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Introduction: A brain tumor is a collection of abnormal cells in the brain that can

become life-threatening due to its ability to spread. Therefore, a prompt and

meticulous classification of the brain tumor is an essential element in healthcare

care. Magnetic Resonance Imaging (MRI) is the central resource for producing

high-quality images of soft tissue and is considered the principal technology for

diagnosing brain tumors. Recently, computer vision techniques such as deep

learning (DL) have played an important role in the classification of brain tumors,

most of which use traditional centralized classification models, which face

significant challenges due to the insufficient availability of diverse and

representative datasets and exacerbate the difficulties in obtaining a

transparent model. This study proposes a collaborative federated learning

model (CFLM) with explainable artificial intelligence (XAI) to mitigate existing

problems using state-of-the-art methods.

Methods: The proposed method addresses four class classification problems to

identify glioma, meningioma, no tumor, and pituitary tumors. We have integrated

GoogLeNet with a federated learning (FL) framework to facilitate collaborative

learning on multiple devices to maintain the privacy of sensitive information

locally. Moreover, this study also focuses on the interpretability to make the

model transparent using Gradient-weighted class activation mapping (Grad-

CAM) and saliency map visualizations.

Results: In total, 10 clients were selected for the proposed model with 50

communication rounds, each with decentralized local datasets for training. The

proposed approach achieves 94% classification accuracy. Moreover, we

incorporate Grad-CAM with heat maps and saliency maps to offer interpretability

and meaningful graphical interpretations for healthcare specialists.
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Conclusion: This study outlines an efficient and interpretable model for brain

tumor classification by introducing an integrated technique using FL with

GoogLeNet architecture. The proposed framework has great potential to

improve brain tumor classification to make them more reliable and transparent

for clinical use.
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1 Introduction

The brain serves as the main component of the body which is

responsible for controlling cognitive and regulating physiological

functions in the body. Brain tumors are one of the common diseases

with a severe impact on quality of life (29, 30). The early diagnosis

of brain tumors can improve patient outcomes and increase their

chances of survival. In the medical imaging field, MRI provides the

potential help in efficiently diagnosing the brain tumor by providing

a clear picture of the cerebral lesions in the patient’s brain. The

precise classification of brain tumors using MRI images can play a

vital role in supporting treatment decisions and improving patient

survival outcomes (1).

DL has recently emerged as a transformative approach to

automatic brain tumor classification. It uses huge datasets and

complex neural network architecture to detect subtle indicators of

malignancy in MRI scans (2). Although conventional DL

approaches are generally effective, they usually require centralized

data aggregation and raise concerns about data privacy and security

due to the uneven data distribution among participants (3). FL is a

new paradigm that allows various participants to jointly train

models without breaching the privacy of sensitive information

about patients (4). FL facilitates the training of algorithms directly

from the local datasets and improves data security. The

decentralized nature of the FL approach addresses privacy issues.

It enforces model resilience by incorporating a larger variety of data,

which is crucial for developing a more robust and generalized

model in medical image analysis (5). Despite the several benefits of

traditional FL models, there is a lack of model interpretability,

which is an important factor in the healthcare domain where

sensitive data are involved. The black-box nature of FL models

makes it difficult for clinicians to grasp the decision-making

process, potentially reducing trust and hindering their practical

implementation (6). To facilitate the clinical decision-making

process in the healthcare system, it is crucial to provide clear

explanations. Explainable federated learning (XFL) has been

developed to provide a solution to the challenges related to the

privacy and security of sensitive information such as patients. The

integration of XAI techniques with XFL ’s privacy and

decentralization advantages results in a more comprehensive and

provide more interpretable insight in the decision-making process.
02
This article introduces an effective FL scheme for brain tumor

classification utilizing MRI image fusion with an explainable

framework that addresses the challenges of model interpretability.

GoogLeNet provides numerous benefits compared to the other pre-

trained CNNmodels. It integrates various filter sizes, which improves

its ability to extract detailed features from MRI images. The key

motivation behind the integration of GoogLeNet with the FL

framework is its high accuracy and efficiency, which is important

to handle medical imaging data. Despite their usefulness, the opaque

nature of classification models introduces significant challenges in a

clinical environment. This problem can significantly undermine trust

in AI implementations that rely on interpretability. To ensure trust is

maintained, transparency is paramount in healthcare care, which

helps to ensure a clear understanding of the reasoning behind each

prediction. To enhance the model transparency and interpretability,

the proposed architecture utilizes Grad-CAM and Saliency

map visualizations.

The key contributions of this study are summarized in

the following.
1. This article develops an explainable FL framework that

facilitates collaborative model training without exposing

sensitive patient information. This model strengthens the

generalization, interpretability, and robustness of the model

that address the privacy and security limitations of

traditional DL models.

2. The proposed framework integrates a pre-trained

GoogLeNet architecture as a core classifier within the FL

framework. GoogLeNet exhibits superior classification

performance compared to the other pre-trained CNN

models in decentralized environments. Furthermore, the

inclusion of Grad-CAM and Saliency Map visualization

further enhances the model’s transparency by offering

visual insights for its prediction process.

3. An efficient aggregation mechanism integrates the

contributions of multiple participants to improve

accuracy and robustness, tame data heterogeneity, and

address bias issues. Meanwhile, Grad-CAM and Saliency

maps provide transparency to ensure a decision-

making process is transparent and trustworthy for

clinical applications.
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The remainder of the article is organized as follows. Section 2

summarizes some latest state-of-the-art research contributions

related to FL-based brain tumor classification. Section 3

elaborates on the mathematical model and detailed workflow of

the proposed architecture. Section 4 presents a brief discussion of

the experimental outcomes and their implications. Finally, Section 5

concludes the research by summarizing key insights.
2 Related work

Medical imaging serves as an important tool to identify,

diagnose, and classify brain tumors at an early stage (7). MRI,

computed tomography (CT), and positron emission tomography

(PET) are commonly used techniques that enable clinicians to

visualize brain structures and assist in accurate detection of brain

abnormalities. MRI is the most commonly used technique due to its

high contrast resolution, which allows detailed observation of brain

tissues without ionizing radiation. The precise classification of the

brain tumor plays an important role in deciding the right treatment

plan for the patient. The importance of medical imaging in tumor

classification lies in its ability to provide non-invasive, detailed, and

reproducible visual data. Advanced image processing techniques

such as convolutional neural networks (CNNs) have been widely

investigated to improve tumor classification, improve accuracy, and

reduce radiologists’ dependence on manual interpretation.

Several studies in the existing literature proposed advanced DL

methods for an accurate classification of brain tumors. Chatterjee

et al. (8) proposed DL models ResNet (2 + 1) D and ResNet Mixed

Convolution for brain tumor classification. The authors claimed

that these models outperformed traditional 3D convolutional

models by learning spatial and temporal relationships more

effectively, achieving the best test accuracy of 96.98% with the

ResNet Mixed Convolution model. Another DL-based approach for

brain tumor classification proposed by (9) involved two stages:

segmenting brain tumors from multimodal magnetic resonance

images (mMRI) and classifying tumors using the results of the

segmentation. Using a 3D deep neural network, the method

achieved a dice score of 0.749 and an F1 score of 0.764 on

validation data. A method utilizing CNN and a genetic algorithm

(GA) was proposed by (10) for the non-invasive classification of

different glioma grades using MRI, achieving 94.2% accuracy. A

fully automated DL-based approach for the multi-classification of

brain tumors was proposed by (11). The authors incorporated

CNNs with hyperparameters optimized through grid search and

achieved an accuracy of 92.66% in brain tumor detection. Other

notable approaches in the literature highlight several prominent DL

modalities utilized for brain tumor classification. These include the

HCNN ensemble CRF-RRNN (12), ensembles such as 3D-CNN

combined with U-Net (13).

FL has recently emerged as a promising technique for brain

tumor classification. Several studies have explored the application of

FL in the classification of brain tumors using MRI (11). proposed a

privacy preserving FL architecture for brain tumor classification.

Similarly, Sheller et al. (14) demonstrated the effectiveness of FL in

brain tumor segmentation through multi-institutional collaboration,
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achieving 85.1% accuracy. Tedeschini et al. (15) proposed an FL

scheme for cancer diagnosis using the message queueing telemetry

transport (MQTT) protocol to address performance issues in

geographically distributed systems, achieving 87.4% accuracy. Islam

et al. (16) proposed an FL approach combined with a CNN ensemble

architecture for the detection of brain tumors. Their method also

addressed the challenges associated with centralized data collection,

achieving an accuracy of 91.05% using the CNN-based

FL framework.

The existing literature also presents some remarkable and novel

studies on XAI-based brain tumor classification frameworks. For

example (17), integrated attention Maps, SHAP, and LIME

methods with the hybrid Vision Transformer (ViT) and Gated

Recurrent Unit (GRU) to improve the interpretability of classified

MRI scans. Kumar et al. (18) proposed the Subtractive Spatial

Lightweight (SSLW) CNN for brain tumor classification,

emphasizing its efficiency in reducing computational time while

achieving an accuracy of 80.15%. The study also incorporated XAI

techniques, particularly Class Activation Mapping (CAM), to

improve the transparency and interpretability of the model. CAM

demonstrated a strong alignment with human decision-making,

achieving a visual match rate of 86%–95%. Although the results of

the AI models in existing studies are quite encouraging, the research

highlights the need to further improve XAI techniques and model

optimization to enhance accuracy and wider use of models in

clinical settings.

In applications of brain tumor classification, existing FL-based

studies exhibit few potential issues such as limited interpretability,

lower model performance due to data heterogeneity, and the use of

centralized data, which make them vulnerable to privacy concerns.

Although some studies have addressed these issues by incorporating

explainability within FL frameworks, they often lack advanced

visualization methods to provide meaningful insights into the

model’s decision-making process. The proposed framework

addresses these limitations by integrating the GoogLeNet

architecture within an XFL setting. GoogLeNet, known for its

deep network with Inception modules, offers efficient feature

extraction and classification capabilities, making it well-suited for

complex medical imaging tasks such as brain tumor classification.

To enhance model interpretability, we incorporate Grad-CAM

and Saliency Map visualization techniques. Grad-CAM highlights

the important regions in the input image that contribute to the

prediction of the model, allowing clinicians to understand which

areas the model focuses on when classifying a tumor. Saliency maps

provide another layer of explainability by showing the pixel-level

importance, offering a finer granularity of interpretation. The use of

these visualization methods brings greater transparency, allowing

healthcare professionals to verify the model’s results and have

confidence in its decision-making process, which is very

important in several healthcare applications.
3 The proposed architecture

This proposed architecture utilizes the “Brain Tumor MRI

Dataset” for training and performance evaluation. This dataset is
frontiersin.org
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open source and publicly accessible for use on the Kaggle platform

(19). The dataset, which comprises 7023 human brain MRI images,

is divided into four categories: glioma, meningioma, no tumor, and

pituitary. This dataset offers a valuable platform for the bridge

between artificial intelligence and medical imaging to showcase

practical applications for brain tumor classification. Figure 1

presents the operational flow of the proposed architecture.
3.1 Data preprocessing and distribution

Data preprocessing is an important stage in ML to ensure data

quality and consistency (20). It involves multiple operations that

improve model performance, extract meaningful insights from the

data, and build accurate and reliable models.

3.1.1 Dataset definition
The complete dataset, referred to as D, is divided into two

Google Drive directories, namely, train and test each directory

containing images paired with their labels. Representative samples

from each dataset class are presented in Figure 2.

3.1.2 Dataset transformation
Each image x in the dataset undergoes a series of

transformations that prepare it for input into the model.
Frontiers in Oncology 04
1. Resizing: Each image x is resized to a fixed dimension (H,

W). In this case, the resizing operation is defined by

Equation 1:

x0 = Resize (x, (H,W)) (1)

where H = 224 and W = 224. This standardizes the

input size, which is essential for consistency in

model training.

2. Normalization and Conversion to Tensor: In the

preprocessing pipeline, the resized image x′ is converted

into a tensor and normalized, as shown in Equation 2.

x00 = ToTensor (x0) (2)
This step maps pixel values to a normalized range (typically

between 0 and 1 or −1 and 1), making the data suitable for neural

networks that are sensitive to input scales. Let T represent the

complete transformation function, including resizing and tensor

conversion. The transformation applied to each image x can be

represented by Equation 3.

x00 = T(x) = ToTensor (Resize (x, (H,W))) (3)

This equation succinctly captures the entire pre-processing

pipeline for each image.
FIGURE 1

Workflow illustration of the proposed XFL model for classifying brain tumors.
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3.2 Data distribution to clients

After preprocessing, the dataset D is divided among N clients,

each receiving a disjoint subset for training. The goal is to partition

the dataset into N subsets {D1,D2,…,DN}, with each subset Di

assigned to a specific client.

3.2.1 Splitting the dataset
The dataset D is partitioned into subsets as described in

Equation 4.

D = ∪
N

i=1
Di  and  Di ∩ Dj = ∅   for   i ≠ j (4)

The size of each subset Dij j is determined by the total dataset

size Dj j and the number of clients N . For the first N − 1 clients, the

size of each subset is approximately as shown in Equation 5.

DNj j = Dj j − o
N−1

i=1
Dij j (5)
Frontiers in Oncology 05
For the last client, the subset size accounts for any remaining to

ensure that all data are distributed.
3.3 Data loading to client-specific loaders

Each client i uses a data loader to handle its specific subset Di.

The data loader is responsible for batching the data and feeding

them into the model during training.
3.3.1 Batching
Each dataset Di is divided into batches of size B as shown in

Equation 6.

Di = Bi,1,Bi,2,…,Bi,Ki

� �
(6)

where Ki =
Dij j
B is the number of batches for the client i. Each

batch Bi,j contains a set of input-output pairs (x, y), as shown in

Equation 7.
FIGURE 2

Representative samples from brain tumor MRI dataset.
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Bi,j = (xj,1, yj,1),…, (xj,B, yj,B)
� �

(7)

with each batch Bi,j having a size of B.

3.3.2 Data loader
The data loader Li for the client i iterates over the batches and

sends them to the model for training, as shown in Equation 8.

Li :Di → Bi,1,Bi,2,…,Bi,Ki

� �
(8)

This function facilitates the sequential loading of data in

manageable portions (batches), optimizing memory usage, and

training efficiency.
3.4 Client-side training with GoogLeNet

Each client i performs local training using the GoogLeNet

architecture. The model components and their functionalities are

briefly described in the following.

3.4.1 Convolutional layers
Convolution extracts spatial features by applying filters to the

input image or feature maps. Each filter learns a specific pattern,

such as edges or textures. In addition, the ReLU activation function

introduces non-linearity, which allows the network to learn more

complex features. Finally, pooling reduces the spatial dimensions,

decreasing computation while preserving the most significant

features. The detailed operation of these layers is described below.

1. First Convolution Layer: Due to the large filter size and

stride, the model captures large-scale features from the input image,

as described in Equation 9.

X1 = ReLU (W1*X + b1) (9)
Fron
• Filters:W1 with shape 64 × 7 × 7 × 3 (64 filters of size 7 × 7

with 3 channels).

• Stride: 2, Padding: ‘valid’ (no padding).

• Output Shape: X1 ∈ R109�109�64.
2. First Max-Pooling Layer: It reduces spatial dimensions,

providing translation invariance defined by Equation 10.

X2 = MaxPool (X1, (3, 3),  stride  = 2) (10)
• Output Shape: X2 ∈ R54�54�64.
3. Second Convolution Layer: It performs dimensionality

reduction along the depth axis while preserving spatial

dimensions, as described in Equation 11.

X3 = ReLU (W2*X2 + b2) (11)
• Filters: W2 with shape 64 × 1 × 1 × 64.

• Output Shape: X3 ∈ R54�54�64.
tiers in Oncology 06
4. Third Convolution Layer: It captures more complex features

through deeper, larger filters, as shown in Equation 12.

X4 = ReLU (W3*X3 + b3) (12)
• Filters: W3 with shape 192 × 3 × 3 × 64

• Output Shape: X4 ∈ R54�54�192.
5. Second Max-Pooling Layer: It further reduces spatial

dimensions to focus on the most prominent features, as shown in

Equation 13.

X5 = MaxPool (X4, (3, 3),  stride  = 2) (13)
• Output Shape: X5 ∈ R26�26�192.
3.4.2 Inception modules
These modules simultaneously process input with multiple filters

of different sizes to capture features at various scales. They further

concatenate the outputs of different paths to increase the richness of

the feature representation. The generic form of the Inception block is

presented in the following, as shown in Equation 14.

Xout   = ½Xpath1   Xpath2  

�� ��Xpath3   Xpath   4�
�� (14)

1. Path 1: Single 1x1 Convolution: It reduces the depth,

making the network computationally efficient while learning

localized features, as shown in Equation 15.

Xpath1  = ReLU  W(1)
1�1 ∗Xin + b(1)1�1

� �
(15)

2. Path 2: 1×1 Convolution followed by 3x3 Convolution: It

first reduces depth, then applies 3 × 3 filters to capture medium-

sized features, as described in Equation 16.

Xpath2 = ReLU  W(2)
3�3 ∗ReLU  W(2)

1�1 ∗Xin + b(2)1�1

� �
+ b(2)3�3

� �
(16)

3. Path 3: 1x1 Convolution followed by 5x5 Convolution: It is

similar to Path 2 but uses 5 × 5 filters to capture larger features, as

stated in Equation 17.

Xpath3 = ReLU  W(3)
5�5 ∗ReLU  W(3)

1�1 ∗Xin + b(3)1�1

� �
+ b(3)5�5

� �
(17)

4. Path 4: 3x3 Max Pooling followed by 1x1 Convolution: It

adds local spatial information via pooling and reduces depth using 1

× 1 convolution, as described in Equation 18.

Xpath4 = ReLU  W(4)
1�1 ∗MaxPool (Xin, (3, 3)) + b(4)1�1

� �
(18)
3.4.3 Auxiliary classifiers
In these classifiers, auxiliary loss improves gradient flow and

prevents vanishing gradients in deep networks by adding auxiliary

outputs contributing to total loss during training. On the other

hand, regularization acts as a form of regularization, making the
frontiersin.org
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network more robust . These auxil iary operations are

described below.

1. First Auxiliary Classifier: It provides an additional gradient

path to stabilize the training. The calculation of the first auxiliary

classifier is demonstrated in Equations 19–21.

X(1)
aux1 = ReLU  W(aux1)

1�1 ∗AvgPool (X, 5� 5)
� �

(19)

X(2)
aux1 = ReLU  W(1)

aux · Flatten  X(1)
aux1

� �� �
+ b (20)

Xaux1 = Dropout  X(2)
aux1

� �
(21)

2. Second Auxiliary Classifier: It assists in improving

convergence speed and model performance by backpropagating

additional supervisory signals. The computation of the first

auxiliary classifier is demonstrated in Equations 22–24.

X(1)
aux2 = ReLU  W(aux 2)

1�1 ∗AvgPool (X, (5, 5))
� �

+ baux   2 (22)

X(2)
aux2 = ReLU  W(2)

aux · Flatten  X(1)
aux   2

� �� �
+ b(aux   2)dense   (23)

Xaux2 = Dropout  X(2)
aux2

� �
(24)
3.4.4 Final layers
These layers comprise three main functions. First, Global

Average Pooling reduces each feature map to a single value,

allowing the network to output predictions independently of

spatial dimensions. Second, dropout prevents overfitting by

randomly omitting neurons during training. Third, Softmax

produces a probability distribution over classes, enabling

classification, both layers are defined by Equations 25 and 26.

Xfinal   = Dropout (GlobalAveragePooling   (Xfinal _ block  )) (25)

Y = Softmax (Wout · Xfinal   + bout  ) (26)
3.5 Federated learning process

The FL process is used to ensure robust data security by

retaining MRI data locally at individual client stations, such as

hospitals or imaging centers, eliminating the need for raw data

transfer to a centralized server. In an FL setup, multiple clients train

their models locally on their own data and then aggregate them on a

central server. Each station independently trains a local model on its

dataset using a standardized architecture, such as GoogLeNet,

ensuring that data remain within its original boundaries. Upon

completion of local training, only model updates, including weights

and gradients, are shared with the central federated server. These

updates do not contain raw data, significantly mitigating the risk of

data exposure. The federated server aggregates these updates from

all participating stations using techniques such as Federated
Frontiers in Oncology 07
Averaging, enabling the construction of a global model that

leverages insights from diverse datasets without directly accessing

sensitive patient information. This approach facilitates collaborative

learning while maintaining strict data privacy and security

standards. The FL process is described in the following.

3.5.1 Local training on client i
Each client i performs local training with its dataset Di using the

GoogLeNet architecture. Local training aims to optimize the model

parameters qi based on the client’s data, as defined in Equation 27.

1. Local Training Objective

q
0
i = qi − h∇qLi(qi;Di) (27)

where

qi: Local model parameters on client i.

h: Learning rate.

∇qLi(qi; Di): Gradient of the loss function Li with respect to the

model parameters qi computed on dataset Di

q
0
i : Updated model parameters after one training iteration.

2. Loss Function: For classification tasks, the loss function Li (qi;
Di) could be the cross-entropy loss is defined in Equation 28:

Li(qi;Di) = −
1
Dij j o

(xj ,yj)∈Di

yj log 
ef (xj ;qi)

oke
f (xj ;qi ,k)

 !" #
(28)

where f (xj;qi) is the predicted logit for input xj with parameters

qi, and yj is the true label.

3. Gradient Computation: The gradient ∇qLi (qi; Di) is

computed using backpropagation through the GoogLeNet model.

It involves computing derivatives of the loss with respect to each

parameter in the network.

4. Update Rule: The parameter update involves subtracting the

product of the learning rate h and the gradient from the

current parameters.

3.5.2 Model aggregation at the central server
Once local training is completed, each client sends its updated

model parameters to a central server, which aggregates these

parameters to form a global model using Equation 29.

1. Federated Averaging

q = o
N
i=1 Dij j
Dj j q

0
i (29)

where

q: Aggregated global model parameters.

N: Number of clients.

|Di|: Size of the dataset on client i.

|D|: Total data size across all clients.

2. Weight Averaging: The global model q is calculated as a

weighted average of the local models q
0
i , where the weights are

proportional to the sizes of the datasets |Di| on each client. This

ensures that clients with larger datasets have a more significant

influence on the global model.

3. Impact of Data Size: The aggregation process accounts for the

size of each client’s data. If |Di| varies significantly between clients,
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the averaging adjusts the global model better to reflect the

contributions of clients with larger datasets.
3.6 Explainable AI for model interpretation

In proposed architecture we incorporated two methods Grad-

CAM and Saliency Maps for explainability evaluation.

3.6.1 Gradient-weighted class activation mapping
DL models, particularly CNNs, have exceptionally succeeded in

applications such as image classification, object detection, and

medical diagnosis (21). However, their black-box nature often

limits their trustworthiness in critical domains such as brain tumor

classification using MRI images. Grad-CAM addresses this challenge

by providing interpretable visual explanations of model predictions,

bridging the gap between accuracy and transparency. Grad-CAM

extends the CAM technique to any CNN architecture, using gradients

flowing from the output layer to intermediate convolutional layers to

identify the spatial regions most relevant to a given class prediction.

These regions are visualized as heatmaps overlaying the input image,

pinpointing features such as tumor boundaries or abnormal tissue

patterns critical for diagnosis. Grad-CAM requires no architectural

modifications, works seamlessly with pre-trained models like

GoogLeNet, and emphasizes meaningful contributions using ReLU

activation to focus on positive influences. By offering class-specific,

spatially precise, and gradient-driven visualizations, Grad-CAM

enhances the interpretability of AI predictions, building trust and

helping clinicians verify model decisions while uncovering valuable

insights in medical data, making it an indispensable tool in AI-driven

healthcare. Grad-CAM generates visual explanations by highlighting

image regions that influence the prediction of the model for a

specific class.

Activations and Gradients
Fron
• Let Ak ∈ Ru�v represent the activation map of the k-th

channel from the target convolutional layer.

• Let ak be the weight corresponding to the k-th channel,

computed by Equation 30 as:
ak =
1

u� vo
u

i=1
o
v

j=1

∂ yc

∂Ak
ij

(30)

Where
• yc is the score for classc (logit or pre-softmax output).

•
∂ yc

∂Ak
ij
is the gradient of yc w.r.t. the activation map Ak.
Weighted Combination Combine the activation maps Ak using

the weights ak to generate the class activation map, as formulated in

Equation 31.

CAM (i, j) = ReLU  o
k

akAk
ij

 !
(31)

where ReLU ensures only positive influences contribute.
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3.6.2 Normalization
Normalize CAM for better visualization defined in Equation 32:

CAMnorm(i, j) =
CAM   (i, j) −min   (CAM)
max   (CAM) −min   (CAM)

(32)

This maps the values to ½0, 1�.

3.6.3 Saliency maps
Saliency maps offer a solution by providing interpretability,

allowing us to visualize which regions in the input image have the

greatest influence on the model’s prediction. Saliency maps are used

to interpret how CNNs arrive at their predictions by highlighting

important pixels or regions that affect the output of a specific class.

Saliency maps visualize the importance of each pixel in the input

image by calculating the gradient of the output with respect to the

input, identifying which regions of the input were most influential

in determining the model’s decision.

The saliency map for class c can be mathematically defined in

Equation 33:

Sc(x)i =
∂ yc

∂ xi

����
���� (33)

where:
• Sc(x)i is the saliency map at pixel i,

•
∂ yc

∂ xi
is the gradient of the class score yc with respect to the

pixel xi in the input image.
These gradients offer an explanation of the importance of each

pixel in the decision-making process of the model by showing how

variations in each pixel impact the sensitivity of the model’s output

for class c.

Saliency Map Calculation

The saliency map is generated by computing the gradient of the

class score with respect to each pixel in the input. The gradient is

calculated by backpropagation, which involves the following steps:
1. To calculate the class score yc for a given input x, perform a

forward pass.

2. Determine the gradient of yc for every xi pixel in the

input image.

3. Take the absolute value of these gradients to generate the

saliency map.
Thus, the saliency map can be computed in Equation 34:

Sc(x) =
∂ yc

∂ x1

����
����, ∂ yc

∂ x2

����
����,…,

∂ yc

∂ xd

����
����

� 	
(34)

This vector can be reshaped into a heatmap for visualization,

where regions with higher values indicate greater importance in the

decision-making process of the model.

Weighted Aggregation of Gradients In sophisticated

approaches, such as integrated gradients, the gradient values are

aggregated with a range of inputs that span from a baseline to the

actual input. This process helps to capture the total influence of the
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input on the model decision-making process. The saliency map for

integrated gradients is defined in Equation 35:

ScIG(x)i = (xi − ~xi)
Z 1

a=0

∂ yc(xa )
∂ xi

da (35)

where:
Fron
• xa is a path from the baseline input ~xi to the actual input xi,

•
∂ yc(xa )
∂ xi

is the gradient at a point along the path,

• The integral accumulates the gradient along the path from
~xi to xi.
Normalization To facilitate interpretation, normalization of the

saliency map to the range allows the most significant regions to be

represented and makes it easier to interpret. The normalization step

is illustrated in Equation 36:

Scnorm  (x)i =
Sc(x)i −min   (Sc(x))

max   (Sc(x)) −min   (Sc(x))
(36)

The saliency map is normalized by using the interval [0,1]

which makes it easier and also enhances the visibility of regions on

the input image’s classification.
4 Experiments and
performance evaluation

This section elaborates on the configuration of the experimental

setup and a brief discussion of the results.
4.1 Implementation platform

The architecture was developed in Google Colab Pro, a cloud-

based environment offering substantial computational capabilities,

ideal for efficient machine learning applications. The GoogLeNet

architecture selected as the base model is widely recognized as a

deep CNN architecture employed through the PyTorch framework.

Google Colab Pro, with its advanced hardware configuration

featuring the NVIDIA L4 GPU, delivered the necessary

computational power and speed essential to efficiently handle the

training and evaluation of MRI image datasets. This configuration

enabled efficient execution of the FL process, supporting distributed

training across several nodes without performance degradation,

making it an optimal choice to tackle the resource-intensive

challenges of MRI image analysis. The proposed model is trained

with optimal hyperparameters selected through extensive

experiments. Table 1 presents the utilized hyperparameters.
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4.2 Performance assessment parameters

A number of evaluation metrics were defined to analyze the

performance of the proposed architecture. Details of the general

evaluation metrics are described below.

4.2.1 General evaluation metrics
1. Accuracy measures the proportion of correctly classified

samples out of the total samples. In brain tumor classification,

accuracy indicates the level of model correctness in the

identification of the presence or absence of tumors in all samples.

  Accuracy   =
TP + TN

TP + TN + FP + FN
(37)

2. Precision measures the proportion of correctly predicted

positive samples out of the total predicted positive samples. The

precision reflects the accuracy of the model in predicting tumor

cases. High precision means that in most cases the model predicted

as tumors is indeed a tumor.

  Precision   =
TP

TP + FP
(38)

3. Recall or sensitivity measures the proportion of correctly

predicted positive samples out of the actual positive samples. Recall

indicates how well the model identifies actual tumor cases. High

recall means that the model detects most of the tumor cases,

minimizing false negatives.

  Recall   =
TP

TP + FN
(39)

4. F1 Score is the harmonic mean of precision and recall, which

helps to create a balance between the two metrics, especially in the

case of an imbalanced class distribution.
TABLE 1 The utilized hyperparameters.

Hyperparameters Values/Description

Image size 224 x 224

Num of Clients 10

No of rounds 50

Batch size 128

Epochs per client 3

Learning Rate 0.002

Optimizer SGD

Momentum 0.0

Ema momentum 0.99

Base Model Pre-trained GoogLeNet

Device Configuration CUDA (GPU)
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  F1   Score   = 2�   Precision  �   Recall  
  Precision   +   Recall  

(40)

5. Confusion Matrix is a table that summarizes the

performance of a classification model by comparing actual and

predicted labels.

  Confusion  Matrix   =

C11 C12 … C1n

C21 C22 … C2n

⋮ ⋮ ⋱ ⋮

Cn1 Cn2 … Cnn

2
666664

3
777775 (41)

6. Classification Report provides a detailed overview of the

model’s performance for each class, which is particularly useful in

medical applications like brain tumor classification, where the

distinction between classes (different tumor types) is critical.

4.2.2 Explainability evaluation metrics
1. Heatmap Visualization: This technique highlights the key

regions of an image that a model uses to inform its conclusions.

Cool hues like blue and green suggest that these areas are less

significant, while warm hues like red and orange suggest that they

are more significant.

2. Grad-CAM Visualization: This method allows us to observe

how the various regions of an image contribute to the prediction by

displaying the key areas in a heatmap that are most pertinent to a

model’s prediction of a particular class. The mathematical

formulation of the Grad-CAM visualization is presented in

Equation 42.

ac
k =

1
Zoi

wc
k · ReLU (A

c
i ) (42)

where
Fron
• ac
k is the weight for feature map k and class c.

• wc
k represents the gradient of the class score c with respect to

the feature map k.

• Ac
i  is the activation of the unit i in the feature map k.

• Z is the normalization factor (sum of all activations).
3. Saliency Map Visualization: Saliency maps aim to identify

which pixels in an input image are most critical for the model’s

output. They identify the pixels that have the greatest influence on

the prediction score, enabling a detailed understanding of the

importance at the pixel level. The calculation of saliency is based

on the gradient of the output in relation to the input as shown in

Equation 43:

Si =
∂ y
∂ xi

����
���� (43)
• Si is the saliency score for pixel i.

• y represents the output of the model (prediction score).

• xi is the intensity value of the pixel i.
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4.3 Discussion on experimental outcomes

The proposed FL-based brain tumor classification approach was

implemented using GoogLeNet as the base model. The pre-trained

GoogLeNet exhibits superior performance in image classification

tasks. Its inception architecture efficiently handled large-scale image

data by reducing the number of parameters and computational

requirements, making it suitable for medical imaging with an image

size of 224x224. In the FL process, 10 clients participated in the local

training with a batch size of 128, using a learning rate of 0.002 to

balance learning speed and stability. The training process used the

stochastic gradient descent (SGD) optimizer with a momentum of

0.0 to avoid overshooting during optimization. Additionally, an

Exponential Moving Average (EMA) momentum of 0.99 was

applied, which smoothed the model updates over time, leading to

a more stable convergence of the global model. Each client trained

for 3 epochs per round and over 50 communication rounds, and the

client models were aggregated to update the global model, achieving

privacy-preserving training while maintaining high accuracy and

computational efficiency. Figures 3 and 4 represent the training and

loss curves of the local model and globe, respectively.

The performance analysis of each individual client is

summarized in Table 2, which details the progression of the

accuracy of each client in 10 rounds. Starting with accuracies

between 94% and 97% after 5 rounds, clients steadily approach

100% by the 25th round, with only minor fluctuations observed

afterward. This stability reflects the effective convergence of the

learning process, with near-perfect accuracy achieved by the 50th

round, underscoring the robustness of the FL setup for accurate

brain tumor classification.

Table 3 provides a detailed performance evaluation of the global

model over 50 rounds of communication, with metrics of accuracy,

precision, recall, and F1. The global model starts with an accuracy of

89.07% after 5 rounds and increases to 94.24% by the 50th round.

Precision and recall are in the same trend, starting at 88.72% and

88.76%, respectively, and peaking at 94.05% and 94.21% in the 45th

round. These results reflect the gradual and effective convergence of

the model, confirming that the FL approach optimizes the

classification performance over multiple communication rounds.

Performance analysis reveals that the model achieves near-

perfect accuracy after 50 communication rounds, with stable

convergence observed even as the number of rounds increases. In

particular, Figure 5 presents ten normalized confusion matrices that

capture the classification performance for all types of glioma,

meningioma, no tumor, and pituitary tumors over 50 training

rounds. During training, glioma and meningioma show moderate

accuracy, with frequent misclassifications between these two classes.

As training progresses, the accuracy of the glioma improves

substantially to 96% by round 35, while the meningioma stabilizes

at 89%. The No Tumor and Pituitary classes demonstrate near-

perfect accuracy from the outset, outperforming glioma and

meningioma. In Round 35, the model shows strong performance,

particularly for glioma, no tumor, and pituitary tumor, although

there is minor confusion between glioma and meningioma.
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Figure 6 illustrates that the No Tumor class consistently

achieves the highest scores in accuracy, precision, recall, and the

F1 score, stabilizing near perfection by round 50. In comparison, the

Meningioma class exhibits a steady upward trend in accuracy and

recall, with slight variability in precision. The Pituitary class

maintains robust performance throughout the training rounds,

closely aligning with the No Tumor class. In contrast, while

initially underperforming, the Glioma class shows significant

improvements in recall and F1 score over successive rounds,

reflecting effective model adaptation and learning. These results

highlight the efficacy of the FL approach in improving classification

performance, handling real-world variability, and addressing

challenges in differentiating between specific tumor types.

Furthermore, this study illustrates how XAI techniques are used

to interpret and validate the predictions made by a deep learning

model for brain tumor classification. Figure 7 describes that each
Frontiers in Oncology 11
row corresponds to a specific classification scenario: glioma,

meningioma, no tumor, and pituitary tumor. The columns

represent different visualization techniques that provide insight

into the model’s decision-making process. The first column

displays the original MRI scans, which serve as input to the

classification model. These scans show unique structural features

of the brain, with visible abnormalities in tumor cases (glioma,

meningioma, pituitary) and normal brain structures in the no-

tumor case, serving as a baseline for comparison with the

explainability maps.

The second column presents heat maps that highlight the

regions in the MRI scans the AI model considers most critical for

classification. The intensity of the color, ranging from red (high

relevance) to blue (low relevance), indicates the model’s focus. For

cases of glioma and meningioma, the red areas correspond closely

to the visible tumor regions, demonstrating the model’s ability to
FIGURE 4

Training and loss curves of the global model.
FIGURE 3

Training and loss curves for all clients.
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locate and interpret critical features. In the no-tumor scenario, the

heat map shows a dispersed focus, reflecting the absence of a

specific lesion or abnormality. The pituitary tumor case illustrates

the model’s focus on the pituitary gland, a relevant area

for classification.

The third column overlays the heat map on the original MRI

image, creating a blended visualization that helps to interpret the
Frontiers in Oncology 12
focus of the model relative to the actual location of the tumor. These

overlays help verify whether the model is focusing on medically

relevant regions. For cases of glioma and meningioma, the overlays

show a strong correlation between the highlighted regions and the

physical location of the tumor, which reinforces the interpretability

of the model. In the no-tumor case, the overlay confirms that the

model is not falsely focusing on irrelevant or random areas.
FIGURE 5

Confusion matrices for multiclass evaluation over 50 training rounds.
TABLE 2 Performance evaluation of individual clients.

Clients
Number of Rounds

5 10 15 20 25 30 35 40 45 50

Client-1 0.9562 0.9886 0.9953 0.9944 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980

Client-2 0.9448 0.9811 0.9972 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-3 0.9660 0.9836 0.9980 0.9980 0.9972 0.9944 0.9972 0.9972 0.9980 0.9972

Client-4 0.9730 0.9961 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-5 0.9474 0.9961 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-6 0.9685 0.9953 1.0000 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-7 0.9609 0.9883 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-8 0.9490 0.9894 0.9878 0.9933 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-9 0.9482 0.9847 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Client-10 0.9493 0.9914 1.0000 0.9972 1.0000 0.9980 1.0000 1.0000 1.0000 1.0000
fr
TABLE 3 Performance evaluation of the global model.

Parameters
Number of Rounds

5 10 15 20 25 30 35 40 45 50

Accuracy 0.8907 0.9082 0.9252 0.9320 0.9375 0.9349 0.9375 0.9379 0.9349 0.9424

Precision 0.8872 0.9156 0.9315 0.9386 0.9353 0.9344 0.9384 0.9363 0.9405 0.9374

Recall 0.8876 0.9165 0.9321 0.9396 0.9366 0.9355 0.9399 0.9382 0.9421 0.9389

F1 Score 0.8868 0.9158 0.9317 0.9390 0.9357 0.9348 0.9389 0.9369 0.9411 0.9380
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Finally, the fourth column contains saliency maps, which

provide a more granular visualization by identifying the

individual pixels that most influenced the model’s decision. Bright

spots on these maps correspond to areas where small changes in
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pixel intensity would significantly impact the model’s prediction.

For tumor cases, the saliency maps highlight the contours and edges

of the tumor region, demonstrating the model’s ability to capture

fine-grained details. This comprehensive use of XAI techniques
FIGURE 7

Interpretation of brain tumor classifications.
FIGURE 6

Experimental outcomes for multi-class performance.
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underscores the importance of integrating explainability into

medical imaging workflows, enhancing the reliabil ity,

transparency, and clinical adoption of AI-based systems for brain

tumor detection.

Table 4 presents a performance comparison with seven recent

studies, demonstrating that the proposed FL scheme outperforms

other models in the brain tumor classification. Our approach

integrates GoogLeNet within an FL framework. GoogLeNet

utilizes parallel convolutions at multiple scales within each layer,

enabling the model to capture both fine and coarse details in MRI

images, which is essential for detecting tumors of varying sizes and

types. The combination of GoogLeNet and federated learning

achieved a detection accuracy of 94%, surpassing conventional

CNNs and cascade networks. Although there are few studies

focusing on model interpretability, Tanvir et al. (22) employed

multiple models, including CNN and InceptionV3, and integrated

XAI techniques to visualize models’ latent behavior, thereby

enhancing system transparency. Furthermore, they proposed

Grad-CAM++ for improved model interpretability, achieving

92.31% accuracy in brain tumor classification.

In summary, the proposed framework advances brain tumor

classification by integrating FL with the GoogLeNet architecture,

effectively addressing the challenges of scalability and

computational efficiency. By leveraging a pre-trained GoogLeNet

model, the system benefits from its proven image classification

performance, while FL facilitates decentralized training across

multiple clients, aggregating updates through Federated

Averaging to construct a robust global model. This approach

efficiently accommodates heterogeneous data sources without

compromising accuracy. Incorporation of XAI via Grad-CAM

and the saliency map enhances the interpretability of the model

by visually identifying key regions in MRI images that influence

predictions, supporting tumor localization. In general, the

combination of FL, GoogLeNet, and XAI not only ensures high

classification performance, but also fosters transparency and trust,

essential for the clinical adoption of AI in healthcare.
Frontiers in Oncology 14
4.4 Limitations

Despite the good performance, the proposed framework has few

limitations. First, the fixed client configuration assumes uniform

resource availability, which may not be true in real-world scenarios

where clients possess varying computational capacities, potentially

impacting local training efficiency. Furthermore, dynamic

scenarios, such as unstable network conditions, might lead to

communication delays or interruptions, therefore impacting how

fast model updates can be collected. There are also privacy risks

during data transfer, as adversarial attacks can leverage

vulnerabilities in model update transmissions to compromise data

security even in a decentralized setup. Such challenges must be

overcome to further enhance resilience and reliability in diverse

real-world healthcare applications.
5 Conclusion

The proposed scheme introduced an FL-based brain tumor

classification framework incorporating the GoogLeNet architecture

and explainability evaluation methods. The proposed FL approach

overcomes the limitations of traditional centralized deep learning

models, which require the centralization of sensitive medical data in

a single entity. The proposed scheme allows collaborative training

of a model while enhancing interpretability.

The proposed approach achieved a classification accuracy of

approximately 94% on a dataset of 7,042 MRI images across four

tumor classes. Furthermore, the designed model integrates XAI

techniques, such as Grad-CAM and saliency map visualization.

Grad-CAM highlights critical regions in the MRI images that

contribute the most to the model’s predictions, while saliency

maps further visualize these influential features. These XAI

techniques provide clinicians with a clear understanding of the

AI’s decision-making process, ensuring its focus aligns with

clinically relevant features. Together, they improve transparency,
TABLE 4 Performance comparison of the proposed scheme with the state-of-the art FL-based brain tumor classification model.

Reference Proposed Technique Dataset Detection Score

Lakshmi et al. (23) Inception-V3 3064 MRI Images 89%

Jiang et al. (24) Convolutional Neural Network MICCAI BRATS2015 DATASET 86.30%

Bhanothu et al. (25) CNN MRI IMAGES 77.60%

Ranjbarzadeh et al. (26) Cascade CNN BRATS2018 DATASET 92.03%

S et al. (27)
MobileNetV2
MobileNetV3 small
MobileNetV3 big

Ream word brain image
dataset

92%

Akbar et al. (28) SVM with heterogeneous feature
extraction in CNN classification

BRATS2018 77.73%

Tanvir et al. (22) CNN,RestNet50, InceptionV3,
EfficientNetB0 and NASNet-Mobile
with Grad CAM++

Br35H:Brain
Tumor
Detection 2020

92.31%

Proposed Scheme CFLM with Grad-CAM brain Tumor MRI
dataset

94%
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validate model performance, and foster trust, which facilitates the

seamless integration of AI into medical imaging workflows.

Future implementations of this approach could cover other

medical fields and provide a scalable infrastructure for collaborative

AI applications in healthcare, where data-sharing policies are strict.

The proposed approach shows great value for medical imaging and

artificial intelligence, providing a way to improve diagnostics in

healthcare while preserving data security, interpretability, and

transparency worldwide.
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