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model for hepatocellular
carcinoma based on telomere
maintenance-associated genes
Jian-Hao Zheng1, Ding Shi1, Yun-Jie Chen2, Jian-Ping Liu1

and Zheng Zhou1*

1Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo, China, 2Department of General
Surgery, Ningbo No.2 Hospital, Ningbo, China
Background: Hepatocellular carcinoma (HCC) poses a substantial global health

challenge because of its grim prognosis and limited therapeutic options.

Telomere maintenance mechanisms (TMM) significantly influence cancer

progression, yet their prognostic value in HCC remains largely unexamined.

This research aims to establish a telomere maintenance-associated genes

(TMGs)-based prognostic model using transcriptomic and clinical data to

evaluate its effectiveness in predicting patient outcomes in HCC.

Methods: The identified differentially expressed genes (DEGs) were derived from

the analysis of transcriptomic and clinical information sourced from the database

of the Cancer Genome Atlas (TCGA) and were cross-referenced with TMGs.

Candidate risk factors were initially assessed using univariate Cox regression,

subsequently followed by LASSO, and then refined through multivariate Cox

regression to establish a risk prediction model. This model’s predictive accuracy

was validated through Kaplan-Meier(K-M) survival analysis, with external

validation in the Gene Expression Omnibus (GEO) dataset. Additionally, a

nomogram incorporating age and tumor stage was developed. Tumor

mutation burden (TMB), immune profile, and drug sensitivity in HCC were also

analyzed. Furthermore, we employed RT-PCR to confirm the expression levels of

the genes related to TMGs in HepG2 cell lines.

Results: A prognostic model comprising 3 core genes was constructed, with

high-risk individuals showing significantly lower overall survival (OS). The

association between elevated TMB and diminished survival in high-risk patients

was uncovered through TMB analysis. Immune profiling indicated notable

disparities in immune infiltration among these groups, with high-risk patients

displaying elevated Tumor Immune Dysfunction and Exclusion (TIDE) scores,

suggesting potential immune evasion.
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Conclusion: In short, our prognosis model based on TMGs effectively

categorized HCC patients using risk scores, enabling dependable prognostic

forecasts and identification of potential therapeutic targets for personalized

treatment in HCC management. Future studies should explore integrating this

model into clinical practice to improve patient outcomes.
KEYWORDS

hepatocellular carcinoma, telomere maintenance genes, risk model, nomogram,
immune evasion
1 Introduction

Liver cancer, particularly HCC, represents a significant global

health issue, with rising morbidity and mortality rates in recent

years. It is classified as the seventh most prevalent cancer and the

second foremost cause of tumor-related fatalities globally (1, 2).

Despite advancements in diagnostic and therapeutic techniques,

liver cancer also presents a bleak outlook (3), with A general five-

year survival percentage of nearly 21% (4). Current treatments like

surgery, liver transplants, and systemic therapies are often limited

by late-stage diagnosis and resistance to therapy (5, 6). Therefore,

there is an urgent necessity for innovative prognostic models and

therapeutic targets to enhance patient outcomes.

Telomere maintenance has emerged as a crucial factor in cancer

progression and prognosis. During each cell division, telomeres,

which are safeguarding caps at the ends of chromosomes, are

reduced in length, causing cell aging or apoptosis when they

become extremely short. However, cancer cells often activate

mechanisms to maintain telomeres, such as telomerase activation

or alternative lengthening of telomeres (ALT), to achieve replicative

immortality (7–9). In liver cancer, telomerase reverse transcriptase

(TERT) promoter mutations are frequently observed, indicating a

pivotal role of telomere maintenance in hepatocarcinogenesis (10).

Furthermore, telomere length and the telomerase activity have been

linked to tumor aggressiveness and patient prognosis in various

cancers, including liver cancer (11, 12).

In the context of liver cancer, aberrant TMM have been

implicated in cancer metastasis and invasion (13). Telomere

dysfunctions, often observed in precancerous lesions, are

associated with genetic instability, driving the development of

malignancy (14). Recent studies have emphasized the predictive

potential of genes related to telomere maintenance in other types of

cancer. For instance, a prognostic model based on genes associated

with telomere function accurately forecasted survival outcomes in

patients with bladder cancer, demonstrating the utility of such

models in clinical practice (15). Similarly, in lung cancer, a gene

signature linked to telomere maintenance correlated with patient

survival and response to treatment, underscoring the relevance of

telomere biology in cancer prognosis and treatment (16). Moreover,

emerging evidence suggests that telomere dysfunction may

influence therapeutic response and treatment outcomes in liver
02
cancer, highlighting the prospect of TMM as an emerging predictive

biomarker and a promising therapeutic target (17).

Our findings demonstrate that the TMGs signature can

effectively categorize liver cancer patients into two mortality risk

categories with notable disparities in OS. The model also correlates

with TMB, immune cell infiltration, and immunotherapy response,

suggesting its potential usefulness in guiding personalized treatment

strategies. By integrating clinical factors such as age and clinical

stage, we developed a nomogram for individualized survival

prediction, which could enhance clinical decision-making and

accurately anticipate patient outcomes in tumor cases. The

process of this research is shown in Figure 1.
2 Materials and methods

2.1 Data collection

Genes involved in telomere maintenance were collected from

TelNet website (18). Gene expression and clinical information were

acquired from the TCGA database. GSE76427 dataset was acquired

through GEO data. Clinical data was preprocessed by eliminating

samples without survival status. Additionally, patients with OS of

less than 30 days were excluded due to the possibility of non-cancer-

related causes of death (19, 20). We have included the web addresses

for all databases in Supplementary Table S1.
2.2 Screening DEGs and
enrichment analysis

DEGs between liver cancer tumors and normal samples in the

TCGA dataset were identified using the DESeq2 package in R (adjusted

p < 0.05 and |logFC| > 1) (21). DEGs were visualized using the package

ggplot2. We utilized the clusterProfiler software to examine the

pathways and functional enrichment through KEGG and GO.
2.3 Construction of predictive model

Univariate Cox regression was utilized to pinpoint genes linked to

the prognosis of liver cancer concerning TMGs. Afterwards, LASSO
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was utilized to further enhance the selection of genes. Ultimately,

multivariate Cox regression was conducted to pinpoint key prognostic

genes (22, 23). A bilateral P-value < 0.05 was deemed significant. The

R packages utilized included survival, rms, glmnet, eulerr, and ggplot2

(24). Multivariate Cox regression was employed to develop a
Frontiers in Oncology 03
predictive model. Ultimately, we calculated the risk score by

multiplying the selected gene expression levels with the

corresponding multivariate Cox regression analysis coefficients,

subsequently categorizing HCC patients into two risk groups using

the median risk score as the threshold value.
FIGURE 1

The process of this research.
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2.4 Evaluation of prognostic risk model

Kaplan-Meier (K-M) curves were used to compare differences

in OS between two groups. The timeROC package was employed to

assess the prognostic accuracy of the risk model using receiver

operating characteristic (ROC) curves (25). The GEO dataset served

as an independent validation cohort.
2.5 Building and adjustment of nomograms

To augment the predictive accuracy of the model and provide

clinicians with a quantitative tool to estimate OS in patients with

HCC, we constructed a nomogram by integrating the predictive

model with clinical variables(tumor stage and age). Subsequently,

the nomograms were evaluated using a calibration plot, which

compares the predicted probability with the observed outcomes,

and by calculating the concordance index.
2.6 Mutation analysis

TMB scores were computed using the maftools package,

followed by a mutation analysis (26). HCC mutation files were

acquired from TCGA-LIHC. Somatic mutations of risk groups were

depicted using waterfall plots. Further comparisons were conducted

to evaluate disparities in tumor mutation burden and prognostic

results among the risk cohorts.
2.7 Immune correlation analysis

CIBERSORT, a deconvolution algorithm, evaluated the

abundance of immune cells in each sample using gene expression

data. Single-Sample GSEA (ssGSEA) was employed to compare

immune cell populations across the various risk groups (27). We

employed the estimation software to evaluate discrepancies in

stromal, immune, and total scores among these groups. The

correlations between TMGs and liver cancer immune cells were

illustrated using ssGSEA and CIBERSORT algorithm.
2.8 Analysis of the immunotherapy
response and drug sensitivity

TIDE score is extensively employed to assess the efficacy of

tumor immunological therapy. We employed the TIDE platform to

determine the responsiveness of immunologic therapy and

illustrated the outcomes using the TIDE index. The “pRRophetic”

R package is utilized to indicate therapeutic sensitivity (28).
2.9 Cell culture and real-time PCR

The normal liver LO2 cells (iCell-h054, iCell Bioscience Inc.,

China) and HCC HepG2 cells (iCell-h092, iCell Bioscience Inc.,
Frontiers in Oncology 04
China) were cultured in RPMI 1640 medium (Cytiva, USA) with

10% FBS and 1% penicillin/streptomycin under standard

environment of 37°C and 5% CO2.

TRIpure reagent was used to extract total RNA according to the

manufacturer’s instructions. cDNA was synthesized using the

EntiLink™ 1st Strand cDNA Synthesis Super Mix (ELK

Biotechnology, Wuhan, China). RT-PCR was performed utilizing

the QuantStudio 6 Flex System PCR provided by Life technologies

Company. The primer sequences used were shown in

Supplementary Table S2.
2.10 Statistical analysis

All analyses were conducted using R statistical software (version

4.2.1). The log rank test were employed to compare the OS between

2 different populations. The Wilcoxon test was employed to assess

continuous parameters between two groups. Correlation analysis

was conducted utilizing the Spearman method. P values < 0.05

indicated statistically significant.
3 Results

3.1 Identification and gene enrichment in
liver cancer

Significant differential expression in malignant tissues, as

opposed to on-cancerous tissues, was demonstrated by 19,962

genes through the volcano plot analysis. Among these, we

identified 4,531 that were significant DEGs, including 3,299

upregulated and 1,232 downregulated genes (Figure 2A). By

intersecting the DEGs with a set of 2,093 TMGs, we discovered

379 overlapping genes (Figure 2B). A heatmap was generated by

selecting the 50 most distinct points from the green and red regions

of the volcano plot (Figure 2C).
3.2 Functional enrichment analysis of DEGs

We conducted GO and KEGG analysis to gain functional

assignment and categorization of the DEGs associated with

telomere maintenance. GO enrichment analysis of the 379

telomere maintenance-associated DEGs revealed the following: In

terms of biological process, The regulation of organelle fission,

DNA replication, and nuclear division were primarily related to the

DEGs. In terms of cellular component, The processes related to

chromosome areas, telomeric chromosome regions, and nuclear

chromatin were considerably enriched with differentially expressed

genes. Regarding molecular functions, the differentially expressed

genes were associated with enzymatic activity, roles as DNA-

binding activators, and transcription factor activity specific

to RNA polymerase II. (Figures 3A–C). It was revealed

by KEGG analysis that the pathways were predominantly

connected with the cellular cycle, senescence of cells, and DNA

replication (Figure 3D).
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3.3 Acquisition of three prognostically
relevant differential genes and building
the model

To identify prognostic-related TMGs in liver cancer, univariate

analyses with the Cox regression model was performed on the 379

overlapping genes, resulting in the identification of 175 candidate

genes. Using Lasso algorithms, we screened out 22 candidate genes

(Figures 4A, B). Finally, 3 core genes (PLCB4, DUSP10, ARL5B)

were recognized as independent predictors through the multivariate
Frontiers in Oncology 05
analyses with the Cox regression model and these were employed to

formulate the prediction model.

Additionally, we computed the risk score for each TCGA

patient based on expression levels of the 3 genes and the

coefficients of multivariate Cox regression analysis (risk score =

-0.5826967*PLCB4+ -0.60188072*DUSP10 + 0.92837317*ARL5B).

Patients from TCGA and GEO were ranked by risk score and

divided into high- and low-score individuals on basis of the optimal

truncation value of risk score. In the modeling cohorts, the OS

curves revealed that the high-score individuals were significantly
FIGURE 2

Identification of liver cancer-associated DEGs involved in telomere maintenance. (A) Volcano plot of 4,531 genes with differential expression.
(B) Venn diagram illustrating the overlap between DEGs and TMGs in liver cancer patients. (C) Heatmap displaying the top 50 upregulated and
downregulated genes.
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lower than others (Figures 5A, E). Moreover, the AUC (Area under

the Curve) serves as an indicator for assessing the efficacy of

survival prediction models, with elevated values signifying

enhanced model precision in differentiating various survival

outcomes, and the ROC curve illustrates the AUC in Figure 5C.

Likewise, the low-risk cohorts in the validation groups exhibited a

more favorable prognosis, as evidenced by K-M curves indicating

that patients with reduced risk scores experienced an improved

survival outcome. Furthermore, ROC analysis of the GEO cohort

validates that the risk model possesses an equally robust predictive

capability as TCGA(Figures 5B, D, F).
3.4 Plotting of a nomogram

From these studies, we merged the risk with clinically available

age and disease stage to construct an enhanced nomogram
Frontiers in Oncology 06
(Figure 6A). The calibration plot indicates that the observed

values closely align with the predicted values. Based on these

findings, and through decision curve analysis (DCA), the risk

scores, in conjunction with various clinical characteristics, exhibit

clinical efficacy (Figures 6B–E).
3.5 Tumor mutations were analyzed

The examination of tumor mutations revealed that the primary

forms of mutations were consistent across both two groups, although

there were variances in mutation forms between two groups

(Figures 7A, B). Patients exhibiting a high mutation load experienced

a diminished survival rate in contrast to those with a low mutation

load. Furthermore, the survival rate was markedly reduced in patients

from both the high-risk and high mutation load groups in comparison

to those in the low risk and low mutation load groups (Figures 7C, D).
FIGURE 3

The outcomes of functional enrichment analysis. (A–C) GO analysis of the TMGs. (D) KEGG pathway enrichment analysis of the TMGs.
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3.6 Association of the tumor immune
microenvironment with TMGs-related
risk score

CIBERSORT analysis unveiled notable differences in immune

cell infiltration, especially among CD4+ lymphocytes, natural killer

(NK) cells, and macrophages between the two groups (Figures 8A,

C). Meaningful distinctions in the infiltration properties of Th17

cells, NK cells, and other types of immunocytes between the two

groups were demonstrated by the ssGSEA algorithm (Figure 8D).

The estimation algorithm revealed that the overall score of the high-

risk cohort were markedly diminished (Figure 8B). Associations

with B cells, CD4+ lymphocytes, and NK cells were demonstrated

by the risk model (Figures 9A, B).
3.7 The prediction of tumor reaction to
immunological treatment

Marked elevations in the TIDE, MDSC, and Exclusion scores

were noted in the high-score individuals compared to the other
Frontiers in Oncology 07
individuals, indicating an elevated likelihood of immune evasion

among high-risk patients. (Figures 10A–C). Consequently, Less

benefit from immune checkpoint inhibition therapy is

experienced by individuals in the high risk category. Furthermore,

an elevated value of half maximal inhibitory concentration (IC50)

for sorafenib was observed in high-risk individuals compared to

others, signifying a reduced sensitivity to sorafenib among the high-

risk individuals (Figure 10D).
3.8 Relevance of hub gene expression level

RT-PCR analysis reveals significant differences in the mRNA

expression of three genes associated with telomere maintenance,

which are crucial to our prognostic risk model, when comparing

HepG2 cells to normal liver cells. In particular, the mRNA levels of

PLCB4, DUSP10, and ARL5B are notably higher in HepG2 cells

than in LO2 cells (Figure 10E). These results suggest that the altered

expression of these genes may play a role in the development and

progression of hepatocellular carcinoma.
FIGURE 4

Development of forecasting model related to TMGs. (A, B) Twenty-two prognostic-associated TMGs were discerned through LASSO analysis. (C) The
forest plot of 3 prognostically relevant TMGs.
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4 Discussion

Liver malignancy, including HCC, is one of the most

widespread and fatal cancers globally, representing a significant

health burden (29–31). Our investigation focuses on constructing a

predictive risk model grounded in TMGs, utilizing transcriptomic

and clinical data from liver cancer patients. This approach

holds promise for enhancing the diagnosis and treatment of liver
Frontiers in Oncology 08
cancer by identifying key molecular mechanisms involved in

its progression.

TMM empowers cancer cells with the ability to proliferate

continuously. Targeting TMM is a well-established approach in

cancer treatment (11). A prior study demonstrated that TMM had

significant prognosis value in pancreatic adenocarcinoma, and head

and neck squamous cell carcinoma (32). Through our research, a

prognostic model related to TMGs was established, leading to the
FIGURE 5

Dissemination of survival outcomes and risk assessments for TCGA and GEO. (A, B) survival analysis of TCGA and GEO. (C, D) ROC curves analysis.
(E, F) Heatmap images of alterations in TCGA and GEO gene expression.
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successful classification of patients into two groups with distinct

survival outcomes. ROC curve analysis demonstrated that the 1-

year and 3-year AUC values were superior, further validating the

predictive power of our model compared to similar prognostic

models in the study by Fan M et al (33). Importantly, the present

study identified 3 core TMGs (PLCB4, DUSP10, and ARL5B).

These genes exhibited significant correlations with OS in

HCC patients.
Frontiers in Oncology 09
ARL5B, a constituent of the ADP ribosylation factor-like family,

is part of the RAS superfamily (34). Studies have shown that

heightened ARL5B expression promoted the movement of

lysosomes, leading to their dispersal and accumulation at the

outer edge of the cell (35). Prior research revealed that impaired

lysosomal exocytosis led to reduced malignant cell invasion (36).

Previous research has indicated that ARL5B augmented the

translocation and infiltration of breast cancer cells, suggesting its
FIGURE 6

The formulation of the nomogram was carried out. (A) A prognostic nomogram founded on risk, disease stage, and age. (B) The alignment between
the anticipated survival probability and the actual survival proportion was strongly demonstrated by the calibration curve at 1-year and 3-year.
(C–E) DCA of prognostic nomogram, risk, age, and disease stage in forecasting 1-, 3-, and 5-year survival rates.
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oncogenic function in breast cancer (35). Furthermore, suppression

of ARL5B resulted in a decrease in the scattering of lysosomes and

subsequently led to a reduction in cell invasion in prostate cancer

(37). The PLCB4 gene, which encodes the PLCb4 protein, is a

sizable gene spanning 412 kb (38). Changes in PLCB4 expression

are associated with a decline in survival rates in patients with solid

tumors, including mesothelioma, colorectal cancer, and

gastrointestinal tumors (39, 40). PLCB4 hypomethylation has

been linked to the development of HCC and the survival of liver

cancer without recurrence (41, 42). Within the human genome

sequence of Dual-specificity phosphatase 10 (DUSP10), two

transcripts have been recognized, with the longer transcript being

extensively expressed across diverse human tissues, including the

liver (43). DUSP10 is associated with inflammation, cytokine

release, cellular growth, cellular movement, viability, and

programmed cell death (44, 45). Several research have found

elevated levels of DUSP10 messenger RNA in cancerous tissues,

suggesting a cancer-promoting role. Conversely, lowered expression

of DUSP10 seems to correlate with migration and spread in HCC

(43, 46, 47). Our research discovered diminished DUSP10

expression in the high-risk cohort.
Frontiers in Oncology 10
TMB is gaining recognition as diagnostic markers to anticipate

the prospective benefit of immune checkpoint inhibitors (ICIs)

therapy (25, 26). An increased number of mutations leads to an

amplification in neoantigen and immunogenic recognition, thereby

promoting T-cell responses stimulated against tumor cells.

Consequently, an elevated TMB may indicate an intensified

responsiveness to immunotherapy (48). An inferior prognosis was

noted in patients with high mutation load compared to those with

low mutation load (49). Mutations in the TERT promoter

demonstrated the highest frequency, occurring in 60% of HCC

patients, suggesting that genes associated with telomere

maintenance may be crucial in the development of HCC (50, 51).

The findings of tumor mutation load analysis demonstrated that the

prognosis of tumor mutation load in low-risk individuals was

markedly superior to that in others. This discovery underscores

the potential of telomere preservation genes as biomarkers for

predicting the effectiveness of ICIs in liver cancer.

The immune microenvironment of hepatocellular carcinoma is

crucial in cancer progression and patient prognosis (52–54). The

model based on the aforementioned trio of telomere maintenance

genes has the capability to forecast patients’ prognosis.
FIGURE 7

Somatic Mutation Comparison. (A) The twenty most commonly mutated genes in high-score groups. (B) The twenty most commonly mutated
genes in low-score populations. (C, D) Prognostic evaluation of elevated and diminished tumor mutation load in populations at risk groups.
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FIGURE 8

The TME characteristics vary among different risk groups. (A, C) An immune deconvolution algorithm (CIBERSORT) to deduce the infiltration of
immune cells in two cohorts. (B) The TME scores derived from the ESTIMATE algorithm are evaluated for inconsistencies. (D) Discrepancy analysis of
immune-associated score among risk groups based on ssGSEA algorithm (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
FIGURE 9

Spearman’s correlation between immunocytes and risk index. (A) Correlation of immune cells and risk model using CIBERSORT. (B) Correlation of
immune cells and risk models using ssGSEA.
Frontiers in Oncology frontiersin.org11
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Additionally, it can be utilized to anticipate a patient’s response to

immunotherapy. This research employed ESTIMATE, ssGSEA, and

CIBERSORT software to analyze the immune cells infiltration in

HCC tissues, uncovering noteworthy disparities among risk groups.

Notably, we noted pronounced differences in the abundance of CD4

+ lymphocytes, NK cells, and other types of immunocytes,
Frontiers in Oncology 12
suggesting that telomere maintenance not only contributes to the

development of TME but also potentially regulates the activity of

immunocytes. The TIDE index was diminished in the low-risk

individuals relative to others, Indicating a more favorable response

to immunologic treatment. These findings indicate that telomere

maintenance genes could impact immune responses to HCC
FIGURE 10

TIDE score and therapeutic sensitivity of medications. (A–C) Correlation analysis between TIDE score and risk score. (D) IC50 values of the targeted
medication sorafenib in risk groups. (E) ARL5B, DUSP10, and PLCB4 mRNA expression in LO2 and HepG2 cells. **P < 0.01, ***P < 0.001.
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therapy by modulating the efficacy of immunocytes. Telomere

maintenance gene might serve as a novel target for liver cancer

treatment. Sorafenib, a multitargeted tyrosine kinase inhibitor (55),

emerged as the initial therapy to exhibit effectiveness in patients

with advanced hepatocellular carcinoma, significantly extending the

overall median survival (56). In the current investigation, the IC50

of sorafenib was diminished in the low-risk cohorts. Consequently,

drawing upon the telomere maintenance-associated gene profile, we

propose that liver cancer patients with diminished risk may exhibit

increased susceptibility to targeted therapy.

While this research is clinically important for evaluating

prognosis and treatment options for liver cancer patients, it has

several limitations. Firstly, Given that our research was exclusively

validated through bioinformatics and PCR conducted in cell

cultures, it is essential to pursue further validation in future

prospective studies and animal trials. Secondly, the sample size of

liver cancer patients included in the study was limited, potentially

introducing bias into the results. Thirdly, because there is no

comprehensive clinical validation, these prognostic models need

further testing in large-scale prospective clinical studies to confirm

their practical use. Additionally, using multiple datasets from

various sources could introduce batch effects, impacting the

robustness and reproducibility of the findings. Future research

should aim to address these limitations by incorporating

experimental validation, expanding sample sizes, and applying

rigorous methods to minimize batch effects.
5 Conclusion

To summarize, This study formulated a predictive risk model

employing TMGs, which effectively classified patients into high-

and low-risk categories. This stratification showcased notable

disparities in OS and displayed strong predictive capability.

Moreover, substantial variations were identified among risk

groups regarding tumor mutation load, the prevalence of

immunocytes, and the activity of immune pathways. The TIDE

algorithm highlighted distinct reactions to immune therapies and

sensitivities to medications between the two groups. These

conclusions illuminate the potential of TMGs as diagnostic

markers and treatment targets in hepatic cancer. Future studies

should strive to validate these findings in larger, independent

cohorts and explore the underlying biological mechanisms

through experimental research.
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