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With the rapid development of the “Internet + Medical” model, artificial

intelligence technology has been widely used in the analysis of medical

images. Among them, the technology of using deep learning algorithms to

identify features of ultrasound and pathological images and realize intelligent

diagnosis of diseases has entered the clinical verification stage. This study is

based on the application research of artificial intelligence technology in medical

diagnosis and reviews the early screening and diagnosis of thyroid diseases. The

cure rate of thyroid disease is high in the early stage, but once it deteriorates into

thyroid cancer, the risk of death and treatment costs of the patient increase. At

present, the early diagnosis of the disease still depends on the examination

equipment and the clinical experience of doctors, and there is a certain

misdiagnosis rate. Based on the above background, it is particularly important

to explore a technology that can achieve objective screening of thyroid lesions in

the early stages. This paper provides a comprehensive review of recent research

on the early diagnosis of thyroid diseases using artificial intelligence technology.

It integrates the findings of multiple studies and that traditional machine learning

algorithms are widely used as research objects. The convolutional neural

network model has a high recognition accuracy for thyroid nodules and

thyroid pathological cell lesions. U-Net network model can significantly

improve the recognition accuracy of thyroid nodule ultrasound images when

used as a segmentation algorithm. This article focuses on reviewing the

intelligent recognition technology of thyroid ultrasound images and

pathological sections, hoping to provide researchers with research ideas and

help clinicians achieve intelligent early screening of thyroid cancer.
KEYWORDS

thyroid disease, machine learning, image recognition, thyroid ultrasound, thyroid
pathological slices
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1 Introduction

The thyroid gland is a butterfly-shaped gland located in the

front of the neck. Its main function is to secrete thyroid hormones.

Thyroid hormones play a key role in regulating many physiological

processes in the human body, including diabetes management,

cardiovascular health, cognitive function, and immune system

regulation. Therefore, maintaining normal thyroid hormone levels

is essential to maintaining good health (1, 2). When thyroid

hormone secretion is disordered, it can lead to abnormal thyroid

function or abnormal thyroid structure. Thyroid dysfunction

includes hyperthyroidism and hypothyroidism. Thyroid structural

abnormalities mainly include thyroid nodules and thyroid cancer.

Thyroid nodules refer to solid or cystic masses that appear inside

the thyroid gland. Thyroid cancer is a malignant tumor that occurs

in thyroid cells and is one of the most commonmalignant tumors in

the endocrine system (3). The causes of thyroid cancer are complex.

As a malignant tumor, tumor cells continue to grow and spread,

leading to a decline in body function. During the diagnosis and

treatment process, it may also cause emotional distress and

psychological problems for patients. Studies have shown that

cancer patients generally have a higher incidence of mood

disorders such as depression and anxiety (4, 5).

Thyroid lesions often have no obvious symptoms in the early stages,

but if not discovered and treated in time, they may gradually deteriorate

into thyroid cancer, affecting the patient’s quality of life and even

endangering their life. Therefore, although thyroid cancer has certain

hazards, early detection, early diagnosis and early treatment can achieve

better treatment results, reduce the surgery rate and mortality rate,

improve the cure rate and reduce complications.

In recent years, significant changes in environmental factors,

specifically manifested as heavy metal pollutants, persistent organic

pollutants (POPs), and increased air pollution (6–8), have adversely

affected the normal physiological functions of thyroid hormones.

The incidence of thyroid cancer is increasing year by year globally,

accounting for approximately 1% to 3% of all new malignant

tumors worldwide (9). Currently, the methods for screening

thyroid diseases include ultrasound, cell puncture, CT, MRI, etc

(10–12). Ultrasound is a common non-invasive and painless

examination method (13). Its disadvantage is that it is limited by

the doctor’s experience and the size, shape, edge, internal echo and

other characteristics of the nodule. Therefore, there is a certain

misdiagnosis rate when evaluating the benign or malignant nature

of thyroid nodules. Thyroid pathology is the gold standard for

diagnosis and an important means of determining whether a

thyroid nodule is benign or malignant and the type of thyroid

tumor. However, pathology is invasive, expensive, and difficult for

patients to accept. In order to achieve low-cost, high-accuracy early

screening for thyroid disease, researchers have turned their

attention to artificial intelligence technology.

The rapid advancement of artificial intelligence in image

recognition technology has pushed auxiliary medical care to a

highly mature and widely applied stage. In the field of image

segmentation, deep learning image segmentation technology can

automatically learn the features of images and achieve high-
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precision image segmentation by training deep neural. Xu (14)

proposed an end-to-end FISH-based method (CACNET) for the

recognition of genetically abnormal cells (CAC). The CACNET

achieves cell nuclear segmentation by an improved Mask region-

based convolutional neural network (R-CNN), and the accuracy of

circulating CAC recognition using CACNET 94.06%. At the same

time, they also developed a deep learning network (FISH-Net)

based on 4-color FISH images for CACs, with an accuracy of

more than 96% (15). Zhao (16) proposed a breast cancer

ultrasound image segmentation method based on the U-Net

framework combined with the residual block structure and

attention, with a dic of up to 92.1%.

In the field of image classification, it mainly classifies and

recognizes objects in images by training deep neural networks.

This technology can process large-scale image data and quickly and

accurately identify target objects in images. Its advantages include

fast recognition speed, high accuracy, and the to handle images of

different sizes and resolutions. In 2012, the deep convolutional

neural network achieved a significant breakthrough in the

ImageNet competition, showing excellent performance of 37.5%

top-1 error rate and 17.0% top-5 error rate (17). In addition, Levy

(18) proposed an innovative deep convolutional neural network

model that cleverly used deep transfer learning technology to

successfully achieve high-precision classification of benign and

malignant breast tumors with an accuracy rate of up to 92.4%.

Wang (19) developed a mitosis detection method (FMDet) based

on breast tissue histopathological images to capture the appearance

changes mitotic cells. To achieve more robust feature extraction, the

feature extractor was constructed by integrating a channel-level

multi-scale attention mechanism into the fully convolutional

network structure. The FMDet algorithm has won the first place in

the MIDOG 2021 challenge, achieving an accuracy of 74.4%. In 2022,

Su (20) used the gene expression data of TCGA to screen

characteristic genes by combining WGCNA Lasso algorithms, and

used machine learning models to achieve the diagnosis and staging of

colorectal cancer. Wang (21) proposed a supervised learning (SSL)

scheme of deep learning (DL) framework to address the challenge of

high-precision classification seven pulmonary tumor growth patterns

in whole slide images (WSIs). This series of technological innovations

has undoubtedly injected strong impetus into the field of image

segmentation and recognition, and has greatly promoted the

application and development of artificial intelligence in early

screening of thyroid diseases.

This article analyzes the application of artificial intelligence

technology in the early diagnosis of thyroid diseases by comparing a

large number of studies, summarizes the current application status

of artificial intelligence technology in the early diagnosis of thyroid

diseases, and studies the intelligent recognition technology of

thyroid ultrasound images and pathological sections respectively.

The aim is to explore a technology that can achieve objective

screening of thyroid lesions in the early stages. Based on literature

research, we explored the application of machine learning and deep

learning in thyroid auxiliary diagnosis. We find that for small

sample data, SVM and semi-supervised neural networks in deep

learning perform better. U-Net has become the benchmark for most
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image segmentation tasks, with an accuracy of more than 93%,

thanks to its encoder-decoder architecture. Artificial intelligence

technology enables auxiliary examination for early screening of

thyroid diseases, improving the early cure rate and survival rate of

patients, and enhancing the accuracy and of doctors’ diagnosis. This

study also prospects the future trends of artificial intelligence in the

field of thyroid disease research, and constructs a set of artificial

intelligence system for the whole process. The development of

artificial intelligence in thyroid disease research is no longer

limited to thyroid pathology or thyroid ultrasound, but has

created an artificial intelligence that integrates thyroid images and

clinical data of thyroid cancer, which is used to determine the

diagnosis of thyroid cancer and can also accurately predict the

postoperative survival period of thyroid cancer patients.
2 Methods

The PubMed database was accessed by computer for retrieval,

using “thyroid ultrasound”, “thyroid cytopathology” and “machine

learning” as search terms. Figure 1 shows the number of publications

in the field of thyroid in the past decade. A total of 75 articles were

selected for analysis. According to the inclusion and exclusion

criteria, 50 articles were finally determined for research and

analysis. The inclusion criteria for this review were: (1) Machine

learning and deep learning algorithms, such as U-net, K nearest

neighbor classification, random forest, support vector machine and

artificial neural network. (2) The accuracy of early diagnosis of

thyroid disease area under the receiver operating characteristic

curve. (3) The time selection is the literature published in 2014 and

later in the past 10 years. (4) Except for the GLAS and RITE public

datasets, most of them are self-built datasets, which reviewed the data
Frontiers in Oncology 03
of thyroid patients for years, including thyroid ultrasound images

and thyroid pathological slices. The following summary measures

were used: machine learning method, sample size, performance

measure, and important features. In the early diagnosis of thyroid

diseases, the successful application of artificial intelligence

technology mainly focuses on two core areas: traditional machine

learning methods and deep learning methods.

(1) Traditional Machine Learning: The goal is to train

algorithms by analyzing data so that computers can automatically

identify and make appropriate decisions (22). Machine learning can

be divided into two main types of learning methods: supervised

learning and unsupervised learning, which are widely used in many

fields such as medical diagnosis, image recognition technology, and

sentiment analysis (23). The significant progress made by machine

learning in the field of medical image analysis has provided strong

technical support for the early screening of thyroid diseases. For

example, a study used a dataset from the UCI machine learning

library to train a multi-class SVM classifier to classify thyroid

diseases (24). The Thy-Wise model uses a random forest

algorithm to classify thyroid nodules, showing high accuracy and

specificity while reducing the rate of unnecessary biopsies (25).

(2) Deep Learning: Compared with traditional machine

learning methods, deep learning has powerful learning capabilities

and can better utilize data sets for feature extraction (26). The key

technologies of deep learning include convolutional neural network

(CNN), recurrent neural network (RNN) and U-Net (27). Deep

learning technology has shown great potential and advantages in

the classification, detection and segmentation of medical images.

For example, the application of U-Net model in biomedical image

segmentation (28) and the success of deep residual network in

image recognition (29) have demonstrated the effectiveness of deep

learning technology in processing complex medical image data.
FIGURE 1

Proportion of traditional machine learning and deep learning publications.
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3 Results

3.1 Thyroid ultrasound image
recognition technology

Thyroid ultrasound diagnosis uses the principle of ultrasonic

wave propagation and reflection in human tissues. It transmits

ultrasonic waves to thyroid tissues through high-frequency probes,

collects the reflected echo signals, and forms ultrasonic images of

the thyroid gland. These images can clearly show the size, shape,

structure and blood flow of the thyroid gland, providing doctors

with rich diagnostic information. Due to its significant advantages

of fast imaging, non-invasiveness and no radiation, it has become a

widely used and trusted examination method (30–32). Although

ultrasound technology has many significant advantages, it also faces

some inherent limitations. First, it is unavoidable interference noise

and possible artifacts. Second, the shape of thyroid nodules is

complex and changeable, blurred, and discontinuous. The
Frontiers in Oncology 04
boundary characteristics. Third, it is limited by the subjective

experience of doctors. These problems have brought certain

challenges to accurate diagnosis (33, 34). Therefore, exploring the

application of artificial intelligence technology to assist in the

diagnosis of thyroid ultrasound has become a research hotspot.

Table 1 shows some specific achievements artificial intelligence in

the recognition of thyroid ultrasound images.

3.1.1 Traditional machine learning
In previous studies, ultrasound thyroid nodule segmentation

methods can be roughly divided into four categories: shape and

contour-based (46), region-based (47), machine learning-based

(48), and hybrid methods (49).

At the beginning of the introduction of artificial intelligence

technology in the medical field, researchers mainly relied on

traditional machine learning algorithms. Therefore, the traditional

machine algorithm was applied to the diagnosis of thyroid

ultrasound images, aiming at improving the diagnostic speed and
TABLE 1 The main results of machine learning algorithms in the study of thyroid nodule ultrasound images.

Published
year

Reference Type of DL Main Performance Data Conclusion

2017 Raghavendra et al. (35) SVM ACC: 97.5%,
AUC: 94%

242 ultrasound images spatial gray-level dependence
features (SGLDF) and
fractal texture.

2017 Ma et al. (36) CNN ACC: 91.5% 22123 ultrasound images A multi-view
strategy is used to improve the
performance of the CNN
based model.

2019 Nguyen et al. (37) DCNN Accuracy: 90.88% 237 nodules cascade classifier

2019 Fu et al. (38) RF,SVM RF AUC: 95.4%,
SVM AUC: 95.4%

1179 nodules(including 501
benign and 678 malignant)

The performance of RF and
SVM is superior to
other methods.

2020 Shin et al. (39) SVM ACC: 69.0%,
Specificity: 79.4%,
Sensitivity: 41.7%

348 nodules GLCM, GLRLM, Gabor, and
Haar wavelet

2021 Vadhiraj et al. (40) MIL ACC: 96% 99 patients (33 benign,
66 malignant)

GLCM

2021 Peng et al. (41) ThyNet AUR: 92.2% 18049 ultrasound images The proportion of missed
malignant thyroid nodules
has decreased.

2022 Zhou et al. (42) MSA-UNet ACC: 94.6%,
Dic: 84.6%

1083 patients Atrous Spatial
Pyramid Pooling.

2023 Li et al. (43) WSDAC Dic: 87% 350 ultrasound images Models can reduce the
workload of labeling datasets.

2024 Chen et al. (44) CNN CNN AUC: 91%,
Inception-ResNet
AUC: 94%

11201 ultrasound images The article conducted
substantial, non-substantial,
and benign malignant
classification studies on
ultrasound images. Inception-
ResNet, due to the expertise of
a senior doctor.

2024 Ma et al. (45) KNN ACC: 86.7% 508 ultrasound images The study considered the
impact of different distance
weights, k-values, and distance
metrics on the
classification results.
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accuracy of benign and malignant nodules. In 2017, Raghavendra

(35) designed a computer-aided diagnosis system (CAD) for the

diagnosis of nodules. The system identifies the lesion area by

integrating spatial gray-level dependence features (SGLDF) and

fractal texture. This feature fusion-based approach achieved an

accuracy of 97.5% and an AUC value of 94% for the support

SVM using only two features, which is about 3.5% higher than the

performance of the SVM proposed by Acharya et al. (50) How to

use the right features to improve classification performance has

always been a challenge.

Shin I (39) developed an artificial neural network (ANN) based

on SVM for the classification model of thyroid tumors in 2020,

using 348 preoperative ultrasound images of thyroid nodules as the

dataset, and selected 10 important features as the feature input of

the model. Then, the effect of the model was compared with the

results of manual diagnosis by experienced radiologists. The results

showed that the sensitivity, specificity and accuracy of the model

were 32.3%, 90.1% and 74.%, respectively, while the sensitivity,

specificity and accuracy of the diagnosis by general physicians were

24.0%, 84.0% and 648%. It was proved that the classifier model of

machine learning may be helpful in the diagnosis of thyroid cancer.

In 2021, Vadhirajt (40) developed a computer-aided diagnosis

system integrating multiple instance learning (MIL) to classify

benign and malignant thyroid ultrasound images. Seven

ultrasound image features were extracted using the gray-level co-

occurrence matrix (GLCM) with an accuracy of 96%. Ma (45)

proposed an improved KNN algorithm for automatic classification

of thyroid nodules. The paper not only considered the number of

class labels of various data categories in KNNs, but also considered

the corresponding weights, using the Minkowski distance

measurement. Using 508 thyroid nodule hyper images, the

improved KNN accuracy was 86.7%. Through summarizing and

analyzing the previous studies, we find that different feature

selection will have a certain impact on the accuracy of the model.

At the same time, in order to evaluate which algorithm in linear

and nonlinear machine learning is better for the benign and

malignant classification diagnosis of thyroid nodules, Fu (38)

used three linear and five nonlinear machine learning algorithms

to evaluate 1039 patients with a total of 1179 nodules. Experimental

results have shown that the AUC of machine learning models is

higher than that of experienced radiologists. Among them, the AUC

of RF and SVM methods in nonlinear machine learning is the

highest, both at 95.4%, while the AUC of experienced doctors is

only about 83%.

At present, a large number of computer-aided diagnosis systems

based on traditional machine learning rely mainly on a variety of

texture features and machine learning algorithms differentiating the

benign andmalignant nature of thyroid nodules, and their accuracy is

about 3% higher than that of general doctors. In order to further

improve the classification accuracy, the researchers adopted a variety

of optimization methods, such as GLCM, SGLDF, to fine-tune the

input features and parameters of the machine learning models,

making these models show applicability in thyroid diagnosis.
Frontiers in Oncology 05
3.1.2 Deep learning
With the continuous advancement of artificial intelligence

technology, the application of deep learning in the medical field

has become the focus of research. In 2017, Ma (36) first attempted

to use a CNN-based model for thyroid nodule segmentation and

compared this method with six methods including GA-VBAC, JET,

DRLS, SNDRLS, SVM-based method and RBFNN-based method.

The study used a total of 22123 thyroid ultrasound images from

three hospitals as the dataset. The results show that our proposed

CNN-based model has a good performance in the segmentation of

thyroid nodules with an accuracy of 91.5%. Peng (41) developed a

deep learning model based on ThyNet to distinguish benign and

malignant thyroid nodules, and the results showed that the AUC

was 92.2%, and the proportion of missed malignant thyroid nodules

decreased from 18.9% to 17.0%, reducing fine needle aspiration

examinations. In 2024, Chen (44) proposed a convolutional neural

network (CNN) model using 11201 images for training, validation

and testing. Experiments have shown that the AUC of the model in

the classification of benign and malignant thyroid nodules is higher

than 91%, among which Inception-ResNet has the highest AUC of

94%, and the performance of the model is better than that of

senior physicians.

In artificial intelligence applications, feature selection is key to

improving model accuracy. In 2019, Nguyen (37) developed a method

for extracting features from thyroid images, using a cascade classifier

architecture to improve performance of computer-aided diagnosis

systems for thyroid nodule classification. This method combined

handcrafted standards and deep learning, achieving a classification

accuracy of 90.8%. Gong (51) designed a new multi-task learning

framework to simultaneously learn nodule size, glandular location,

and nodule position, and proposed an adaptive glandular region

feature enhancement module to fully utilize thyroid prior

knowledge and use the prior to guide the feature enhancement

network to accurately segment thyroid nodules. Different radiomic

features were extracted from ultrasound images, including intensity,

shape, and texture feature sets.

Although the popularity of deep learning has significantly

improved the accuracy of image segmentation, problems with

datasets, especially the lack of precisely annotated datasets, can

still affect prediction accuracy of models. However, such data is

often difficult to obtain in the field of medical image analysis. To

solve this problem, Wang (52) proposed an attention-based semi-

supervised neural network for thyroid nodule segmentation. The

network can complete the thyroid ultrasound image segmentation

task using a small amount of fully annotated data and a large

amount of weakly annotated data. The article proposes two

attention modules, which realize the inhibition or activation of

bottom-up and top-down feature channels and image areas through

a trainable feed-forward structure, thereby improving network

performance. The Jaccard similarity coefficient of the semi-

supervised neural network based on attention is 74.91%, which is

4.9% higher than that of the semi-supervised model based on VGG.

The accuracy of benign and malignant thyroid tumor classification
frontiersin.org

https://doi.org/10.3389/fonc.2025.1536039
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1536039
was improved from 91.67% to 95.00%, which proved that model

had good generalization ability.

Li (43) proposed a weakly supervised deep active contour model

for thyroid nodule segmentation, aiming to achieve accurate target

segmentation with a small amount of annotation information. The

experiment designed three modules: a weakly supervised learning

framework, a deep active contour model, and auxiliary edge

attention, which can reduce the annotation cost while

maintaining a certain segmentation accuracy. The dic value of the

model is 87%, which can reduce the workload of dataset annotation.

With the widespread application of deep learning, the U-net

algorithm was proposed. U-Net is a convolutional neural network

(CNN) structure widely used in deep learning, mainly for image

segmentation tasks (53, 54). Ding (55) mainly explored the

automatic segmentation technology of thyroid ultrasound images

based on U-net. The model embedded an improved residual unit in

the jump connection between the encoder and decoder paths and

introduced an attention gate mechanism to enhance the weights of

feature maps obtained from shallow and deep layers. Experimental

results show that the proposed method outperforms other U-

shaped models.

In 2020, Zhang (56) proposed two network structures, Cascade

U-Net and CH-UNet, for the segmentation and classification of

thyroid nodules. Cascade U-Net gradually refines the segmentation

results and improves the segmentation accuracy by cascading

multiple U-Net modules. CH-UNet combines dilated convolution

and hybrid attention mechanism to enhance feature extraction and

classification capabilities. Compared with the U-Net proposed by

RONNEBERGER (55), the dice of Cascade U-Net in the task of

thyroidodule segmentation increased by 2.9%. The dice of the U-

Net method by RONNEBERGER (57) was only 80.2%, which fully

validated effectiveness of the Cascade U-Net in the segmentation

and even classification tasks of thyroid nodules.

In order to accurately detect malignant nodules that are not

obvious and have confused boundaries in ultrasound images, and to

avoid confusion between tissue and malignant thyroid nod during

diagnosis, Yang (58) proposed a deep learning-based thyroid

malignant nodule segmentation method of DMU-Net. The

method uses the image context information in the U-shaped

subnetwork to accurately locate the malignant nodule region, and

then captures the fine details of theodule edges in the inverse U-

shaped subnetwork. The combination of U-shaped subnetwork and

inverse U-shaped subnetwork and the strategy of mutual learning

make the dic of DMU-Net on the-built dataset 82.77%, which is

25.86% higher than that of the traditional U-Net network. The
Frontiers in Oncology 06
research proves that DMU-Net can accurately locate the malignant

nodule area by extracting image context information in the U-

shaped subnetwork, extract more lesion area features, and help

radiologists diagnose thyroid diseases.

In 2022, Zhou (42) proposed an MSA-UNet model with a

multi-scale self-attention mechanism for thyroid nodule

segmentation. Depth wise separable convolution is used in the

Atrous Spatial Pyramid Pooling (ASPP) module, and then in the

decoder part, adjacent information of different scales is fused

through the channel attention mechanism, allowing the model to

learn more important features. The experimental results show that

the accuracy of this method is 94.6%, which provides a new research

idea for the early detection of thyroid nod. Comparison of accuracy

of different U-Net algorithms, as shown in Table 2.

Currently, the research focus of thyroid ultrasound images is

mainly on the segmentation and classification tasks of thyroid

nodules, but the potential intrinsic connection and mutual

influence between nodule characteristics and classification results

are often ignored. Thyroid nodule segmentation and classification

in ultrasound images are two fundamental but challenging tasks in

computer-aided diagnosis of thyroid diseases. Since these two tasks

are intrinsically related and share some common features, it is a

promising direction to jointly solve these two problems using multi-

task learning. However, previous studies have only demonstrated

inconsistent predictions between these related tasks. In order to

further exploit the effectiveness of the proposed task consistency

learning, Kang (61) designed a framework based on multi-task

learning (MS-MTL) to improve the performance of thyroid

segmentation and classification by improving the consistency

between tasks. The first stage of the network performs binary

segmentation and classification simultaneously, and the second

stage of the network learns multi-class segmentation. The article

verifies the feasibility of improving thyroid nodule segmentation

and classification performance through multi-task learning and

inter-task consistency loss.

The application of deep learning in thyroid ultrasound images

has broad significance and value. Various models have been applied

to the processing of thyroid ultrasound images, including

convolutional neural networks (CNN), U-net etc. By training a

large amount of data, these models can learn the key features in

ultrasound images for the classification and identification of

nodules, thereby reducing misdiagnosis and missed diagnosis

caused by human factors and helping to improve the early

diagnosis rate. The application of artificial intelligence technology

to assist in the early screening of thyroid diseases is not only limited

to the diagnosis of thyroid ultrasound pictures, but also shows

significant results in the recognition of thyroid pathology icons.
3.2 Thyroid pathology section
recognition technology

Thyroid pathology examination is a common diagnostic

procedure and an important part of the evaluation of thyroid

nodules, but there is significant variability in the assessment

thyroid cytology specimens by different pathologists and
TABLE 2 Comparison of U-Net methods.

Reference Methods Recall Accuracy Dice

Ronneberger (57) U-Net 86.1 93.2 80.2

Badrinarayanan (59) SegNet 88.5 94 81.2

Zhou (60) UNET++ 85.9 93.8 80.8

Zhang et al. (56) Cascade U-Net 86.6 94.3 83.1

Zhou et al. (42) MSA-UNet 87 94.6 84.6
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institutions. The sensitivity reported in the literature ranges from

68% to 98%, and the specificity ranges from 56% to 100%. In this

case, the use of machine learning can improve accuracy and help

standardize the diagnosis of thyroid pathological specimens (62).

The process of processing pathological images using convolutional

neural networks is shown in Figure 2.

One of the earliest studies on thyroid pathology was conducted

by Karakitsos (63), who investigated the ability of a learning vector

quantization (LVQ) neural network to distinguish benign from

malignant thyroid lesions. The model was trained by measuring 25

features such as size, shape, and texture of approximately 100 nuclei

in each case. The results of the study show that the LVQ neural

network can distinguish benign from malignant lesions very well,

with an accuracy of 90.6%.

In 2011 study also investigated the application of learning

vector quantization (LVQ) neural networks in differentiating

benign from malignant thyroid lesions using 335 fluid-based

cytology, fine needle aspiration (FNA), and Papanicolaou stain

specimens. Features extracted by a custom image analysis system

were first used to classify each nucleus using an LVQ neural

network, and then a second LVQ neural network was used to

classify individual lesions. The system was able to distinguish

between benign and malignant nuclei and lesions at both the

cellular and patient levels (64). Lee (65) developed a machine

learning algorithm (MLA) that can classify human thyroid cell

clusters by utilizing Papanicolaou staining and intrinsic refractive

index (RI) as relevant imaging contrast agents and evaluated the

impact of this combination on diagnostic performance. The

accuracy of the MLA classifier for 1535 thyroid cell clusters from

124 patients using color images, RI images, and both was 98.0%,

98.0%, and 100%, respectively. The importance of this study lies in

the fact that it compares a variety of different diagnostic techniques

to improve the accuracy and efficiency of thyroid cancer diagnosis,

with MLA classifier achieving the highest accuracy.

Artificial intelligence technology not only achieves precise

classification and recognition functions in the processing of

thyroid pathological images, but also shows strong prediction

capabilities. Improving the of malignant tumor prediction can

reduce the incidence of unnecessary surgery. Elliott (66) created a

machine learning algorithm (MLA) based on two CNNs to identify

follicular cells and predict the malign of the final pathology. The
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AUC of the model reached 93.2%, which is equivalent to the AUC

of 93.1% diagnosed by cell pathologists, demonstrating the

effectiveness of the algorithm. Wang (67) developed a prediction

system for benign and malignant medullary thyroid cancer and

goiter based on SVM and RF algorithms. For the classification of

PTC and nodular goiter (NG), the SVM and RF algorithms

performed equally well, with 94.2% and 94.4% consistency

between the prediction and pathological diagnosis. The system

can shorten the diagnosis time of doctors, making the diagnosis

time of each sample only 10 minutes, which is very promising for

the diagnosis papillary thyroid carcinoma during surgery. This

method can also correctly predict the malignancy of a medullary

thyroid carcinoma and a follicular thyroid adenoma.

Due to the combined effect of genetic variants, environmental

exposure, and immune genetic risk (68, 69), new types of thyroid

tumors, as” non-invasive follicular thyroid neoplasm”(NIFTP), have

emerged, which has complicated the cytology of thyroid cells, and a

lot data have been classified into the category of uncertainty (70).

Hirokawa (71) proposed an artificial intelligence image

classification system of EfficientNetV2-L, which proved the

efficiency and of artificial intelligence image classification system

in identifying thyroid lesions. The research team used 148,395

thyroid pathology smear images from 393 thyroid nodules as the

dataset. The researchers reported that the AUC of EfficientNetV2-L

exceeded 95%. However, the AUC for poorly differentiated thyroid

cancer was only 49%, showing significantly worse performance.

In another study, Yao (72) proposed a digital image analysis

method based on feature engineering and supervised machine

learning. They focused on cases of poorly differentiated thyroid

cancer that were later diagnosed as benign or follicular adenoma in

his tissue sections. The method was applied to 40 thyroid

pathological slices with high and low power microscopy, and the

AUC for the low power image model was 5%, and the AUC for the

high power image model was 74%. This method performs better

than cellular pathologists in classifying atypical follicular lesions.

The application of artificial intelligence in the field of thyroid

pathology image analysis not only significantly enhances the

accuracy and timeliness of diagnosis (73), but also relies on its

deep learning and image processing technology to realize the

analysis of pathological images such as follicular cell morphology

and arrangement. Accurate identification of subtle features such as
FIGURE 2

Convolutional neural network processing model for thyroid pathological images.
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pattern and abnormal proliferation. These key features are of

irreplaceable importance for accurately distinguishing benign and

malignant thyroid nodules. Compared with traditional manual

diagnostic methods, the integration of artificial intelligence has

greatly promoted the early detection, accurate diagnosis and

timely treatment of thyroid diseases, bringing patients a higher

survival rate and better quality of life.
4 Discussion

In recent years, the research, development and application of

artificial intelligence in the field of thyroid diagnosis have achieved

significant leaps, providing new horizons and broad possibilities for

optimizing the efficiency and accuracy of future diagnostic processes.

Especially in the early diagnosis of thyroid cancer, artificial

intelligence technology can automatically identify and evaluate

complex medical images through machine learning algorithms,

thereby improving the accuracy and efficiency of diagnosis.

In the application of thyroid ultrasound images, AI technology

has been shown to effectively assist radiologists in the diagnosis of

thyroid nodules. For example, one study showed that the

performance of an AI system in the diagnosis of thyroid nodules

was comparable to that of fine needle aspiration cytology (74). In

addition, AI technology also showed high accuracy and efficiency in

distinguishing benign from malignant thyroid nodules (75). Based

on the previous research, we find that the research methods of

thyroid ultrasound images mainly focus on traditional machine

learning and deep learning. In traditional machine learning, SVM

and RF have high accuracy in thyroid nodule classification due to

their superior binary classification performance.

The core concept of SVM lies in the strategy of structural risk

minimization, aiming to determine the optimal complexity of the

model a limited dataset, thereby enhancing the model’s general

prediction capability. The model parameters of SVM only depend

on the support vectors, which are the data points closest to the

decision boundary, and have no direct connection with other

points. This means that even with a small number of samples, as

long as these support vectors can fully reflect the overall distribution

characteristics of the data, SVM can construct an efficient and

accurate classification model. Therefore, SVM is particularly

suitable for dealing with thyroid datasets with a small sample size.

Compared with machine learning, deep learning has strong

learning ability and efficient feature expression ability, which can

automatically learn and extract high-level features in images and

can more comprehensively capture the details and context

information of images, thus improving the accuracy of

classification. The deep convolutional neural network (DCNN)

model proposed by Krizhevsky (76) achieved breakthrough

results in the ImageNet image classification. Therefore, the

current research focuses on the classification of thyroid

ultrasound and pathological images using deep learning.

Compared with traditional segmentation techniques, the

segmentation method based on deep learning does not rely on

hand-designed features, and the convolutional neural network
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(CNN) has shown excellent adaptability in the field of medical

image segmentation by virtue of its image hierarchical feature

representation capability. ROMÁN (77) reviewed a large number of

deep learning-based medical image segmentation methods, among

which U-Net is the most typical. The core idea of U-Net is to adopt a

symmetric encoder-decoder architecture, which enables deep feature

extraction and precise pixel-level segmentation of the input. Liu (78)

proposed an automated segmentation algorithm for brain gliomas

based on a multi-U-Net network(MU-Net), and conducted

experiments on the BRATS2020 dataset. The results show that the

Dice coefficients of the MU-Net algorithm for the complete tumor,

tumor core, and enhanced tumor are 86.7%, 77.76%, and 76.21%,

respectively, which are 2.6%, 2.55%, and 2.41% higher than those of

the benchmark model, indicating better segmentation results. The

application of these technologies can not only help radiologists

diagnose thyroid diseases more accurately and improve diagnostic

efficiency, but also reduce their workload.

AI technology also shows great potential in the application of

thyroid pathology images. For example, AI technology has been used

in cytological analysis of thyroid fine needle aspiration biopsy to

distinguish papillary carcinoma from other types of thyroid cancer

(79). A hybrid framework combining artificial intelligence was

proposed in the study (80), which not only weighted the Thyroid

Imaging Reporting and Data System (TIRADS) features, but also

used the malignancy score predicted by the convolutional neural

network (CNN) to classify and diagnose the malignancy of

the nodules.

In summary, artificial intelligence technology has strong clinical

significance and application prospects in the application of thyroid

ultrasound images and thyroid pathological images. Not only has it

improved the accuracy and efficiency of diagnosis, assisted doctors

in decision-making, reduced the rate of misdiagnosis, but it can also

the allocation of medical resources, reduce unnecessary surgeries

and other invasive treatments through artificial intelligence-assisted

diagnosis, and reduce the economic burden and pain of patients.

With the continuous advancement of technology and the

deepening of clinical applications, artificial intelligence technology

has played an increasingly important role in the early diagnosis of

thyroid diseases, but the prediction of the postoperative life cycle of

thyroid cancer patients is equally important for doctors and patients.

This study (81) used artificial neural networks (ANN) to predict the

1-year, 3-year, and 5-year survival of thyroid cancer patients, with

accuracy rates of 92.9%, 85.1%, and 86.8%, respectively. Based on our

research results, artificial neural networks can effectively represent a

survival prediction method for thyroid cancer patients. Liu (9)

developed six machine learning models (SVM, XGBoost, LR, DT,

RF and KNN) based on the SEER database to predict lung metastasis

of thyroid cancer. Although the accuracy of the model is above 90%,

prospective studies are still needed to further verify the practicality of

the model. And because the genes of thyroid cancer patients may

undergo mutation, gene mutation increases the complexity of the

data, and the model may have difficulty accurately distinguishing

different of diseases. On the other hand, gene mutation may have a

complex interaction with other biomarkers or clinical information,

which may make a single classification algorithm fail to capture the
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information accurately (82), and all these will lead to a bias in the

accuracy of the algorithm model.

In the future, we will focus on optimizing the cutting-edge

exploration of machine learning algorithm models, integrating

patient pathological information, radiology and clinical

information, create a more powerful algorithm, aiming to build a

set of artificial intelligence system for the whole process. The system

will have the ability to deeply analyze massive clinical records and

molecular biology data to accurately predict the postoperative

survival of thyroid cancer patients, thereby assisting doctors in

tailoring more precise treatment strategies for each patient, thereby

significantly improving late-stage Prognosis and quality of life in

patients with thyroid cancer.
5 Conclusions

This paper reviews the latest application progress of artificial

intelligence technology in the field of medical diagnosis, focusing on

its potential in the early screening and diagnosis of thyroid. The

research hotspot has developed from the initial traditional machine

learning to deep learning algorithms, and U-Net has also become the

benchmark for most medical image segmentation with the encoder-

decoder architecture. Through the previous research, it aims to assist

clinicians in achieving intelligent and efficient early identification of

thyroid cancer, thereby improving the accuracy of early diagnosis for

patients enhancing the efficiency of doctors. Moreover, the article also

prospects the future trend of artificial intelligence in the field of

thyroid disease research, not only limited to thyroid pathology or

thyroid ultrasound but also creating artificial intelligence that

integrates thyroid ultrasound images and clinical data of thyroid

cancer, which is used to determine the diagnosis of thyroid cancer,

and can also accurately predict postoperative survival period of

thyroid cancer patients. It aims to provide new research directions

for scientific researchers, and bring more personalized treatment

plans for doctors and patients through the continuous progress of

artificial intelligence technology, treatment strategies, and improve

patients’ satisfaction and quality of life.
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