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Ultrasonic radiomics-based
nomogram for preoperative
prediction of residual tumor in
advanced epithelial ovarian
cancer: a multicenter
retrospective study
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Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, China,
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Prefecture, Enshi, Hubei, China, 3Department of Medical Ultrasound, The Ethnic Hospital of Enshi
Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China, 4Department of Medical Ultrasound, The
Maternal and Child Health and Family Planning Service Center of Enshi Tujia and Miao Autonomous
Prefecture, En Shi, Hubei, China
Objectives: To identify radiomic features extracted from ultrasound images and

to develop and externally validate a comprehensive model that combines clinical

data with ultrasound radiomics features to predict the residual tumor status in

patients with advanced epithelial ovarian cancer (OC).

Methods: The study included 112 patients with advanced epithelial OC who

underwent preoperative transvaginal ultrasound. Of these, 78 patients were

assigned to the development cohort and 34 to the external validation cohort.

Tumor contours were manually delineated as regions of interest (ROI) on the

ultrasound images, and radiomic features were extracted. The final set of

variables was identified using LASSO (least absolute shrinkage and selection

operator) regression. Clinical features were also collected and incorporated into

the model. A combination model integrating ultrasound radiomics and clinical

variables was developed and externally validated. The performance of the

predictive models was assessed.

Results: A total of 1,561 radiomic features and 18 clinical features were extracted.

The final model included 10 significant ultrasound radiomic variables and 4

clinical features. The comprehensive model outperformed models based on

either clinical or radiomic features alone, achieving an accuracy of 0.84, a

sensitivity of 0.80, a specificity of 0.75, a precision of 0.88, a positive predictive

value of 0.81, a negative predictive value of 0.86, an F1-score of 0.78, and an AUC

of 0.82 in the external validation set.
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Conclusions: The comprehensive model, which integrated clinical and

ultrasound radiomic features, exhibited strong performance and

generalizability in preoperatively identifying patients likely to achieve complete

resection of all visible disease.
KEYWORDS

ultrasonic radiomics, ovarian cancer, predictive model, nomograms, residual tumor
1 Introduction

Ovarian cancer (OC) ranks among the most prevalent gynecological

cancers, holding the position of the third most commonly diagnosed

malignancy in the female reproductive system, surpassed only by cervical

and endometrial cancers. Moreover, it exhibits the highest mortality rate

within this category of cancers, posing a significant threat to women’s

health (1). Because early symptoms are often nonspecific, the majority of

patients are diagnosed at an advanced clinical stage, frequently presenting

with localized or widespread pelvic and abdominal metastases. Despite

initial treatment, recurrence rates and mortality remain high, with

frequent development of drug resistance. As a result, the 5-year

survival rate is below 40%, leading to a generally poor prognosis for

these patients (2).

According to the International Federation of Obstetrics and

Gynecology (FIGO), there are two main treatment strategies for

advanced OC in stages IIIC-IV: (1) primary debulking surgery

(PDS) followed by six cycles of postoperative platinum-based

chemotherapy, and (2) for patients unlikely to achieve satisfactory

tumor reduction, two to three cycles of neoadjuvant chemotherapy

can be given before interval debulking surgery (IDS), followed by

postoperative adjuvant chemotherapy, a strategy commonly

referred to as “sandwich” therapy (3). The primary goal of both

treatment approaches is to maximize tumor reduction, ideally

leaving a residual tumor (RT) diameter of less than 1 cm, or

achieving no visible residual tumor (R0). Maximal cytoreduction

stands as a critical prognostic factor in the treatment of advanced

OC, showing the most favorable outcomes fol lowing

adjuvant chemotherapy.

Unfortunately, not all OC patients are suitable candidates for

primary debulking surgery (PDS) aimed at achieving an R0

resection (4). For those with a low probability of attaining R0

resection, there is a consensus that surgical intervention should be

avoided if incomplete resection (with residual tumor greater than 1

cm) is anticipated, as it has little benefit to patient survival and may

lead to a high incidence of perioperative related diseases (3–5).

Therefore, assessing the probability of a patient’s RT-resection

during PDS prior to surgery is advantageous, as it supports the

implementation of individualized treatment strategies.

In recent years, the field of imaging has made significant

advancements, allowing for a more detailed depiction of tumor
02
heterogeneity and providing valuable prognostic information (6).

Various mathematical approaches have been applied to extract a

vast array of radiomic features from medical images with high

throughput, enabling clinicians to improve diagnostic accuracy and

develop personalized, precision treatments (7, 8). Transvaginal

ultrasound is a commonly utilized, cost-effective method for the

clinical diagnosis of OC, and ultrasound radiomics has been

increasingly employed in the study of various malignancies,

including thyroid, cervical, liver, and OC (9–11). For example,

Chiappa et al. utilized ultrasound radiomics to distinguish between

malignant and benign ovarian tumors, highlighting its potential to

enhance the preoperative evaluation of patients with ovarian masses

and accurately identify those with OC (12). Thus, a comprehensive

and unbiased assessment of ultrasound image features is

essential (10).

This study seeks to assess the predictive significance of

ultrasound radiomics and clinical factors in creating and

validating a more reliable and generalizable preoperative model

for forecasting RT status in patients with advanced epithelial OC.

The goal is to standardize and simplify the process for

gynecologists, enabling them to extract critical information from

traditional diagnostic imaging more effectively and make informed

decisions based on it.
2 Materials and methods

2.1 Study population

The study enrolled 112 patients with histologically confirmed

FIGO stage III or IV OC diagnosed between January 2018 and June

2024. Of these, 78 patients from the Central Hospital of Enshi Tujia

and Miao Autonomous Prefecture formed the development cohort,

while 34 patients, recruited by collaborators at the Ethnic Hospital

of Enshi Tujia and Miao Autonomous Prefecture, comprised the

external validation cohort. The inclusion and exclusion criteria were

consistent across both cohorts. The exclusion criteria included

patients currently undergoing neoadjuvant chemotherapy, those

lacking essential clinical or surgical data, individuals with poor

image quality or significant image artifacts affecting visualization,

and patients with a history of repeated biopsies. We established a
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standardized protocol to define dataset variables and outcomes,

enabling the retrospective collection of data within the same time

frame. Patients who met the inclusion criteria were divided into two

groups: (1) the RT<1 group, comprising individuals with no visible

gross residual tumor (RT) and a maximum tumor diameter of less

than 1 cm; and (2) the RT≥1 group, which included patients with a

maximum tumor diameter of 1 cm or greater (13). This

retrospective study was approved by our institution’s ethics

review board, with informed consent obtained from all participants.
2.2 Clinical information

Clinical data, including age, body mass index (BMI), parity,

presence of hydrothorax, ascites, and ASA score, as well as the

metastases in abdomen and pelvis (MAP) score, were collected.

Laboratory findings such as perioperative platelet count,

perioperative albumin levels, serum cancer antigen-125 (CA125),

serum human epididymis protein 4 (HE-4) levels, and the

neutrophil-to-lymphocyte ratio (NLR) were also obtained.

Additionally, ultrasonic measurement characteristics such as

maximum tumor diameter, arterial pulsatility index, resistance

index, end diastolic flow rate, peak flow rate, and average flow

rate were retrieved from the medical records.

The MAP score was assessed based on preoperative enhanced

CT scans of the abdomen and pelvis, with two radiologists, blinded

to intraoperative records, scoring and documenting the findings.

The score was based on the Zhongshan Hospital rating scale for

preoperative OC, which assessed lesions in various regions,

including the diaphragmatic peritoneum, liver and kidney

recesses, liver capsule, hepato-gastric space, spleen and stomach

space, greater omentum (covering both the liver area and splenic

curvature), mesentery, peritoneum, intestines, paracolic sulci,

uterorectal space, uterine bladder space, and lymph nodes. Each

identified lesion contributed 2 points, with the total score being the

cumulative sum of all lesions. Any discrepancies in scoring were

resolved through consensus.
2.3 Image segmentation

In accordance with the Institutional Review Board’s approved

protocol, essential clinical data and ultrasound image locations were

systematically documented in standardized electronic case report

forms (CRFs) and collected within four weeks prior to the primary

surgical intervention. The segmentation of images was conducted

independently by two seasoned radiologists who were unaware of

the patients’ tissue pathology. One of the radiologists, possessing

around 12 years of experience, utilized the open-source ITK-SNAP

software (version 3.8.0; www.itksnap.org) to manually delineate the

regions of interest (ROIs) on the image slices. The Kappa

consistency analysis was performed to evaluate discrepancies

between two radiologists, and a Kappa value ≥ 0.85 was regarded

as a good consistency.
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2.4 Radiomics feature extraction

PyRadiomics (v.2.0.0; http://www.radiomics.io/pyradiomics.html)

software was used to extract features from medical images (14). The

process included importing manually delineated ROI images along

with the original images into the PyRadiomics platform, where an

internal feature analysis program was utilized to extract the relevant

features. We adopted nonlinear intensity transformation on image

voxels, Gaussian Laplace filter and Eight wavelet transform to

obtain high-throughput features. Radiomic features can be

categorized into three main groups: (I) geometry, (II) intensity,

and (III) texture. Geometric features describe the three-dimensional

shape of the tumor, while intensity features reflect the first-order

statistical distribution of voxel intensities within the tumor. Texture

features, on the other hand, analyze the patterns and the second-

and higher-order spatial distributions of these intensities. A total of

1,561 radiomic features were extracted, encompassing first-order

features, shape-based features, and a variety of matrix features,

including gray level co-occurrence matrix (GLCM) features, gray

level dependence matrix (GLDM) features, gray level run length

matrix (GLRLM) features, gray level size zone matrix (GLSZM)

features, and neighborhood gray-tone difference matrix

(NGTDM) features.
2.5 Radiomics feature selection

To eliminate differences in index dimensions, Z-score

normalization was applied to account for the varying scales of the

manually derived radiomic features. Three methods were employed

to select the final variables. Initially, the Mann-Whitney U test was

performed to filter all radiomic features, retaining only those with a

p-value of less than 0.05. Subsequently, Pearson’s rank correlation

coefficient was computed to evaluate the correlation between

features, and those with an intraclass correlation coefficient (ICC)

below 0.9 were discarded to guarantee high repeatability. Finally,

the least absolute shrinkage and selection operator (LASSO)

regression model was employed to identify the final variables for

model construction. Ultimately, the best features were incorporated

into the prediction models, which were developed using 10-fold

cross-validation.
2.6 Model development and validation

Three models were developed using the development set of 78

patients: model I (the clinical model), model II (the radiomics model),

and model III (the clinical-radiomics model). For radiomics models,

we tested 15 machine learning algorithms, with the LightGBMmodel

demonstrating the best performance (Appendix 1). However, the

clinical-radiomics model was chosen as the nomogram to enhance

convenience for clinical application.

The external validation set (34 patients) used to evaluate model

performance. The model’s performance was assessed through

several metrics, including accuracy, sensitivity, specificity,
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precision, positive predictive value, negative predictive value, and

F1-Score. Additionally, the receiver operating characteristic (ROC)

curve was calculated along with the area under the ROC curve

(AUC). Calibration was assessed through calibration plots, which

depicted the relationship between predicted probabilities and

observed proportions. To evaluate the clinical utility and benefits

of the predictive model, decision curve analysis (DCA)

was conducted.
2.7 Statistical analysis

All statistical analyses were performed using Python packages

(version 0.13.2). Group differences were evaluated using either

Student’s t-test or Mann–Whitney U test for continuous

variables, while categorical variables were analyzed using the chi-

square test or Fisher’s exact test. Multivariate analysis was

conducted to select the final variables. Continuous variables that

followed a normal distribution are presented as means ± standard

deviations (SDs), whereas non-normally distributed variables are

reported as medians ± interquartile ranges (IQRs). And odds ratios

(ORs), 95% confidence intervals (CIs), HosmerLemeshow (H-L)

test were also calculated. And a p value < 0.05 was considered

statistically significant.
3 Results

3.1 Clinical and
demographic characteristics

The final cohort comprised 112 patients with advanced

epithelial OC. This included the development cohort (n=78),

which consisted of 55 patients with R0 resection and 23 patients

with non-R0 status, and the external validation cohort (n=34),

which included 24 patients with R0 resection and 10 patients with

non-R0 status. The comparison between the development and

external validation cohorts revealed no significant differences

between the two groups, nor within each group (p > 0.05),

indicating a reasonable classification. Table 1 present the baseline

characteristics of patients in each cohort. In the multivariate

analysis, age (p = 0.031; OR = 1.011, 95% CI: 1.003-1.018),

CA125 level (p = 0.002; OR = 1.001, 95% CI: 1.000-1.001),

presence of hydrothorax (p = 0.003; OR = 1.174, 95% CI: 1.078-

1.279), and maximum tumor diameter (p = 0.031; OR = 1.002, 95%

CI: 1.001-1.004) were identified as independent predictors of RT

status (Table 2).
3.2 Radiomics characteristics

A total of 1,561 radiomic features were extracted from

ultrasound images, which included 306 first-order features,
Frontiers in Oncology 04
14 shape-based features, 374 features from the GLCM, 238

features from the GLDM, 272 features from the GLRLM, 272

features from the GLSZM, and 85 features from the NGTDM.

The t-test or Mann-Whitney U test was utilized for the preliminary

screening of all features, resulting in the inclusion of 42 features.

Subsequently, Pearson correlation analysis was conducted,

revealing 25 features that were significantly different between the

two groups. Next, LASSO regression was conducted using 10-fold

cross-validation with the minimum criterion to determine the

optimal l values. The l value that resulted in the lowest cross-

validation errors is illustrated in Figures 1 and 2. Following this, ten

features with nonzero coefficients were used for this task. Finally,

ultrasonic radiomic features were established using these 10

f e a tu r e s , n ame l y exponen t i a l _fi r s t o rd e r_Skewne s s ,

exponential_glszm_LargeAreaHighGrayLevelEmphasis, gradient_

firstorder_Minimum, lbp_3D_m2_firstorder_90Percentile,

logarithm_firstorder_Minimum, squareroot_glcm_Idn,

squareroot_glszm_GrayLevelNonUniformityNormalized,

s q u a r e r o o t _ g l s z m _ S m a l l A r e a E m p h a s i s ,

wavelet_LHL_ngtdm_Contrast , wavelet_LLL_glcm_Idn

(Figures 1, 2).
3.3 Model construction and
performance assessment

We developed three models to identify patients suitable for

optimal primary debulking surgery. Model 1 (the clinical model)

was based solely on clinical characteristics using the LightGBM

algorithm. Model 2 (the radiomics model) relied exclusively on

ultrasonic radiomics characteristics, also employing the LightGBM

algorithm (Appendix 1). Model 3 (the clinical-radiomics model)

was an integrative nomogram that combined clinical and radiomics

features to enhance clinical application convenience (Figure 3).

The radiomic-clinical nomogram demonstrated superior

performance compared to the clinical or radiomics models alone,

achieving an accuracy of 0.84, a sensitivity of 0.80, a specificity of

0.75, a precision of 0.88, a positive predictive value of 0.81, a

negative predictive value of 0.86, an F1-Score of 0.78, and an

AUC of 0.82 in the external validation set (Table 3). Figure 4

illustrates the AUC for both the development and external

validation cohorts. The calibration curves for the radiomic-

clinical nomogram demonstrated strong agreement between

predicted and observed outcomes in both the development and

validation cohorts (Figure 4). The Hosmer-Lemeshow (HL) test

indicated favorable goodness-of-fit for the data (all p > 0.05).

Furthermore, the DCA revealed that the nomogram offers greater

clinical benefit (Figure 4), namely, the DCA for the three models

indicates that this new diagnostic approach yields a greater net

benefit (where a value greater than 0 indicates patient benefit) in

predicting the residual tumor status in patients with advanced OC,

with the clinical-radiomics model showing a more significant

benefit compared to the clinical model or radiomics model.
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TABLE 1 Clinical and demographic characteristics of development and validation cohort.

Variables Development cohort (N=78) External validation cohort (N=34)

R0 (N=55) Non-R0 (N=23) P R0 (N=24) Non-R0 (N=10) P

Age 54.55 ± 9.23 62.13 ± 7.14 <0.01 54.88 ± 9.34 62.10 ± 5.51 0.03

BMI 22.23 ± 3.05 22.64 ± 3.51 0.72 22.08 ± 3.73 24.45 ± 1.89 0.08

NLR 3.07 ± 1.86 3.29 ± 1.82 0.70 3.09 ± 1.88 2.47 ± 1.67 0.46

Perioperative platelet 226.82 ± 82.89 211.04 ± 85.68 0.41 230.00 ± 70.89 175.80 ± 78.42 0.06

Perioperative albumin 45.69 ± 5.48 43.75 ± 4.77 0.09 45.80 ± 5.62 45.37 ± 5.87 0.81

CA125 278.36 ± 163.28 465.04 ± 179.81 <0.01 284.46 ± 136.25 403.10 ± 167.44 0.04

HE-4 285.55 ± 135.99 546.83 ± 183.08 <0.01 318.08 ± 143.04 574.10 ± 184.04 <0.01

MAP score 7.93 ± 2.77 17.83 ± 4.39 <0.01 7.33 ± 2.18 20.80 ± 3.68 <0.01

Maximum tumor diameter 117.25 ± 38.89 141.62 ± 37.31 0.01 119.19 ± 38.81 141.91 ± 23.24 0.10

Arterial pulsatility index 0.31 ± 0.14 0.31 ± 0.12 0.96 0.32 ± 0.14 0.35 ± 0.21 0.63

Resistance index 0.26 ± 0.09 0.28 ± 0.09 0.38 0.27 ± 0.10 0.28 ± 0.13 0.79

End diastolic flow rate 17.09 ± 2.50 16.96 ± 2.09 0.83 16.67 ± 1.88 16.63 ± 2.77 0.97

Peak flow rate 23.07 ± 2.30 23.18 ± 2.02 0.89 22.91 ± 1.97 23.24 ± 2.14 0.67

Average flow rate 19.51 ± 2.22 19.94 ± 1.60 0.40 19.72 ± 1.89 19.48 ± 1.78 0.74

Parity 0.24 0.92

1 4 (7.27) 0 3 (12.50) 1 (10.00)

2 38 (69.09) 21 (91.30) 17 (70.83) 7 (70.00)

3 7 (12.73) 2 (8.70) 3 (12.50) 1 (10.00)

4 5 (9.09) 0 1 (4.17) 1 (10.00)

5 1 (1.82) 0 0 0

ASA score 0.14 0.32

1 8 (14.55) 5 (21.74) 8 (33.33) 1 (10.00)

2 16 (29.09) 1 (4.35) 3 (12.50) 2 (20.00)

3 10 (18.18) 8 (34.78) 3 (12.50) 2 (20.00)

4 11 (20.00) 5 (21.74) 8 (33.33) 2 (20.00)

5 10 (18.18) 4 (17.39) 2 (8.33) 3 (30.00)

Ascites 0.59 0.13

0 22 (40.00) 3 (13.04) 9 (37.50) 4 (40.00)

1 19 (34.55) 4 (17.39) 8 (33.33) 3 (30.00)

2 14 (25.45) 16 (69.57) 7 (29.17) 3 (30.00)

Hydrothorax 0.01 0.98

0 23 (41.82) 7 (30.43) 4 (16.67) 5 (50.00)

1 16 (29.09) 9 (39.13) 9 (37.50) 2 (20.00)

2 16 (29.09) 7 (30.43) 11 (45.83) 3 (30.00)
F
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A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; CIs, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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4 Discussion

In our study, we integrated primary radiomic features, laboratory

findings, and clinical factors from patients with advanced epithelial

OC to create and validate a radiomics-clinical nomogram. This

nomogram is designed for individualized preoperative prediction of

treatment response (RT) status. The results demonstrated that the

integrated radiomic-clinical nomogram showed enhanced predictive

performance compared to using radiomic or clinical signatures

individually after external validation. The final model is capable of

identification of the RT status prior to surgery. This advancement

enhances clinical decision-making, patient communication, and

prognosis assessment. For those with a low probability of attaining

R0 resection, the surgical intervention should be avoided if

incomplete resection. The presence or absence of response to

treatment (RT) following PDS or IDS is the most significant factor

influencing the prognosis of patients with advanced OC. Notably, a

10% increase in the rate of complete tumor resection can lead to a 5%

improvement in overall survival for these patients (15). Research has

shown that RT status is an independent and significant prognostic

factor for patients with advanced OC. The extent of RT is inversely

correlated with patient survival, disease-free survival (DFS), and

overall survival (OS) (5, 16). According to Kehoe et al., patients

with OC who underwent PDS followed by RT excision experienced
Frontiers in Oncology 06
the most favorable prognosis (17). High-grade serous ovarian cancer

(HGSOC) is the most common and aggressive histological subtype of

OC, and complete resection of all visible lesions (RT-resection) in

advanced HGSOC patients after PDS is linked to the best outcomes

(5, 18). Therefore, it is essential to assess all epithelial OC patients

suspected of being at stage IIIC or IV to determine their eligibility for

PDS prior to initiating therapy, in line with the clinical practice

guidelines set forth by the Society of Gynecologic Oncology and the

American Society of Clinical Oncology (19).

For patients in whom achieving satisfactory tumor reduction is

challenging, neoadjuvant chemotherapy should be considered prior

to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear

area and the major axis length of the stroma are significant factors

that can improve risk stratification in patients with HGSOC. For the

ultrasonic radiomic characteristics, three methods were employed

to select the final variables, resulting in the inclusion of 10 features

from a total of 1,561 radiomic features in our model, effectively

eliminating invalid variables. Previous studies have demonstrated

that all ultrasonic radiomics and clinical features included in our

study are relevant to the diagnosis, treatment, and prognosis of

ovarian cancer (15, 18, 21, 24).

CA-125 is one of the most commonly used serum biomarkers

for OC. Some studies (13, 20) have found that preoperative CA-125

levels can predict gross residual disease at PDS for advanced
TABLE 2 the univariate and multivariate logistic regression analysis of development cohort.

Variables Univariate logistic regression analysis Multivariate logistic regression analysis

OR OR 95% CI P OR OR 95% CI P

Age 1.02 1.01-1.03 0.001 1.01 1.00-1.02 0.030

BMI 1.00 0.98-1.04 0.609

NLR 1.01 0.97-1.06 0.639

Perioperative platelet 1.00 1.00-1.00 0.450

Perioperative albumin 0.99 0.97-1.00 0.145

CA125 1.00 1.00-1.00 0.000 1.00 1.00-1.00 0.002

HE-4 0.89 0.85-0.93 0.365

MAP score 0.95 0.94-0.96 0.210

Maximum tumor diameter 1.00 1.00-1.00 0.013 1.00 1.00-1.00 0.031

Arterial pulsatility index 0.98 0.51-1.90 0.959

Resistance index 1.65 0.65-4.24 0.376

End diastolic flow rate 0.96 0.96-1.03 0.830

Peak flow rate 1.00 0.97-1.05 0.837

Average flow rate 1.02 0.98-1.07 0.397

Parity 0.92 0.81-1.04 0.244

ASA score 1.01 0.95-1.08 0.757

Ascites 1.24 1.12-1.36 0.000 1.17 1.08-1.28 0.003

Hydrothorax 1.65 0.65-4.24 0.376
A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; CIs, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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FIGURE 1

Study flowchart of the radiomics analysis.
FIGURE 2

Radiomic feature extraction. (A, B) Radiomic features extraction using least absolute shrinkage and selection operator (LASSO) algorithm. (C) The
final features included in our study.
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FIGURE 3

A nomogram integrates clinical parameters and radiomics features.
TABLE 3 The performance of clinical model, radiomics model and combined nomogram for predicting RT status.

Model Cohort AUC ACC Sen Spe PPV NPV Precision F1

Clinical
Development 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883

Validation 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723

Radiomics
Development 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.878

Validation 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.704

Combined
Development 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900

Validation 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817
F
rontiers in Onco
logy
 08
AUC, Area under the curve; ACC, Accuracy; Sen, Sensitivity; Spe, Specificity; PPV, Positive predictive value; NPV, Negative predictive value; F1, F1-Score.
FIGURE 4

The performance of clinical model, radiomics model and combined nomogram with ROC, calibration curves and decision curve analysis. (A, B) ROC
curves of each model in the (A) development and (B) external validation cohort for prediction of RT status. (C, D) Calibration curves of each model
in the (C) development and (D) external validation cohort for prediction of RT status, and A 45° diagonal line indicates perfect calibration.
(E, F) Decision curve analysis of each model in the (E) development and (F) external validation cohort for prediction of RT status, and the colored
lines were expected net benefit of per patient. ROC, Receiver operating characteristics curves; RT, Residual tumor.
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epithelial OC. Additionally, moderate to severe ascites has been

associated with residual disease (13) and may serve as a surrogate

indicator of advanced disease across multiple anatomic locations.

The maximum tumor diameter is a critical predictor for

individualized preoperative assessment of RT status in patients

with advanced OC, as reflected in radiomic shape-based features.

For patients who are unlikely to achieve satisfactory tumor

reduction, neoadjuvant chemotherapy should be considered prior

to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear

area and the major axis length of the stroma are important factors

for improving risk stratification in patients with HGSOC. In

analyzing ultrasonic radiomic characteristics, three methods were

utilized to select the final variables, resulting in the inclusion of 10

features from a total of 1,561 radiomic features in our model,

effectively eliminating invalid variables.

Ultrasound offers several advantages, including real-time display,

convenience, and affordability, making it widely used for screening

and preoperative evaluation of OC. Recently, applications of

ultrasound-based radiomics have been reported in tumor diagnosis

(12), pathology grading (22), vascular invasion assessment,

therapeutic evaluation (23), and prognostic prediction (24).

However, there are few reports on RT status based on ultrasonics.

Meanwhile, several radiomic models for predicting RT status based

on computed tomography (CT) and magnetic resonance imaging

(MRI) have been developed and validated (25, 26). Lu et al. (26)

developed an MRI-based radiomic-clinical nomogram that

successfully predicted RT status preoperatively in patients with

HGSOC. A multicenter assessment was conducted to evaluate the

efficacy of preoperative CT scans and CA-125 levels in predicting

gross residual disease following PDS for advanced epithelial OC (25).

However, the pelvic CT-based model was primarily developed with a

focus on abdominal metastases. These findings support the

hypothesis that radiomic features can effectively predict treatment

response (RT) status by capturing variations in tumor heterogeneity.

There are several limitations to our study. Firstly, it relies on a

small sample size, necessitating larger databases and multicenter

studies to confirm the generalizability of this model. Second, future

studies should integrate CT or contrast-enhanced CT and MRI or

contrast-enhanced MRI into the predictive model to enhance the

prediction of RT status in OC. Finally, our study focused exclusively

on advanced epithelial OC subtypes, excluding rare variants. Future

research should include data from additional OC subtypes to

improve the models’ universality and clinical applicability.
5 Conclusion

In our study, we confirmed the clinical value of ultrasound-based

radiomics for the preoperative prediction of treatment response (RT)

status in patients with advanced epithelial OC, and radiomic feature

extraction and selection may provide a deeper understanding of

ultrasound imaging mechanism. The comprehensive model

combined clinical and ultrasonic radiomics features not only had a
Frontiers in Oncology 09
better performance in preoperative identification of complete

resection of all visible diseases but also had a higher

generalization ability.
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