher PI and slope in ATC. Concurrently,

owing to tumor necrosis in ATC, there is an absence of blood flow

perfusion in certain areas. Therefore, there was no significant

difference in AUC between the two groups, which represented the

total blood volume.

The rich blood supply in ATC may contribute to its aggressive

nature. We analyzed two key aggressiveness markers, Ki-67 and

MVD (38, 39), and found significantly higher levels in ATC

compared to PTC. To explore whether ultrasound features could

predict aggressiveness, we examined the relationship between blood

flow and Ki-67 expression, as reported in previous studies (40).
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However, our study found no significant correlation between CDFI

and Ki-67, possibly due to the predominance of Adler Grade 1 flow

in both the ATC and PTC groups. In contrast, higher Ki-67

expression was associated with a higher PI on CEUS TICs,

suggesting a potential link between microperfusion and tumor

aggressiveness. Consistent with earlier research (41, 42), MVD

correlated positively with PI and slope and negatively with TTP

and MTT. These findings indicate that CEUS TIC parameters may

effectively reflect MVD and Ki-67 expression in TC, potentially

serving as markers for malignancy and aggressiveness. Moreover,

multimodal ultrasound was positively correlated with both MVD

and Ki-67 expression, and the correlation was stronger than that of

single-modality ultrasound. As discussed previously, perfusion

defect and PI may be associated with rapid tumor growth and

tumor angiogenesis. Therefore, multimodal ultrasound follow-up

for comprehensive assessment of PTC progression during AS can

indicate changes in the invasiveness of PTC.

To differentiate ATC from PTC, we evaluated the diagnostic

performance of multimodal ultrasound imaging. CEUS

outperformed other modalities, including B-US, CDFI, and

elastography. Notably, the multimodal ultrasound model

demonstrated optimal diagnostic efficacy, with an AUC of 0.963.

It has been suggested that tumor size, the appearance of new lesions,

and LNM should be closely monitored in patients with PTC

undergoing AS (3, 12, 43). Lee, et al. (44) identified intratumoral

vascularity as a risk factor for PTC progression. Our comprehensive

analysis highlighted the importance of echogenicity, perfusion

defects, and PI on TIC in distinguishing ATC from PTC.

Therefore, we recommend regular multimodal ultrasound follow-

ups, particularly CEUS, to dynamically detect microperfusion

changes and assess PTC progression during AS.

The progression of PTC during AS is defined by tumor

enlargement (increase in maximum diameter by ≥3 mm or ≥2

mm in at least two dimensions), ETE, or LNM. Active surgery is

recommended only if the tumor enlarges to ≥13 mm, if ETE occurs,

or if LNM is detected (12). However, B-US has limited sensitivity

for diagnosing LNM. Therefore, we propose incorporating

multimodal ultrasound, especially when tumor enlargement or

LNM is suspected or when patients are undecided about

transitioning to surgery. This approach could provide more

comprehensive information for decision-making.

This study has several limitations. First, because of the extremely

limited number of clinical ATC cases undergoing multimodal

ultrasound imaging, we could not conduct retrospective cohort

studies. Instead, we conducted preclinical investigations using

human-derived cell lines. Second, the sample size of this study was

relatively small, which might have limited its statistical power. Third,

retrospective analysis of TIC curvesmay have introduced noise. Fourth,

we utilized only CDFI without incorporating superb microvascular

imaging when evaluating tumor vascularity. Both methods should be

considered in future studies. Fifth, the concordance between the SE and

SWE results is inconclusive, possibly due to the small sample size and

uncontrollable breathing movements in the mice. Finally, limited by

the model, this study failed to observe changes in the lymph nodes of

PTC, which is one of themost concerning aspects of tumor progression

during active surveillance. Further prospective, large-scale clinical
frontiersin.org

https://doi.org/10.3389/fonc.2025.1545407
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dou et al. 10.3389/fonc.2025.1545407
studies are necessary to confirm the distinct multimodal

ultrasonographic manifestations of ATC and PTC. Additionally,

studies should also explore the prognostic and clinicopathological

value of multimodal ultrasonography in AS of suspected

progressive PTC.
5 Conclusions

This study demonstrated that, compared to PTC, ATC

manifested more isoechoic, less microcalcification, higher SE

scores, and higher microvascular perfusion as assessed by CEUS

TIC analysis. Multimodal ultrasound, particularly CEUS, effectively

differentiated ATC from PTC. Quantitative analysis of CEUS and

SE revealed significant correlations with MVD and Ki-67

expression, both of which were elevated in patients with ATC.

We propose that the follow-up strategy during AS of PTC should

incorporate multimodal ultrasound, focusing on CEUS.
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