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Prognostic significance and
immune microenvironment
infiltration patterns of
hypoxia and endoplasmic
reticulum stress-related
genes in gastric cancer
Libin Li, Yizhi Liang and Wenji Xu*

Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, Fujian, China
Background: Gastric cancer (GC) is a prevalent malignant neoplasm within the

digestive system, accounting for approximately 740,000 deaths globally each

year, significantly impacting patients' quality of life and survival rates. The

objective of this investigation was to elucidate the expression patterns of

Hypoxia and Endoplasmic Reticulum Stress-related Differentially Expressed

Genes (HERSRDEGs) in GC and their association with prognostic outcomes of

the patients.

Methods: Utilizing The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases, GC datasets were retrieved, and standard

normalization was performed. Differential expression analysis was conducted

using DESeq2, while somatic mutations and copy number variations were

examined using maftools and GISTIC2.0. Spearman's correlation assessed the

interplay between HERSRDEGs across datasets. Functional enrichment analyses

were carried out using clusterProfiler for Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, alongside Gene Set

Enrichment Analysis (GSEA). A prognostic risk model was obtained by utilizing

univariate Cox regression analysis with a survival R package. We employed RT-

qPCR to validate the mRNA expression levels of five model genes that impact the

prognostic risk of gastric cancer in human gastric adenocarcinoma tissues.

Results: The acquired data revealed 19 HERSRDEGs including ANGPT2, CXCL8,

and AURKA exhibiting significant variation in expression between GC and

controls. In the Cox regression analysis, a total of five genes—ANGPT2, CD36,

EGR1, NOX4, TLR2—emerged as statistically significant, correlating strongly with

overall survival. A LASSO regression model featuring ANGPT2, CD36, and NOX4

yielded a risk score formula capable of predicting patient outcomes.

Furthermore, multivariate Cox regression analysis highlighted RiskScore, age

and stage as significant survival predictors. The analysis of immune infiltration
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1542740/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1542740/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1542740/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1542740/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1542740/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1542740/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1542740&domain=pdf&date_stamp=2025-02-21
mailto:fmuxwj@163.com
https://doi.org/10.3389/fonc.2025.1542740
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1542740
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2025.1542740

Frontiers in Oncology
revealed notable differences in the populations of immune cells, such as Natural

Killer cells and T-helper cells, when comparing high-risk and low-risk groups.

Conclusion: In conclusion, this investigation elucidates the involvement of

HERSRDEGs in GC progression and their potential as prognostic biomarkers.
KEYWORDS

gastric cancer, hypoxia, endoplasmic reticulum stress, biomarkers, prognostic model,
immune infiltration
1 Introduction

Gastric cancer (GC) ranks as the fifth most common cancer type

and the fourth leading cause of cancer-related mortality worldwide,

accounting for around 768,793 deaths and 1,089,103 new diagnoses

in the year 2020 (1). Despite progress in adjuvant therapies and

surgical techniques over the years, the prognostic outcomes for GC

patients remain dismal, particularly in advanced stages, with a five-

year survival rate of under 30% and median survival of less than 1

year (2). This high mortality rate is largely attributed to late diagnosis,

rapid disease progression, and resistance to current treatment

modalities (3). These challenges emphasize the necessity for novel

biomarkers and therapeutic targets aimed at enhancing early

detection, prognosis, and treatment outcomes in GC.

Hypoxia and endoplasmic reticulum stress (ERS) are phenotypic

hallmarks associated with the tumor microenvironment and have been

linked to the pathogenesis and progression of diverse cancers, including

GC (4, 5). Protein misfolding within the endoplasmic reticulum results

in the buildup of improperly folded proteins and activates the unfolded

protein response (UPR). This response has developed as a mechanism

to maintain an effective protein-folding environment within the

endoplasmic reticulum. The activation of both ERS and UPR has

been observed across diverse human cancers. Hypoxia-inducible factors

(HIFs) and the UPR pathways are pivotal in the cellular adaptation to

hypoxia and ERS, respectively, and their dysregulation has been linked

to oncogenesis, metastasis, and treatment resistance (6, 7). Notably,

hypoxia and Endoplasmic Reticulum Stress-Related Differentially

Expressed Genes (HERSRDEGs) have shown promise as prognostic

indicators and therapeutic targets in specific malignancies, including

breast and colorectal cancer (8, 9), suggesting their significant research

potential in GC.

Our study sought to investigate the involvement of HERSRDEGs

in the pathogenesis and development of GC, as well as to establish a

prognostic risk model. To accomplish this goal, GC datasets were

retrieved from TCGA and GEO databases and processed, differential

gene expression analysis was performed, and somatic mutations and

copy number variations were assessed. Correlation analyses, gene-set

enrichment analysis (GSEA), functional enrichment, and immune

infiltration assessments were conducted to elucidate the clinical

significance of HERSRDEGs in GC. Our research offers

considerable insights into the influence of hypoxia and ERS in
02
gastric carcinogenesis and proposes a novel prognostic model based

on HERSRDEGs, potentially guiding future clinical interventions for

GC individuals.
2 Materials and methods

2.1 Downloading of data

The dataset pertaining to Stomach Adenocarcinoma from The

Cancer Genome Atlas (TCGA-STAD) was obtained from the TCGA

database using the R package TCGAbiolinks (10) and utilized as the

test set. After excluding samples lacking prognostic data, sequencing

data in Counts format were acquired from 371 GC samples that

possessed prognostic information, along with 32 control samples.

Following this, the data underwent normalization to the Fragments

Per Kilobase per Million (FPKM) standard, while pertinent clinical

information was sourced from the UCSC Xena database (11).

Detailed information can be found in Supplementary Table S7. It is

important to note that the TCGA-STAD database does not include

specific information about chemotherapy or other treatments. Hence,

this information is not shown in Supplementary Table S7. The GC

datasets GSE142000, and GSE118897 (12) were downloaded using

the R program GEOquery (13) accessed at the GEO database (14)

(https://www.ncbi.nlm.nih.gov/geo/) as a validation set for further

assessment. The samples analyzed in this investigation, obtained

from GSE142000 and GSE118897, were exclusively obtained from

Homo sapiens and derived from gastric tissue. The gene expression

data were generated using the chip platforms of GPL23227 and

GPL16686 for GSE142000 and GSE118897, respectively, as detailed

in Supplementary Table S8. GSE142000 comprised 7 GC samples

and 6 control samples, and GSE118897 comprised 10 GC samples

and 10 control samples. The samples from both datasets were

utilized in this investigation for comprehensive assessment.

We collected candidate genes from multiple databases and

screened and validated these genes through a series of

bioinformatics analyses, aiming to identify HERSRDEGs associated

with gastric cancer.

First, we searched the GeneCards database (15) (https://

www.genecards.org/) and MSigDB database (16) (https://

www.gsea-msigdb.org/gsea/msigdb) with the keywords “Hypoxia”
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and “Endoplasmic Reticulum Stress”, and selected the gene “Protein

Coding”. Retained “Protein Coding” genes with a “Relevance Score

> 4” and “Protein Coding” genes with a “Relevance Score > 2”,

resulting in 239 hypoxia-related genes (HRGs) and 603

Endoplasmic Reticulum Stress-Related Genes (ERSRGs).

Subsequently, 397 HRGs and 26 ERSRGs were extracted by

searching related literature in PubMed database, respectively

(17, 18). After combining and removing duplicate genes, we

finally identified 624 HRGs (as detailed in Supplementary Table

S1) and 608 ERSRGs (as detailed in Supplementary Table S2), and

took their intersection to obtain 103 hypoxia and endoplasmic

reticulum stress-related genes (HERSRGs) with detailed

information presented in Supplementary Table S3.

The datasets GSE142000 and GSE118897 were standardized

using the R tool limma (19). This method included standardizing

and normalizing the annotation probes. Subsequently, the datasets

GSE142000, GSE118897, and the GC dataset (TCGA-STAD) were

utilized to identify the intersection genes. Only the expression

matrix of these intersected genes was retained for further analysis.
2.2 Assessing gastric cancer-related
hypoxia & endoplasmic reticulum stress-
related differentially expressed genes

In the screening of differentially expressed genes(DEGs), we

used the R package DESeq2 (20) to analyze GC samples and control

samples in the TCGA-STAD dataset. We set |logFC| > 1 and adj.P<

0.05 as the screening criteria to ensure that the selected genes had

significant differences. In integrating the data, we ensured that only

the overlapping genes present in all datasets were included to

improve the reliability of subsequent analyses. Using the R

package ggplot2, volcano plots were created to illustrate the

variance analysis results.

In order to filter HERSRDEGs associated with GC, the DEGs

from the GC dataset (TCGA-STAD) with |logFC| > 1 and adj. P<

0.05 were intersected with 103 HERSRGs. The intersection set of

HERSRDEGs was visualized by plotting a Venn diagram

Additionally, a heat map was generated utilizing the R package

pheatmap, while chromosomal localization maps were constructed

using RCircos (21) was employed to create chromosomal

localization maps.
2.3 Somatic mutation, copy number
variation analysis

Using “Masked Somatic Mutation” data as the Somatic

Mutation (SM) data, samples from the GC dataset (TCGA-

STAD) were examined for SM. These data were derived from

TCGA, and preprocessed by VarScan software. Finally, R

maftools (22) was utilized to visualize the SM landscape,

providing insights into the mutational profile of GC samples.

The “Masked Copy Number Segment” dataset was selected as

the source of Copy Number Variation (CNV) data for the analysis

of CNVs in GC samples extracted from the GC dataset (TCGA-
Frontiers in Oncology 03
STAD). The data were acquired from TCGA. The GISTIC2.0 (23)

analysis was performed on the downloaded and processed CNV

segments, and all the default parameters were utilized.
2.4 Correlation analysis

To investigate the relationship among HERSRDEGs more

comprehensively, the Spearman algorithm was employed to assess

HERSRDEGs within the GC dataset (TCGA-STAD). Additionally,

correlation analysis was performed to evaluate the association

between the expression levels of the GSE142000 and GSE118897

datasets. The findings of the analysis were illustrated using the R

package pheatmap, which was utilized to generate the correlation

heatmap. Subsequently, the positive and negative correlation of

top1 related HERSRDEGs were screened. The correlation scatter

plot was generated using the R package ggplot2. Correlation

coefficients were interpreted as follows: an absolute value lower

than 0.3 indicated zero or weak correlation, 0.3-0.5 signified weak

correlation, 0.5-0.8 signified moderate correlation, and above 0.8

signified strong correlation.
2.5 Gene ontology and pathway (KEGG)
enrichment analysis

Gene Ontology (GO) analysis (24) is a widely employed

measure for studying functional enrichment on a large scale,

encompassing Biological Process (BP), Cell Component (CC), and

Molecular function (MF). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) (25) is a commonly utilized resource that

provides an extensive array of data pertaining to diseases,

genomes, biological pathways and drugs. GO and KEGG

enrichment analyses of HERSRDEGs were conducted through R

clusterProfiler (26). A P-value of less than 0.05, along with a false

discovery rate (FDR) value, also referred to as the Q value, lower

than 0.25, was considered indicative of statistical significance. The

Benjamini-Hochberg (BH) method was employed for the

adjustment of P-values.
2.6 Gene Set Enrichment Analysis

GSEA (27) is employed to examine how genes in a predefined

gene set are distributed within a gene table sorted by their

correlation with a phenotype, thereby identifying their impact on

the phenotype. In this investigation, the genes in the GC dataset

(TCGA-STAD) were first ordered per the logFC values, and GSEA

was then conducted on these genes using R clusterProfiler. The

parameters utilized in GSEA included a seed value of 2020, 1000

computations, a minimum of 10, and a maximum of 500 genes in

each gene set. The MSigDB Database (16) was accessed to acquire

the gene set c2.cp.all.v2022.1.Hs.symbols.gmt [All Canonical

Pathways] (3050) which was employed for GSEA. The screening

criterion for GSEA was set as P value < 0.05.
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2.7 Establishment of a prognostic risk
model for gastric cancer

To establish the prognostic risk model in the GC dataset (TCGA-

STAD), R survival (28) was employed to conduct univariate Cox

regression analysis utilizing clinical information to evaluate the effect

of HERSRDEGs on prognosis. We selected prognostically relevant

differentially expressed genes (HERSRDEGs) in a univariate Cox

regression analysis and identified those genes with a P-value of less

than 0.10 by calculating the P-value of each gene relative to overall

survival (OS). The selection of these genes provides a basis for

subsequent modeling. In order to further screen genes with a

significant influence on prognostic risk factors, we used Least

Absolute Shrinkage and Selection Operator (LASSO) regression

analysis and set the cycle number to 10 to obtain the model genes

for the prognostic risk model. LASSO analysis was executed via R

glmnet (29).Finally, the RiskScore was determined using the risk

coefficient derived from LASSO regression analysis, as represented in

the following formula:

Equation 1:

riskScore  =  o
i
Coefficient (genei)*mRNA Expression (genei)

According to Equation 1, this equation facilitates the

computation of the risk score by aggregating the products of the

gene coefficients and their respective mRNA expression levels.
2.8 Prognostic analysis of gastric cancer
prognostic risk model

The Time-dependent Receiver Operating Characteristic (ROC)

Curve (30) serves as a schematic analysis instrument frequently

employed for model selection, threshold optimization, and

performance assessment. The R package survivalROC was used to

draw time-dependent ROC curves and compute the Area Under the

Curve (AUC) based on RiskScore and overall survival (OS).

The survival outcomes for 1, 3, and 5 years of GC individuals from

the dataset (TCGA-STAD) were predicted by assessing the

performance of our model using the AUC of the ROC curve. This

value was generally found to be between 0.5 and 1. An increased value

(approaching 1) signifies enhanced diagnostic efficacy. An AUC value

greater than 0.5 indicates a correlation between the gene expression and

the event’s occurrence. To analyze the variation in OS across the high-

and low-risk groups of the GC dataset (TCGA-STAD), the R package

survival was utilized for Kaplan-Meier (KM) curve (31) analysis. KM

curves were drawn based on the RiskScore.

The outcomes of the univariate and multivariate Cox regression

analyses, which encompassed both the expression of RiskScore and

relevant clinical data, were illustrated through a Forest Plot. To

illustrate the relationship between RiskScore and clinical

information included in the multivariate Cox regression model, a

nomogram was established. A Nomogram (32) is a graphical

depiction of the functional relationship between multiple

independent variables. It achieves this by presenting a group of
Frontiers in Oncology 04
non-overlapping line segments in a rectangular coordinate

framework. The R package ggDCA was employed to establish a

Nomogram based on the outcomes of the multivariate Cox

regression analysis.

The Calibration Curve serves as a crucial instrument for

evaluating the predictive precision of a model, allowing for a

comparison between the true outcome probabilities and the

predictions generated by the model across diverse scenarios. It

helps evaluate the model’s calibration, or how closely the predicted

probabilities match the observed probabilities. The precision and

distinguishing capacity of the prognostic risk model based on

RiskScore was examined by generating the Calibration Curve via

Calibration analysis. Decision Curve Analysis (DCA) (33) is a

method employed to assess clinical prediction models, molecular

biomarkers, and diagnostic tests. R ggDCA package was utilized to

generate a DCA plot based on RiskScore to examine the

discriminative capacity and accuracy of the prognostic risk model

for GC.
2.9 Validation of differential expression

Initially, the GC samples from the TCGA-STAD dataset were

categorized into high-risk and low-risk cohorts based on the

median expression level of RiskScore obtained from the GC

prognostic risk model. Subsequently, a comparative analysis of

the model gene expression across these two risk groups was

conducted in order to assess the variation between them. This

assessment involved plotting a group comparison map visualizing

the expression levels of these model genes. Finally, R pROC was

utilized to establish the ROC Curve of model genes and compute the

corresponding AUC. This analysis aimed to examine the diagnostic

capacity of model gene expression in terms of predicting the

occurrence of GC. Generally, the area beneath the ROC curve

demonstrates values between 0.5 and 1, where elevated values

indicate superior diagnostic efficacy. AUC values within the range

of 0.5 and 0.7 signified diminished accuracy, whereas moderate

accuracy was associated with AUC values within the range of 0.7

and 0.9, with values above 0.9 signifying high accuracy.
2.10 Gene set variation analysis

Gene Set Variation Analysis (GSVA) (34), is an unsupervised

non-parametric analysis approach utilized for evaluating gene set

enrichment data derived from microarray nuclear transcriptome

data. This approach enables the assessment of whether distinct

pathways exhibit enrichment across various samples. The process

involves accessing the gene set data from MSigDB and the GC

samples from the TCGA–STAD dataset. By utilizing the MSigDB

and TCGA–STAD dataset, GSVA enables the exploration of the

functional enrichment variation across high- and low-risk cohorts.

The screening criteria of GSVA was set as adj.P < 0.05 and the BH

approach was employed for P value adjustment.
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2.11 Immune infiltration analysis

Single-sample gene-set enrichment analysis (ssGSEA) (35) is a

technique employed to measure the relative levels of immune cell

infiltration in specific samples. The enrichment scores derived from

ssGSEA were employed to assess the relative presence of immune

cell infiltrates within each individual sample, thereby generating an

immune cell infiltration matrix for the GC samples sourced from

TAGA-STAD. Subsequently, immune cell types that displayed

significant differences between the two risk categories were

identified. Utilizing R ggplot2, group comparison maps were then

constructed to visually represent these differences. After the

preliminary assessment, the Spearman algorithm was utilized to

examine the link among immune cells, with R pheatmap utilized for

visual depiction of these correlations via a heatmap. Additionally, to

assess whether any correlation existed between the model genes and

the immune cells, the Spearman algorithm was utilized. The

acquired data were visualized via a correlation bubble plot that

was established using R ggplot2.
2.12 Immunogenicity score analysis

Immunogenicity denotes the capacity of of an antigen or its

specific epitopes to engage with the antigen recognition receptors

found on T cells and B cells, thereby triggering either humoral or

cell-mediated immune responses. The application of machine

learning allows for the estimation and quantification of

immunogenicity. The Cancer Immunome Atlas (TCIA) database

(36) (https://tcia.at/home) offers Immunogenicity scores (IPS) for

twenty distinct types of cancer, functioning as an important

indicator of reactivity to CTLA-4 and PD-1. Leveraging this

resource, the IPS data of GC samples were retrieved from the

TCIA database, specifically pertaining to the TCGA-STAD dataset.

A comparative assessment of IPS between the two risk groups was

conducted by R ggplot2. The variation in IPS was analyzed.
2.13 Gastric adenocarcinoma tissue and
RT-qPCR

The remaining postoperative specimens were collected from

patients diagnosed with gastric adenocarcinoma via preoperative

gastroscopy and confirmed to have no distant metastasis. If the

pathological examination criteria were satisfied, we collected 5g of

cancer tissue and 5g of adjacent tissue from at least 5cm away,

resulting in six pairs of fresh gastric adenocarcinoma and adjacent

tissue specimens. This study was conducted in accordance with the

ethical principles outlined in the Declaration of Helsinki, as

established by the World Medical Association. Informed consent

was obtained from all participants involved in the study. Total RNA

was isolated from the tissue homogenates utilizing TRIzol reagent

(Invitrogen, Carlsbad, CA, USA). We performed reverse

transcription according to the manufacturer’s guidelines (Takara,

Jiangsu, China). The SYBR Green technique (Vazyme, Jiangsu,

China) was utilized to further determine the expression levels of
Frontiers in Oncology 05
the target genes. To analyze the results, we used the QuantStudioTM

5 Real-Time PCR machine (Applied Biosystems, USA).

To calculate the data, the cyclic threshold (CT) (2−DDCT)

approach was applied. Every sample underwent three assays. By

employing the comparative CT approach, the expression level was

normalized to that of b-actin. The primers utilized in this study are

presented in Supplementary Table S10. We statistically analyzed the

experiment data using a paired sample t-test.
2.14 Statistical analysis

R software (v 4.3.0) was employed for processing and analyzing

the data. Statistical significance for continuous variables between

the two groups was evaluated using an independent Student’s t-test,

unless indicated otherwise. This approach is particularly suitable for

normally distributed variables and ensures robust comparisons

between groups. In cases where variables exhibited non-normal

distribution, the variation between them was examined through the

Mann-Whitney U Test approach (Wilcoxon Rank Sum Test). For

comparison involving three or more groups, the Kruskal-Wallis

test was utilized. Spearman correlation analysis was used to

compute the correlation coefficient between different molecules.

All statistical analyses employed two-sided P values unless

otherwise specified, with a P value of less than 0.05 considered to

signify statistical significance.
3 Results

3.1 Technology Roadmap and
Standardization of Gastric Cancer Dataset

First, we collected 371 GC samples and 32 control samples from

the TCGA-STAD database. Subsequently, we determined the genes

that are differentially expressed (DEGs) via an analysis of gene

expression. Next, we functionally annotated the DEGs using GSEA,

which included GO and KEGG pathway enrichment. Meanwhile,

we identified a set of prognostically relevant genes (HERSRGs) and

further selected differentially expressed genes (HERSRDEGs)

significantly associated with prognosis by combining information

on somatic mutation (SM) and copy number variation (CNV).

Following the execution of functional enrichment analysis on the

HERSRDEGs, we developed a prognostic model utilizing these

genes, subsequently classifying patients into high-risk and low-

risk categories. Next, we conducted correlation analysis on the

modeled genes to assess their performance in independent datasets

(GSE142000 and GSE118897). We also evaluated the functional

status of the risk groups through GSVA and IPS, and investigated

immune cell infiltration using ssGSEA. Finally, we calculated

expression differences and plotted ROC curves to validate the

reliability and prognostic predictive power of the model (Figure 1).

Initially, the datasets GSE142000 and GSE118897 underwent

standardization, annotation of probes, and normalization via the R

package limma. Following this, boxplots illustrating the distribution

of expression values for GSE142000 (Figures 2A, B) and GSE118897
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(Figures 2C, D) were created to evaluate the data both prior to and

following normalization.
3.2 Gastric cancer-related hypoxia &
endoplasmic reticulum stress-related
differentially expressed genes

TCGA-STAD was divided into GC and control categories. To

examine the differences in gene expression levels between these two

groups, the R package DESeq2 was employed to conduct a

differential analysis of the TCGA-STAD data. This analysis

identified 2762 DEGs that satisfied the criteria of |logFC| > 1 and

adj. P < 0.05. Among these, 1279 genes exhibited upregulated

expression (logFC > 1 and adj.P < 0.05), while 1483 genes

exhibited downregulated expression (logFC < -1 and adj.P <

0.05). A volcano plot was established based on these differential

analysis outcomes (Figure 3A).

The 2762 genes obtained through differential expression

analysis were integrated with the above 103 HERSRGs, and 19

HERSRDEGs were finally identified after intersection, as shown in

the Venn diagram (Figure 3B). The identified HERSRDEGs must

satisfy the following criteria: 1) They must belong to both the

hypoxia-related and ER stress-related gene sets; 2) Their expression
Frontiers in Oncology 06
must show significant changes in the TCGA-STAD dataset, with |

logFC| > 1 and adj.P < 0.05. A total of 19 HERSRDEGs were

identified, namely ANGPT2, CXCL8, AURKA, KAT2A, ACE2, JUN,

MAPK3, MET, TERT, CD36, EGR1, NOX4, PCSK9, FOS, TLR2,

ALB, HSPB1, LEP, CCL2.

Following this intersection, the expression differences of

HERSRDEGs in TCGA-STAD were analyzed, and a heatmap was

constructed utilizing R pheatmap to visualize the analysis results

(Figure 3C). Finally, the locations of 19 DEGs related to

HERSRDEGs on human chromosomes were analyzed by the R

‘RCircos’, resulting in the generation of a chromosome localization

map (Figure 3D). Chromosome mapping showed that more

HERSRDEGs were located on chromosome 7, including HSPB1,

CD36, MET, and LEP.
3.3 Somatic mutation, copy number
variation analysis

Initially, the analysis of SM within 103 HERSRGs in GC

samples from the Gastric Cancer Dataset (TCGA-STAD) was

conducted, followed by visualization using the R package

maftools (Figure 4A). The findings revealed six predominant SM

types within HERSRGs, with missense mutations being
FIGURE 1

Flow Chart for the Comprehensive Analysis of HERSRDEGs TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric Cancer;
DEGs, Differentially Expressed Genes; HERSRGs, hypoxia&ER Stress-Related Genes; HERSRDEGs, hypoxia&ER Stress-Related Differentially Expressed
Genes; GSEA, Gene Set Enrichment Analysis; SM, Somatic Mutation; CNV, Copy Number Variations; GO, Gene Ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; GSVA, Gene Set Variation Analysis; IPS, Immunophenoscore; ssGSEA, Single-Sample Gene-Set Enrichment Analysis; ROC,
Receiver Operating Characteristic.
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FIGURE 2

Batch Effects Removal of GSE142000 and GSE118897. (A) Distribution boxplot of the dataset GSE142000 prior to normalization. (B) Distribution
boxplot of the normalized dataset GSE142000. (C) Distribution boxplot of dataset GSE118897 prior to normalization. (D) Distribution boxplot of the
normalized dataset GSE118897. Yellow signifies the controls and brown signifies theGC group. GC, Gastric Cancer.
FIGURE 3

Differential Gene Expression Analysis. (A) Volcano plot of differentially expressed genes (DEGs) analysis between gastric cancer (GC) group and
control group in the GC dataset (TCGA-STAD). (B) DEGs and hypoxia & endoplasmic reticulum stress-related genes (HERSRGs) Venn diagram in
TCGA-STAD. (C) Heat map of hypoxia & ER stress-related DEGs (HERSRDEGs) in TCGA-STAD. (D) Chromosomal mapping of HERSRDEGs. TCGA,
The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric Cancer; DEGs, Differentially Expressed Genes; HERSRGs, hypoxia & ER
Stress-Related Genes; HERSRDEGs, hypoxia & ER Stress-Related Differentially Expressed Genes. In the heat map group, yellow serves as the control
group, and brown denotes the GC group. In the heat map, red denotes elevated expression, and blue represents reduced expression.
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predominant. Notably, the predominant mutation type among the

103 HERSRGs in GC samples was Single Nucleotide Polymorphism

(SNP), with C to T mutation emerging as the most prevalent Single

Nucleotide Variant (SNV) in GC samples. Subsequently, an analysis

of the SM status of 19 HERSRDEGs in GC samples was performed,

followed by ranking them based on mutation frequency from high

to low and visualizing these genes (Figure 4B). The results indicated

that ANGPT2 exhibited the highest mutation rate of 3%.
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For the examination of CNV among 19 HERSRDEGs in GC

samples sourced from TCGA-STAD, CNV data of GC samples from

the same dataset were obtained and merged. Utilizing GISTIC2.0

analysis, CNV was identified in 18 out of the 19 HERSRDEGs within

GC samples. Subsequently, the mutation status of these 18 genes

exhibiting CNV was depicted (Figures 4C, D), comprising: ACE2,

ALB, ANGPT2, AURKA, CCL2, CD36, EGR1, FOS, HSPB1, JUN,

KAT2A, LEP, MAPK3, MET, NOX4, PCSK9, TERT, TLR2.
FIGURE 4

CNV and Somatic Mutation Analysis. (A) Presentation of somatic mutations (SM) of hypoxia & endoplasmic reticulum stress-related genes (HERSRGs)
in gastric cancer (GC) samples from the Gastric Cancer dataset (TCGA-STAD). (B) Presentation of SM of hypoxia & endoplasmic reticulum stress-
related differential genes (HERSRDEGs) in GC samples from TCGA-STAD. (C, D) HERSRDEGs with copy number variations (CNV) are shown in GC
samples from TCGA-STAD. TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric Cancer; HERSRGs, Hypoxia &
Endoplasmic Reticulum Stress-Related Genes; HERSRDEGs, hypoxia & ER Stress-Related Differentially Expressed Genes; SM, Somatic Mutation; CNV,
Copy Number Variations; SNP, Single Nucleotide Polymorphism; SNV, Single Nucleotide Variant.
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3.4 Correlation analysis of differentially
expressed genes associated with hypoxia
and endoplasmic reticulum stress

Utilizing the comprehensive expression matrix of 19

HERSRDEGs from TCGA-STAD, correlation analysis was

conducted, followed by visualization via a correlation heat map

(Figure 5A). Subsequently, correlation scatter plots were employed

to illustrate the results of the correlation analysis concerning the top

positively and negatively correlated genes identified in the heat map
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(Figures 5B, C). Notably, EGR1 and FOS exhibited a significant

positive correlation within TCGA-STAD (P value < 0.05, r value =

0.775), while KAT2A and CD36 demonstrated a significant negative

correlation (P value < 0.05, r value = -0.420).

Subsequently, utilizing the complete expression matrix of 19

HERSRDEGs in dataset GSE142000, correlation analysis was

conducted, followed by visualization through a correlation heat

map (Figure 5D). Further, correlation scatter plots were employed

to present the results of correlation analysis between the top1

positively and negatively correlated genes identified in the
FIGURE 5

Correlation Analysis of HERSRDEGs (A) Correlation heat map of 19 hypoxia & endoplasmic reticulum stress-related differentially expressed genes
(HERSRDEGs) in gastric cancer dataset (TCGA-STAD). B-C. Scatter plot of HERSRDEGs EGR1 and FOS (B), KAT2A, and CD36 (C) in TCGA-STAD. (D)
Correlation heat map of 19 HERSRDEGs in dataset GSE142000. (E, F) Scatter plot of HERSRDEGs TERT and PCSK9 (E), PCSK9, and LEP (F) in dataset
GSE142000. (G) Correlation heat map of 19 HERSRDEGs in dataset GSE118897. H-I. Scatter plot of HERSRDEGs EGR1 and FOS (H), MAPK3, and
NOX4 (I) in dataset GSE118897. TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; HERSRDEGs, Hypoxia & Endoplasmic
Reticulum Stress-Related Differentially Expressed Genes. The absolute value of the correlation coefficient (r-value) below 0.3 signifies weak or no
correlation, while values between 0.3 and 0.5 signify weak correlation, and those between 0.5 and 0.8 denote moderate correlation. Values above
0.8 signify a strong correlation. Red depicts a positive correlation, and blue depicts a negative correlation. A P-value < 0.05 was deemed to
represent statistical significance.
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correlation heat map (Figures 5E, F). Remarkably, a significant

positive link was noted between TERT and PCSK9 in GSE142000

(P < 0.05, r value = 0.839), while a considerable negative link was

found between PCSK9 and LEP in the same dataset (P value < 0.05,

r value = -0.811).

Lastly, utilizing the complete expression matrix of 19

HERSRDEGs in dataset GSE118897, correlation analysis was

conducted, accompanied by visualization through a correlation

heat map (Figure 5G). Subsequent to this, correlation scatter plots

were employed to exhibit the findings of correlation analysis

between the top1 positively and negatively correlated genes

identified in the heat map (Figures 5H, I). Notably, a considerable

positive link was observed between EGR1 and FOS in GSE118897 (P

< 0.05, r value = 0.792). Additionally, MAPK3 and NOX4 showed a

significant negative correlation in the same dataset (P value < 0.05, r

value = -0.732).
3.5 Gene ontology and pathway (KEGG)
enrichment analysis

GO and KEGG were employed to delve deeper into the link

between BP, CC, MF, and biological pathway (KEGG) of the 19

HERSRDEGs associated with GC. The specific outcomes are detailed

in Supplementary Table S9. The analysis highlighted that the 19

HERSRDEGs were primarily enriched in several key BPs, including

the regulation of chemotaxis, positive regulation of miRNA

transcription, cellular responses to oxidative stress, reactive oxygen

species, and cadmium ion. Regarding CC, enrichment was observed

in the endoplasmic reticulum lumen, membrane raft, membrane

microdomain, endocytic vesicle, and brush border cells. Furthermore,

concerning molecular functions (MF), the genes exhibited notable

enrichment in activities such as Toll-like receptor binding, binding to

low-density lipoprotein particles, interaction with R-SMAD, pattern

recognition receptor activity, and lipoprotein particle binding.

Additionally, enrichment was detected in the AGE-RAGE pathway

in diabetic complications, as well as pathways related to Malaria,

Chagas disease, Lipid and atherosclerosis, and Coronavirus disease

(COVID-19) within KEGG. The outcomes of GO and KEGG

enrichment analyses were visually presented utilizing bar plots

(Figure 6A) and bubble plots (Figure 6B).

Concurrently, a network diagram illustrating BP, CC, MF, and

biological pathway (KEGG) was generated based on GO and KEGG

analysis (Figures 6C–F). The diagram depicts lines connecting the

associated molecules and provides annotations for the relevant

entries. Larger nodes indicate higher molecule counts within the

entries. Notably, the results revealed a greater enrichment of genes

in pathways related to Lipid and atherosclerosis, as well as COVID-

19 within the KEGG pathways.
3.6 Gene set Enrichment analysis

For assessing the effect of gene expression levels across TCGA-

STAD onGC, GSEA was conducted. The assessment aimed to explore

the association between the expression of all genes within TCGA-
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STAD and the BP, CC, and MF they regulate (Figure 7A). Detailed

outcomes are illustrated in Supplementary Table S4. The findings

demonstrated considerable enrichment of all genes in TCGA-STAD

in several biological functions and signaling pathways, including TP53

Regulates Transcription of Cell Cycle Genes (Figure 7B),

Photodynamic Therapy-induced Nfkb Survival Signaling

(Figure 7C), TGF-beta Receptor Signaling (Figure 7D), Influence of

Laminopathies On Wnt Signaling (Figure 7E), and others.
3.7 Development of predictive risk model
for gastric cancer

To develop a predictive risk model for GC, univariate Cox

regression analysis was executed using 19 HERSRDEGs. Variables

with a P value < 0.10 in univariate analysis were visualized by a

Forest Plot (Figure 8A). The findings highlighted that five

HERSRDEGs were statistically significant (P < 0.10) in the

univariate Cox regression model. These genes included ANGPT2,

CD36, EGR1, NOX4, TLR2.

To further evaluate the prognostic value of these HERSRDEGs,

a LASSO regression analysis was executed, and a LASSO regression

model was constructed. The LASSO regression model diagram

(Figure 8B) and LASSO variable trajectory diagram (Figure 8C)

were utilized for visualization. The results revealed that the LASSO

regression model comprised three significant genes: ANGPT2,

CD36, and NOX4. The RiskScore was computed utilizing the

following formula:

RiskScore  =  ANGPT2*(0:002)  +  CD36*(0:133)  +  NOX4*(0:3)
3.8 Prognostic analysis of gastric cancer
prognostic risk model

We validated the model’s performance with time-dependent

ROC curves (Figure 9A), showing its ability to predict survival at

various time points (1, 3, and 5 years). We evaluate the model’s

prediction accuracy using the AUC value. The model demonstrated

strong accuracy for the 5-year prognosis (AUC > 0.7), indicating that

our risk score model is highly effective for long-term predictions.

Additionally, prognostic KM curve analysis was performed in

accordance with the median grouping of OS of GC samples in the

RiskScore combined GC dataset TCGA-STAD (Figure 9B). The

findings demonstrated a significant statistical difference in overall

survival (OS) between the high-risk and low-risk cohorts, as well as

the GC sample in the TCGA-STAD (P-value < 0.001). Subsequently,

univariate Cox analysis was carried out utilizing the median

RiskScore grouping combined with clinical information and OS of

GC samples. The screening of variables exhibiting a P-value < 0.10

was conducted for multivariate Cox analysis. The outcomes of both

Cox regression analyses were visualized through forest plots

(Figures 9C, D), which are provided in Supplementary Table S5.

The findings from the single multivariate Cox regression analysis

demonstrated that RiskScore and clinical information, encompassing

age and stage, were statistically significant (P-value < 0.05).
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For further exploration of the prognostic value of the GC risk

model, a nomogram was developed as per the outcomes of Cox

regression analyses (univariate and multivariate) to show the

relationship between RiskScore and 6 clinical variables in GC

samples (Figure 9E). The findings indicate that the efficacy of

RiskScore in the GC prognostic risk model significantly

surpasses that of other variables, while the utility of gender for

the aforementioned model is significantly lower than that of

other variables.

When AUC > 0.5, it suggests that the expression of the molecule

is associated with promoting the occurrence of the event. Moreover,

a value of AUC closer to 1 demonstrates a stronger diagnostic effect.

AUC ranging from 0.5 to 0.7 denotes low accuracy, whereas values
Frontiers in Oncology 11
from 0.7 to 0.9 suggest moderate accuracy. A P-value of < 0.001

demonstrates elevated statistical significance.

Additionally, calibration analysis was carried out on the GC

prognostic risk model at 1-year, 3-year, and 5-year, and a calibration

curve was plotted (Figures 10A–C). On the calibration curve, the y-axis

represents the observed survival probability derived from empirical data,

whereas the x-axis reflects the survival probability as estimated by the

model. The line representing different time points predicted by the

model is closer to the line of the gray ideal case, signifying better

predictive performance at those time specific points. The results

indicated that the GC model demonstrated superior clinical predictive

capability over a 5-year period. Finally, DCAwas conducted to carry out

a clinical utility assessment of this model at 1, 3, and 5 years
FIGURE 6

GO and KEGG Enrichment Analyses for HERSRDEGs. (A, B) Gene ontology (GO) and pathway (KEGG) enrichment analyses results of hypoxia &
endoplasmic reticulum stress-related differentially expressed genes (HERSRDEGs) Bar graph (A) and bubble plot (B) illustrates biological process (BP),
cellular component (CC), molecular function (MF) and biological pathway (KEGG). GO terms and KEGG terms are shown on the ordinate. (C–F) GO
and KEGG outcomes of HERSRDEGs: BP (C), CC (D), MF (E), and KEGG (F). Yellow nodes denote items, brown nodes denote molecules, and lines
denote the link between items and molecules. HERSRDEGs, Hypoxia & Endoplasmic Reticulum Stress-Related Differentially Expressed Genes; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cell Component; MF, Molecular Function. The
bubble size in the bubble plot depicts the gene count, and the color of the bubble depicts the size of the adj. P-value, the redder the color, the
smaller the adj. P-value, while the bluer color corresponds to a larger adj. P-value. The screening criteria for GO and KEGG enrichment analysis were
adj.P < 0.05 and FDR value (q value) < 0.25. The P value correction method utilized was Benjamini-Hochberg (BH).
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FIGURE 8

LASSO and Cox Regression Analysis (A) Forest Plot of 5 hypoxia & endoplasmic reticulum stress-related differentially expressed genes (HERSRDEGs)
in univariate Cox regression model. (B, C) Plots of prognostic risk models (B) and variable trajectories (C) from the LASSO regression model.
HERSRDEGs, Hypoxia & ER Stress-Related Differentially Expressed Genes; LASSO, Least Absolute Shrinkage and Selection Operator.
FIGURE 7

GSEA for TCGA-STAD. (A) Bubble plot presentation of 4 biological functions from gene set enrichment analysis (GSEA) of gastric cancer dataset
(TCGA-STAD). B-E. GSEA showed that all genes exhibited considerable enrichment in TP53 Regulates Transcription of Cell Cycle Genes (B).
Photodynamic Therapy induced Nfkb Survival Signaling (C), TGF−beta Receptor Signaling (D), and Influence of Laminopathies On Wnt Signaling (E).
TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GSEA, Gene Set Enrichment Analysis. In the bubble plot, the size of the bubble
depicts the number of enriched genes, and the color of the bubble depicts the size of the NES value. The intensity of the red color signifies a higher
NES value, while a bluer color indicates a lower NES value. The screening criterion of GSEA was P value < 0.05.
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(Figures 10D–F). The findings depicted that the clinical predictive

effect of the LASSO regression model was 5-year > 3-year > 1-year.
3.9 Differential expression verification and
ROC curve analysis between the
risk groups

The stratification of GC samples from TCGA-STAD into high-

risk and low-risk groups was carried out as per the median

expression value of RiskScore derived from the GC prognostic
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risk model. To explore the differential expression of model genes

within GC samples, a comparative analysis was performed

(Figure 11A), This analysis revealed the variations in expression

levels of three model genes across the specified groups. The

differential results revealed that three model genes, namely

ANGPT2, CD36, and NOX4, exhibited high statistical significance

in expression levels between the above-mentioned risk groups

(P-value < 0.001). Subsequently, R pROC was utilized to generate

ROC curves as per the expression levels of model genes

(Figures 11B–D). The ROC curve illustrated that the expression

level of the model gene, NOX4, depicted greater accuracy (AUC >
FIGURE 9

Prognostic Analysis. (A) Time-dependent ROC curves of gastric cancer (GC) samples in the GC dataset (TCGA-STAD). (B) Prognostic KM curves
between low- and high-risk groups and overall survival (OS) of GC samples. (C, D) Forest Plot of RiskScore and clinical data in univariate (C) and
multivariate Cox regression model (D). (E) Nomogram of RiskScore and clinical information in Cox regression models (univariate and multivariate).
TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric Cancer; OS, Overall Survival; KM, Kaplan-Meier; ROC, Receiver
Operating Characteristic Curve; AUC, Area Under the Curve.
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FIGURE 10

Prognostic Analysis. (A–C) 1-year (A), 3-year (B), 5-year (C) calibration curve of a prognostic risk model for gastric cancer (GC). D-F. 1-year (D),
3-year (E), and 5-year (F) decision curve analysis (DCA) plots of the GC prognostic risk model. GC, Gastric Cancer; DCA, Decision Curve Analysis.
FIGURE 11

Differential Expression Validation and ROC Curve Analysis. (A) Group comparison plot of model genes in the high- and low-risk groups of gastric
cancer (GC) samples in the GC dataset (TCGA-STAD). (B–D) ROC curves of model genes ANGPT2 (B), CD36, (C), and NOX4 (D) in GC samples from
TCGA-STAD. TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric Cancer; ROC, Receiver Operating Characteristic;
AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate. *** denotes a P-value < 0.001, indicating considerable statistical
significance. When AUC > 0.5, it indicates that the expression of the molecule is associated with promoting the occurrence of the event, with values
closer to 1 indicating a better diagnostic impact. The AUC values within the range of 0.5 and 0.7 are correlated with low accuracy, those between
0.7 and 0.9 had moderate accuracy, and values greater than 0.9 depict high accuracy. The high- and low-risk groups are shown in purple and
blue, respectively.
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0.9) in distinguishing high- and low-risk groups. Additionally, the

expression level of CD36 depicted a moderate accuracy (0.7 < AUC

< 0.9), while the expression level of ANGPT2 showed lower

accuracy (0.5 < AUC < 0.7) in this differentiation.
3.10 Gene-set variation analysis for the
risk groups

GSVA was performed on the complete set of genes from the GC

samples in TCGA-STAD to assess the variability of the

h.all.v2023.2.Hs.symbols.GMT gene set between both risk groups.

Comprehensive details pertaining to the analysis can be found in

Supplementary Table S6. Subsequently, pathways exhibiting positive

enrichment that had an adjusted p-value (adj.P) of less than 0.05 and

ranked within the top 10 for logFC were identified, in addition to the

top 10 pathways demonstrating negative enrichment. The findings

were illustrated by conducting a group comparison (Figure 12A). The

GSVA outcomes revealed that 20 pathways exhibited strong

statistical significance (P-value < 0.001) in both risk groups of GC
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samples within TCGA-STAD. These pathways are listed below:

FATTY ACID METABOLISM, PEROXISOME, DNA REPAIR,

OXIDATIVE PHOSPHORYLATION, MTORC1 SIGNALING,

UNFOLDED PROTEIN RESPONSE, E2F TARGETS, G2M

CHECKPOINT, MYC TARGETS V1, MYC TARGETS V2,

ALLOGRAFT REJECTION, IL6 JAK STAT3 SIGNALING,

INFLAMMATORY RESPONSE, ANGIOGENESIS, EPITHELIAL

MESENCHYMAL TRANSITION, KRAS SIGNALING UP, UV

RESPONSE DN, HEDGEHOG SIGNALING, APICAL

JUNCTION, and MYOGENESIS. Finally, on the basis of GSVA

findings, a heat map was employed to examine and visualize the

differential expression of 20 pathways between the two groups (high-

and low-risk) in GC samples from TCGA-STAD (Figure 12B).
3.11 Immune infiltration analysis in the
risk groups

The process involved assessing immune infiltration in GC

samples using the ssGSEA algorithm. It was carried out by
FIGURE 12

GSVA for Risk Group. (A, B) Group comparison plot (A) and heat map (B) of gene set variation analysis (GSVA) results between high-risk group and
low-risk group in gastric cancer (GC) samples of TCGA-STAD. TCGA, the Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric
Cancer; GSVA, Gene Set Variation Analysis. *** denotes a P-value < 0.001, suggesting considerable statistical significance. The blue color indicates
the low-risk group, whereas purple signifies the high-risk group. In the heat map, red signifies high enrichment, whereas blue signifies low
enrichment. The screening criteria for GSVA was set as adj.P < 0.05, with the Benjamini-Hochberg approach utilized for P-value correction.
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computing the abundance of 28 immune cells in both risk groups

based on the expression matrix acquired from TCGA-STAD.

Firstly, the variation in the presence of immune cell infiltrates in

various groups was illustrated by a group comparison plot. This
Frontiers in Oncology 16
diagram (Figure 13A) illustrated that the Activated CD4 T cells and

Neutrophils of the two immune cells exhibited statistical

significance (P < 0.05). Moreover, two immune cells, Eosinophils,

and Activated dendritic cells, exhibited considerable statistical
FIGURE 13

Risk Group Immune Infiltration Analysis by ssGSEA Algorithm (A) Comparison of the grouping of immune cells in the High Risk group and the Low
Risk group of gastric cancer (GC) samples. (B, C) Results of correlation analysis of immune cell infiltration abundance in the High Risk group (B) and
the Low Risk group (C) of gastric cancer (GC) samples are shown. (D, E) Bubble plot of correlation between immune cell infiltration abundance and
Model Genes in High Risk (D) and Low Risk (E) groups of gastric cancer (GC). ssGSEA, single-sample Gene-Set Enrichment Analysis; GC, Gastric
Cancer. * represents P value < 0.05, statistically significant; ** represents p value < 0.01, highly statistically significant; *** represents P value < 0.001
and highly statistically significant. The absolute value of correlation coefficient (r value) below 0.3 was weak or no correlation, between 0.3 and 0.5
was weak correlation, between 0.5 and 0.8 was moderate correlation, and above 0.8 was strong correlation. In the group comparison diagram,
purple is the High Risk group, and blue is the Low Risk group. Red is the positive correlation, blue is the negative correlation, and the depth of the
color represents the strength of the correlation.
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significance (P-value < 0.01). Furthermore, 20 immune cells,

including Activated B cell, Activated CD8 T cell, Central memory

CD8 T cell, Central memory CD4 T cell Effector memory CD8 T

cell, Effector memory CD4 T cell etc, exhibited significant statistical

significance (P < 0.001). The correlation heat map displayed the

correlation outcomes of the abundance of 24 immune cell infiltrates

in the two risk groups, as examined in the immune infiltration

analysis (Figures 13B, C). The findings depicted that in the

aforementioned groups of GC, most of the immune cells

exhibited a positive relationship with each other. Finally, the

correlation between the immune cell infiltration abundance and

model genes was depicted through correlation bubble plots

(Figures 13D, E). Within the cohort classified as high-risk, a

significant positive correlation was identified between NOX4 (the

model gene) and Natural Killer T cells (immune cell) (P-value <

0.05, r value = 0.43). Conversely, CD36 (model gene) depicted a

negative correlation with Type 17 T helper cell (immune cell) (P-

value < 0.05, r value = -0.29). In the low-risk group, NOX4 (model

gene) was noted to be positively correlated with Natural killer cells

(immune cells) (P-value < 0.05, r value = 0.48). In contrast,

ANGPT2 (model gene) exhibited a negative association with

Activated B cell (immune cell) (P-value < 0.05, r value = -0.24).
3.12 Immunogenicity score analysis

Firstly, the GC samples obtained from TCGA-STAD were

categorized into distinct groups based on the median LASSO Risk

Score (RiskScore). Samples exhibiting values surpassing this median

were designated as the high-risk group, whereas those with values

falling below the median were classified as the low-risk group. To

examine the prediction of immunotherapy in the aforementioned

groups, IPS associated with GC samples were retrieved from the

TCIA database. Furthermore, the R package ggplot2 was employed to

generate the group comparison of various IPS in GC samples between

the low-risk and high-risk groups of LASSO risk score (Figure 14).

The results show that the IPS and IPS-CTLA4 classes exhibited high

statistical significance between the two groups (P < 0.001).
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3.13 The mRNA expression levels of genes
involved in the prognostic signature

RT-qPCR results indicated that the mRNA expression levels of

four hypoxic endoplasmic reticulum stress-related differential genes

—NOX4, ANGPT2, CD36, and TLR2—were correlated with our

established prognostic risk model in both gastric adenocarcinoma

and adjacent normal tissues. The expression levels of CD36 mRNA

were notably decreased in gastric adenocarcinoma when compared

to adjacent normal gastric tissues (P value < 0.05). NOX4 expression

showed a downward trend in gastric adenocarcinoma, although this

was not statistically significant. In contrast, both ANGPT2 and

TLR2 expressions exhibited upward trends, which also lacked

statistical significance (Figures 15A–E). Increasing the sample size

for these three genes may help achieve statistical significance for the

observed differential results.
4 Discussion

GC remains among the most challenging malignancies,

standing as the fifth most prevalent cancer and the fourth leading

contributor to cancer-associated fatality globally (37). The gradual

emergence and swift advancement of GC frequently result in

diagnoses at an advanced stage, which considerably constrains

available treatment alternatives and consequently diminishes

survival rates (1). Despite advancements in adjuvant therapies

and surgical techniques, the prognosis for GC patients remains

poor, with a less than 30% 5-year survival rate observed in most

countries (2). These findings emphasize the crucial requirement of

therapeutic targets and novel biomarkers to enhance early

detection, prognosis, and treatment strategies for GC.

The phenotypic complexity of GC, marked by its heterogeneity

and multifactorial etiology, presents a significant challenge in the

clinical setting (38). Recently, investigations have highlighted the

influence of endoplasmic reticulum stress and hypoxia in

tumorigenesis and tumor progression, suggesting that genes

implicated in these pathways could offer promising potential
FIGURE 14

IPS Analysis Group comparison of immunogenicity scores (IPS) in the High Risk group and Low Risk group of gastric cancer (GC) samples from the
gastric Cancer dataset (TCGA-STAD). TCGA, The Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; GC, Gastric Cancer; IPS, Immunogenicity
scores. ns stands for P value ≥ 0.01, not statistically significant; *** represents p value < 0.001, highly statistically significant. Purple represents the
High Risk group and blue represents the Low Risk group.
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biomarkers and treatment targets (4, 5, 39). This study first

examines the interplay between hypoxia and ER stress-related

genes in gastric cancer, aiming to elucidate their roles in disease

prognosis. By integrating bioinformatics analyses with clinical data

from TCGA and GEO, we identified 19 HERSRDEGs associated

with hypoxia and ER stress that significantly impact overall survival

in gastric cancer patients. Our findings indicate a potential for these

genes to serve as biomarkers for early diagnosis and as targets for

personalized therapeutic strategies, ultimately contributing to

improved patient management.

The analysis of gene expression performed in our research

identified a considerable quantity of differentially expressed genes

(DEGs) linked to hypoxia and endoplasmic reticulum stress in GC.
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Specifically, the identification of 2762 DEGs, with 1279 upregulated

and 1483 downregulated genes, underscores the complex molecular

landscape of this malignancy. Among these, the selection of 19

HERSRDEGs such as ANGPT2, ERG1, CD36, NOX4 and TLR2,

provides critical insights into the potential roles these genes may

play in gastric cancer pathophysiology. The findings highlight a

need for further exploration into how these genes might serve as

biomarkers for early detection and therapeutic targets. For instance,

ANGPT2, also known as angiopoietin-2, is a protein that exerts a

crucial influence on the modulation of angiogenesis and

inflammation. Both of these processes are often dysregulated in

cancer. Elevated levels of ANGPT2 could lead to a more aggressive

tumor phenotype and poorer prognosis by promoting vascular
FIGURE 15

RT-qPCR analysis (A–E). The mRNA expression of ANGPT2, CD36, NOX4, EGR1, TLR2 in Ctrl group (left deep blue) and STAD group (right, baby
blue). (ns stands for P value ≥ 0.05, not statistically significant; * represents P value < 0.05, statistically significant).
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permeability and destabilization, thereby facilitating tumor cell

dissemination (40, 41). ANGPT2 plays a crucial role in the

process of angiogenesis and possesses the ability to influence the

immune response by altering the vascular environment in which

immune cells reside (42). Studies have confirmed that in

Hepatocellular Carcinoma (HCC), AMYB proto-oncogene-like 1

(MYBL1) binds to the ANGPT2 promoter and upregulates ANGPT2

mRNA expression. This binding induces angiogenesis and makes

HCC cells resistant to sorafenib; however, treatment with an

ANGPT2 monoclonal antibody significantly reduces the growth of

tumors overexpressing MYBL1 and effectively inhibits angiogenesis

(43). The significant differential expression of ANGPT2 observed in

our research highlights its promise as both a therapeutic target and

a prognostic biomarker, especially within the context of hypoxia

and endoplasmic reticulum stress, which are known to exacerbate

angiogenic signaling (44). Additionally, the relationship between

these DEGs and other cancer types may reveal common pathways

that could be targeted for broader therapeutic approaches.

Inhibition of the integrin b-1 signaling pathway reliant on

angiopoietin-2 significantly reduces the invasion and spread of

small cell lung carcinoma (45). Blocking ANGPT2 helps prevent

pancreatic neuroendocrine tumors from spreading to the liver by

increasing T-cell infiltration and stimulating the immune response

(46). Monoclonal antibodies targeting ANGPT2 have demonstrated

efficacy in preclinical studies by blocking its action, leading to the

inhibition of tumor angiogenesis and a reduction in tumor growth

and metastasis.

CD36 is a multifunctional glycoprotein involved in fatty acid

metabolism, angiogenesis, and inflammation. It has been

recognized as a facilitator of fatty acid uptake by cancer cells,

thereby contributing to their energy supply and supporting rapid

proliferation (47, 48). Moreover, CD36 has been associated with

metastatic processes in various cancers, including GC, where it

might enhance the metastatic potential of cancer cells by promoting

epithelial-mesenchymal transition (EMT) and tumor invasiveness

(49). Research indicates that hypoxia within the peritoneal cavity

promotes the expression of CD36 in GC cells, thereby facilitating

peritoneal metastasis via the absorption of free fatty acids. This

study suggests that hypoxia-induced CD36 expression may be one

of the important mechanisms of gastric cancer progression (50).

Monoclonal antibodies against CD36 may reduce abdominal

metastasis of gastric cancer, which is the focus of future

preclinical research. Moreover, CD36 has been associated with

immune cell function, influencing the behavior of macrophage

and dendritic cells (51). A recent study has shown that the CD36-

BATF2-MYB axis may help predict the effectiveness of anti-PD-1

immunotherapy in treating gastric cancer (52). The univariate Cox

regression analysis depicted the correlation between CD36 and OS

in GC patients. This correlation suggests that CD36might serve as a

valuable prognostic indicator and could be explored as a target for

therapeutic intervention, particularly in the modulation of tumor

metabolism and immune response.

In this RT-qPCR validation, CD36 demonstrated statistically

significant variations in mRNA expression levels between gastric

cancer tissues and adjacent healthy tissues. Furthermore, its

expression level correlated with our established prognostic risk
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model, as shown in the Figure 3A volcano plot. Specifically, CD36

mRNA expression was down-regulated in gastric cancer tissues

compared to normal tissues. In the Cox prognostic analysis of

TCGA-STAD, the hazard ratio (HR) for CD36 was greater than 1,

and the p-value was less than 0.05, indicating that higher expression

of this gene is linked to a poorer prognosis. In our risk scoring model,

the expression levels of CD36 were elevated in the high-risk cohort.

Furthermore, the Kaplan-Meier survival analysis demonstrated that

individuals exhibiting high CD36 expression experienced a less

favorable prognosis. Several factors contribute to this pattern of

expression and its differing biological functions. Genes have

different roles in normal and disease states; in normal tissues, high

expression of CD36 helps tomaintain normal physiological functions.

In tumor tissues, on the other hand, high expression may promote

tumor growth and spread, leading to a poor prognosis. Additionally,

low CD36 expression in tumors may result from gene mutations,

epigenetic changes, or other regulatory factors. Therefore, further

experimental studies are necessary to verify the specific mechanism.

The prognostic significance of these genes, particularly

ANGPT2, CD36, EGR1, NOX4, and TLR2, which were highlighted

in our univariate Cox regression analysis, suggests that they might

serve as potential biomarkers for predicting patient outcomes. For

instance, CD36 has been associated with the metabolism of fatty

acids and the spread of tumors, with its expression levels linked to

unfavorable outcomes in various types of cancer (47). Similarly, the

role of NOX4 in generating ROS contributes to cellular signaling

and survival, potentially affecting cancer progression (53). The

current study utilized NOX4 inhibitors to lower ROS levels, which

may help slow down tumor progression (54). The development of a

LASSO regression model incorporating ANGPT2, CD36, and NOX4

further emphasizes the robustness of these genes as predictors of

survival in GC patients. The model demonstrated that high-risk

patients have substantially lower survival rates, suggesting that risk

score could serve as a robust independent prognostic factor.

Implementing this model in clinical settings could lead to timely

interventions for high-risk patients, ultimately enhancing the

management strategies for gastric cancer.

The potential challenges for clinical implementation of

prognostic models are as follows: First, technical and logistical

challenges. Accurately measuring the gene expression levels of the

model requires high-quality biological samples. Therefore, it is

critical to establish standardized operating procedures and quality

control measures to ensure that tests are performed reliably across

various healthcare facilities. Second, clinical workflow integration.

Clinicians must learn how to apply the model in everyday diagnosis

and treatment. This involves offering relevant application scenarios

during patient examinations, follow-ups, and result interpretations.

Third, there are potential obstacles to widespread clinical adoption

of prognostic models. To promote the model, it is vital to address

barriers by offering training, streamlining workflows, and

showcasing the cost benefits of its adoption through economic

assessments. Fourth, to improve the feasibility of implementing the

model in clinics, conducting relevant pilot and real-world studies is

essential. Thus, future research should prioritize validating the

model in a large-scale, multicenter real-world setting to improve

its reliability and practical applicability.
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In this study, the analysis of functional enrichment pertaining to

HERSRDEGs in GC demonstrated a substantial engagement in

biological processes that are crucial for tumor advancement and

cellular stress response. CXCL8, another HERDEGs, functions in

the process of recruiting immune cells to the tumor

microenvironment, potentially influencing anti-tumor immunity

and tumor-promoting inflammation (55). The identification of

AURKA, a gene involved in cell cycle regulation and mitotic

spindle assembly, underscores the importance of cell proliferation

in GC pathogenesis (56). GSEA results revealed several distinct

signaling pathways and biological processes strongly linked to GC.

These pathways include TP53 transcriptional regulation of cell cycle

genes, photodynamic therapy-induced Nfkb survival signaling,

TGF- b receptor signaling, and the influence of laminopathies On

Wnt signaling. TP53, a recognized tumor suppressor gene, has an

abnormal regulatory network linked to the development of

numerous cancer types. Nfkb and TGF-b signaling pathways are

pivotal in tumor progression. According to a study, peritoneal

metastasis of GC was prevented by inhibiting EGR1/TGF-b1 (57).

This finding contributes to the comprehension of the complex

molecular mechanisms involved in the onset and progression of

GC, potentially offering insights into novel therapeutic targets.

Subsequent research should prioritize the validation of these

pathways using experimental models, aiming to elucidate their

functions in gastric cancer.

This study demonstrated notable disparities in the infiltration of

immune cells, specifically regarding natural killer (NK) cells and T

helper (Th) cells, when contrasting high-risk and low-risk cohorts of

GC patients. NK cells, critical elements of the innate immune system,

are acknowledged for their capability to detect and eliminate tumor

cells without prior sensitization (58). Their cytotoxic activity is

modulated by a balance of inhibitory and activating signals,

susceptible to alteration within the tumor microenvironment (59).

On the other hand, Th cells, particularly Th1 and Th17 subsets, have

a critical involvement in orchestrating adaptive immune responses.

Moreover, they have been involved in both tumor suppression and

promotion, depending on the context (60). In this study, the immune

infiltration and Immunogenicity score (IPS) analyses underscored the

prognostic importance of the immune microenvironment in GC.

High-risk patients exhibited a distinct immune profile in comparison

with low-risk patients, suggesting that the failure of the immune

system to recognize and eliminate cancer cells may contribute to a

poorer prognosis (61). The differential immune landscapes between

the risk groups could reflect the underlying mechanisms of immune

escape and resistance to therapy, highlighting the potential for

immunotherapeutic interventions. Research has demonstrated that

in gastric cancer patients, the infiltration of regulatory T cells within

the tumor microenvironment is associated with a poor prognosis,

while the level of CD8+ T cell infiltration directly influences the

patients’ treatment responses (62). Variations in immune cell

infiltration within the tumor microenvironment can help evaluate

cancer patients’ prognosis and forecast their response to immune

checkpoint inhibitors.

Individuals with GC were categorized into two distinct groups

(high- and low-risk) based on the constructed prognostic risk
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model. Subsequently, the relationship between various types of

immune cell infiltrates and model genes was analyzed. NOX4

showed a substantial positive association with Natural killer T

cells (NKT) (r = 0.43) in the high-risk group. NKT cells are a

distinct subset of immune cells that recognize lipid antigens and

swiftly produce different cytokines, thus regulating the immune

response. The activity of NKT cells may be inhibited in GC, which is

significantly associated with the immune evasion strategies that

operate within the tumor microenvironment. The acquired data

implies that the increased NOX4 expression is associated with the

increased abundance of NKT cells in GC tissues of the high-risk

group, possibly indicating some function of NKT cells in GC tissues

or a specific immune microenvironment in GC. In the low-risk

group, NOX4 depicted a significantly positive relationship with

Natural killer cells (NK) (r = 0.48). This suggests that the increased

NOX4 expression in low-risk GC tissues may be related to the

presence of more NK cells. These NK cells exert a considerable

influence on tumor defense, so it may be implied that high NOX4

expression may reflect stronger immune surveillance. NK cell-based

immunotherapy is a promising cancer treatment that utilizes the

cytotoxic activity of NK cells against tumors. One approach involves

using antibodies, like monalizumab, that block NKG2A and have

shown potential to restore NK cell activity (63). A recent study on

liver metastases in gastric cancer revealed that high levels of TGF-b
in the tumor microenvironment lead to NK cell dysfunction. This

dysfunction impairs the cytotoxicity of NK cells. The dysfunction of

NK cells due to TGF-b may contribute to immune escape and the

progression of gastric cancer. In the preclinical model, the

therapeutic strategy of inhibiting TGF-b and enhancing NK cell

activity demonstrated a strong antitumor effect. This combination

therapy may effectively improve the prognosis of gastric cancer

patients with liver metastases (64).This finding suggests that the

immune contexture of the tumor microenvironment is modulated

by the expression of HERSRDEGs, potentially impacting

immunotherapy strategies and patient prognosis (65). The

discovery of biomarkers associated with the immune response,

along with the formulation of combination therapies aimed at

both the tumor and its immune microenvironment, presents

significant potential for the enhancement of GC treatment.

Despite the significant progress made in this study in

constructing and evaluating a prognostic risk model for gastric

cancer, there are still some limitations that need to be recognized.

First. Geographical and ethnic differences. Geographic and ethnic

differences in the gastric cancer samples from the TCGA and GEO

databases may have influenced our findings. Such differences can

result in variations in gene expression patterns, mutation

frequencies, and their relationships with clinical outcomes,

ultimately affecting the generalizability of our model. Future

research directions should conduct prospective studies to validate

the model in patient populations of different races, ages, genders,

and pathological subtypes. Second. Clinical variables not included.

Our model did not include clinical variables like patient lifestyle and

treatment response, potentially limiting its predictive power. Future

studies will investigate how these variables affect prognostic risk

models, highlighting the need to include more clinical data to
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improve the accuracy and reliability of such models. Third. Limited

sample size. Despite analyzing multiple datasets, our sample size

was relatively small. This limitation may affect the statistical

significance of our results. In the future, we plan to integrate data

from different databases, especially samples from international

collaborative projects, to enhance the broad applicability of our

findings. Fourth. Insufficiency of functional mechanism discussion.

Despite exhaustive cross-validation and multiple statistical analyses,

the functional mechanisms of some biomarkers and pathways in

our model have not been fully defined. Future experimental studies

will aim to confirm the roles of key genes in gastric cancer

progression using cell culture and gene manipulation techniques,

while also exploring their molecular mechanisms. Future research

will concentrate on the clinical application of our prognostic risk

model, specifically evaluating its effectiveness in personalized

treatment and prognostic assessments.

In summary, this study has identified GC-associated

HERSRDEGs and has explored their roles in disease progression.

Three HERSRDEGs model genes, including ANGPT2, CD36, and

NOX4, showed significance in the development of a prognostic risk

model for GC, suggesting their potential relevance to the survival

outcomes of individuals with GC and their potential utility as

prognostic biomarkers. This model effectively distinguishes between

high- and low-risk GC groups. It shows a significant difference in

immune cell infiltration between these patients, with high-risk

patients having a lower IPS. These outcomes are crucial for

elucidating GC molecular mechanisms and guiding personalized

treatment. In their study of bladder cancer, Yaxuan Wang et al.

(66–70) employed bioinformatics methods to uncover various

biomarkers and mechanisms for diagnosis and prognosis, which

assist in predicting disease outcomes and guiding treatment

monitoring. These studies, together with our findings, indicate that

bioinformatics can analyze genomic data to enhance the

comprehension of disease mechanisms and has extensive

applications in genome sequencing, mutation analysis, and

personalized medicine. Bioinformatics algorithms can predict

disease outcomes and optimize treatment strategies.
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