
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Oncol.
Sec. Neuro-Oncology and Neurosurgical Oncology
Volume 15 - 2025 | doi: 10.3389/fonc.2025.1539845
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Glioblastoma (GBM), the most aggressive primary brain tumor, poses a significant challenge in predicting patient survival due to its heterogeneity and resistance to treatment. Accurate survival prediction is essential for optimizing treatment strategies and improving clinical outcomes. Methods: This study utilized metadata from 135 GBM patients, including demographic, clinical, and molecular variables such as age, Karnofsky Performance Status (KPS), MGMT promoter methylation, and EGFR amplification. Six machine learning models-XGBoost, Random Forests, Support Vector Machines, Artificial Neural Networks, Extra Trees Regressor, and K-Nearest Neighbors-were employed to classify patients into predefined survival categories. Data preprocessing included label encoding for categorical variables and MinMax scaling for numerical features. Model performance was assessed using ROC-AUC and accuracy metrics, with hyperparameters optimized through grid search. Results: XGBoost demonstrated the highest predictive accuracy, achieving a mean ROC-AUC of 0.90 and an accuracy of 0.78. Ensemble models outperformed simpler classifiers, emphasizing the predictive value of metadata. The models identified key prognostic markers, including MGMT promoter methylation and KPS, as significant contributors to survival prediction. Conclusions: The application of machine learning to GBM metadata offers a robust approach to predicting patient survival. The study highlights the potential of ML models to enhance clinical decision-making and contribute to personalized treatment strategies, with a focus on accuracy, reliability, and interpretability.
Keywords: machine learning, Prognostic biomarkers, Explainable AI, Survival Prediction, Clinical decision support, personalized medicine, Predictive Modeling
Received: 04 Dec 2024; Accepted: 06 Mar 2025.
Copyright: © 2025 Onciul, Brehar, Dumitru, Crivoi, Covache-Busuioc, Serban, Radoi and Toader. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Felix Mircea Brehar, Department of Neurosurgery, Emergency Clinical Hospital Bagdasar Arseni, Bucharest, Romania
Adrian Vasile Dumitru, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.