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Biological functions of
5-methylcytosine RNA-binding
proteins and their potential
mechanisms in human cancers
Tingting Zhao, Zhe Zhang, Zhuo Chen, Guozheng Xu,
Yongxi Wang and Fang Wang*

Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
The 5-methylcytosine (m5C) modification is a crucial epigenetic RNA

modification, which is involved in the post-transcriptional regulation of genes.

It plays an important role in various biological processes, including cell

metabolism, growth, apoptosis, and tumorigenesis. By affecting the

proliferation, migration, invasion, and drug sensitivity of tumor cells, m5C

methylation modification plays a vital part in the initiation and progression of

tumors and is closely associated with the poor tumor prognosis. m5C-related

proteins are categorized into three functional groups: m5C methyltransferases

(m5C writers), m5C demethylases (m5C erasers), and m5C methyl-binding

proteins (m5C readers). This paper introduces several common methodologies

for detecting m5C methylation; and reviews the molecular structure and

biological functions of m5C readers, including ALYREF, YBX1, YBX2, RAD52,

YTHDF2, FMRP, and SRSF2. It further summarizes their roles and regulatory

mechanisms in tumors, offering novel targets and insights for tumor treatment.
KEYWORDS
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1 Introduction

Research on the mechanisms of RNA regulation in tumors has increased during the last

five years. Epigenetic regulation of RNAs represents an important aspect of RNA

regulation, influencing the expression of mRNAs, tRNAs, rRNAs, and other non-coding

RNAs at the post-transcriptional level (1, 2). The m5C methylation modification is one of

the most common RNA modifications, which is associated with gene expression and

stability (3). m5Cmodification has been found to promote tumor progression and associate

with poor prognosis in several tumor types, including hepatocellular carcinoma, pancreatic

cancer, esophageal cancer, and breast cancer (4–7).

Three functional components are necessary for m5C modification and gene regulation.

Firstly, the methyltransferase transfers the methyl group from S-adenosylmethionine to the fifth
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carbon atom of cytosine, thereby forming the m5C modification (8)

(Figure 1). Secondly, methyl-binding proteins or demethylases identify

and bind methylated mRNA, which in turn affects biological behavior,

realizes epigenetic regulation of genes, involves metabolism and

tumorigenesis in the human body (9) (Figures 2, 3, Table 1). In

addition to gene regulation, Ding et al. found a link between m5C

methylation sites in hepatitis B patients and the virus’s ability to

replicate and evade antiviral treatments (10). Additionally, it has been

demonstrated to influence adipogenesis by regulating the cell cycle and

autophagy (11). Aberrant methylation of m5C leads to malignant

proliferation of gastric cancer cells and poor prognosis by promoting

reprogramming of glutamine metabolism (12). It can be seen that m5C

methylation modification not only leads to malignant outcomes such as

tumors but also participates in some fundamental life processes of cells.

Although m5C methyltransferases have been thoroughly

studied, the members of the m5C methyl-binding protein family

have not yet been systematically elucidated. In this review, we

summarize the m5C Readers identified in the literature as

comprehensively as possible, refine and update the m5C methyl-

binding protein members, and primarily describe the molecular

structure characteristics, biological functions and mechanisms of

m5C methyl-binding proteins (ALYREF, YBX1, YBX2, RAD52,

YTHDF2, FMRP and SRSF2) in tumorigenesis and development.
2 Regulators of m5C methylation

The regulators of m5C modification can be divided into three

groups according to their functional characteristics, including m5C

methyltransferases (m5C writers), m5C demethylase (m5C erasers),

and m5C methyl-binding proteins (m5C readers).

The m5C writers primarily consist of the NSUN family (NSUN1-

NSUN7) and the methyltransferase homologue TRDMT1 (DNMT2)

(8, 13, 14), which form m5C methylation by transferring the methyl

group to the fifth carbon atom of cytosine. m5C methyltransferases

are involved in the formation of methylation, modulate RNA

function and stability, influence post-transcriptional modifications,

and are involved in tumorigenesis and progression (8).

The m5C erasers including ALKBH1 and TET families (15, 16),

which is capable of oxidizing m5C, thereby achieving the effect of

removing methyl groups from methylated RNA, that is to say, the

demethylation of the RNA. Similarly, ALKBH1 and TET play a

pivotal role in tumorigenesis by influencing methylation formation

and regulating the malignant phenotype of cancer cells, which is

closely relevant to poor prognosis (17, 18).

The m5C readers include ALYREF, YBX1, YBX2, RAD52,

YTHDF2, FMRP and SRSF2 (19–25). They can specifically

recognize m5C-methylated RNAs, affect RNA stability and

nucleocytoplasmic shuttling, and regulate transcription and

translation. At the cellular level, they can enhance the ability of

proliferation, migration, and invasion of cancer cells. They are also

correlated with the immune microenvironment and drug resistance of

tumors, which can further accelerate the tumor progression (26, 27).

The different acting elements of m5C work together to promote

the occurrence and development of tumors. For example, the co-

expression of ALYREF and NSUN2 is frequently observed in bladder
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cancer, and both proteins regulate RNA methylation and post-

transcriptional modifications to promote bladder cancer

progression (28). YBX2 and YTHDF2 interactions promote the

stability of mRNA of endometrial cancer cells (29). In non-small

cell lung cancer, the combined action of NSUN2 and YBX1 results in

the increased expression of the target gene QSOX1, which mediates

resistance to gefitinib in non-small cell lung cancer (30). NSUN 2 and

YBX 1 are closely related, and in addition to non-small cell lung

cancer, they can also interact in pancreatic, colorectal cancer, and

ovarian cancer to jointly regulate tumor progression (4, 31, 32).
3 Detection methods of m5C
methylation modification

Epigenetic modification of gene has increasingly become the

focus of research, and the excellent performance of m5C

methylation modification of RNA in the development of tumors

has attracted more and more researchers. This also means that we

need more convenient and efficient methods to help researchers

detect the presence or extent of methylation. With the rapid

development of scientific testing technology, more and more

methods can be chosen to detect the existence, abundance, or

type of m5C methylation, which can be selected according to the

purposes of the detection, and here are some common methods.
3.1 Immuno-northern blotting

RNA obtained by electrophoretic separation was transferred to

a PVDF membrane and incubated with an antibody specific for the

m5C methylation modification, followed by a chemiluminescent

reaction to show the location of the bands to assess if the m5C

methylation modification is present (33).
3.2 The second generation sequencing

The second generation sequencing, a transcriptomic detection

method, has been the preferred approach for RNA detection due to

its low error and high accuracy. The examination of m6A and m5C

alterations commonly uses nanopore technology, an amplification-

free sequencing technique. Structural changes that occur as RNA or

DNA passes through the nanopore result in differences in current

blocking, which is translated into base sequences by a recurrent

neural network (RNN) as a way of analyzing molecular signatures

and locating regions of RNA methylation (34, 35).
3.3 Enzyme-linked immunosorbent assay

In order to determine the degree of methylation in the test

samples, the signal intensities of the sample RNAs are compared to

standard curves obtained from known methylated and non-

methylated control RNAs (34). Commercially available kits are

sufficient for the assay.
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FIGURE 2

m5C methyltransferase and m5C binding protein participate in the formation of methylation modification. m5C methyltransferase catalyzes the
formation of m5C methylation, and the methylation binding protein recognizes methylated mRNA, promoting its nuclear transport and affecting its
stability and post-transcriptional translation.
FIGURE 1

Molecular structure and methylation site of cytosine. Methyltransferase transfers the methyl group of S-adenosylmethionine to the fifth carbon atom
of cytosine, forming 5-methylcytosine.
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3.4 Mass spectrometry

RNA is broken down into nucleosides by enzymatic digestion,

and these are then purified. Mass spectrometry is then used to

separate the ribonucleosides and identify the methylated modified

nucleosides. Individual molecules are identified and measured

according to their mass-to-charge ratio (36). The method takes

advantage of the fact that the modified nucleotide differs from its

unmodified counterpart in terms of net charge, hydrophobicity, and

polarity (34). The classical methods for the analysis of RNA
Frontiers in Oncology 04
methylation modification are one-dimensional (1D) or two-

dimensional (2 D) thin-layer chromatography (TLC) and liquid

chromatography-tandem mass spectrometry (LC-MS/MS) (36).
3.5 Hybridization with spots

Spot hybridization, also known as slit hybridization, is a

relatively simple method for the detection of methylation patterns

in diverse RNA types. The membranes with RNA are incubated
FIGURE 3

RNA m5C modification and function of m5C Readers. m5C binding proteins(ALYREF, YBX1, YBX2, RAD52, YTHDF2, FMRP and SRSF2) participate in
methylation modification and perform complex epigenetic regulation of genes.
TABLE 1 Summary of RNA m5C readers.

Regulator Structural features Cellular
distribution

Biological processes involved Identifiable
methylation
types

ALYREF - Nucleus Specifically recognizes and binds m5C mRNAs, mediates nucleo-
cytoplasmic shuttling, transcription elongation, genome stability, the
chaperone of basic leucine zipper (bZIP)

m5C

YBX1 A cold-shock domain Cytoplasm RNA stabilization, mRNA splicing, DNA repair, translational and
transcription regulation, cell migration and proliferation

m5C

YBX2 A cold-shock domain Nucleus Major constituent of messenger ribonucleoprotein particles (mRNPs),
regulate the stability and translation of germ cell mRNAs, liquid-liquid
phase separation

m5C

RAD52 A heptameric circular DNA-binding
protein resembling a windmill

Nucleus Genetic recombination, DNA repair m5C

YTHDF2 Three aromatic amino acid residues
in the hydrophobic pocket

Nucleus
and Cytoplasm

Regulate mRNA stability, regulate cell growth and cell cycle, regulate
immunity, regulates circadian regulation of hepatic lipid metabolism,
liquid-liquid phase separation

m5C, m6A, m1A

FMRP Three structural domains: the N-
terminus, the central structure, and
the C-terminus

Nucleus
and Cytoplasm

Neuronal development and synaptic plasticity, mRNA nuclear export,
alternative mRNA splicing, mRNA stability

m5C, m6A

SRSF2 Rich in serine and arginine residues Nucleus
and Cytoplasm

Alternative mRNA splicing, mRNA nuclear export, transcription and
translation, immune depletion

m5C
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with specific antibodies or probes to determine the existence and

level of methylation by the depth of the developed spots (37). This

experiment should only be used to verify the presence of

methylation and to compare the change in the overall abundance

of methylation between different samples. However, it is equally

significant to be careful to avoid contamination of the DNA, as this

may affect the results.
4 Molecular structure and biological
function of m5C RNA-
binding proteins

4.1 ALYREF

ALYREF, also designated THOC4, is a heat-stable nuclear

protein that has the unusual ability to recognize m5C sequences

and act as a molecular chaperone. ALYREF is known to facilitate the

dimerization of unfolded leucine zips by recognizing them, to

activate transcription. It can also bind to specific molecules in the

translational region of mRNAs, thereby regulating gene expression,

mRNA egress from the nucleus and genome stability (38–42). In

most tumors, ALYREF has a high expression level and is closely

associated with tumor heterogeneity, immune infiltration, and a

high mutation rate of TP53, which enhances the proliferation,

migration, and invasive properties of tumor cells, as well as drug

resistance, tumor progression and adverse prognosis (43–45). The

activity of ALYREF is regulated by AKT-mediated phosphorylation,

with reduced ALYREF phosphorylation observed to suppress cell

proliferation and mRNA export (46).
4.2 YBX1

YBX1 is a gene with a wide range of nucleic acid binding

properties encoding a highly conserved cold-excited structural

domain protein that plays a pivotal role in many basic biological

functions, such as transcription, translation, DNA repair, and

splicing of precursor mRNAs (47–49). YBX1 displaces translation

initiation factors from messenger ribonucleic acid bodies and

redistributes them to improve translation efficiency (50).

However, the regulation of translation by YBX1 is not always

positive. Studies have demonstrated a bell-curve relationship

between the relative amount of YBX1 and the level of translation,

with YBX1 acting as an inhibitor of translation when the relative

amount of YBX1 is high (51–53). As a splicing regulator of

messenger RNAs (mRNAs), YBX1 indirectly affects mRNA

splicing and shear factors behavior by identifying particular

sequences in precursor mRNAs (54). YBX1 can directly bind to

m5C-methylated mRNAs and act to stabilize them (19, 20). In

addition, YBX1 is essential for maintaining cardiomyocyte function.

mTOR activation of YBX1 can transmit pathological signals and

regulate protein synthesis in cardiomyocytes, which significantly

contributes to the development of cardiac hypertrophy (55). YBX1,

a known oncoprotein, shows high expression in a variety of tumors,
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and YBX1 can regulate tumor angiogenesis by releasing angiogenic

factors into the extracellular microenvironment, playing a role as an

oncogenic enhancer (56, 57).
4.3 YBX2

YBX2 is a member of the Y-box protein family, and similar to

YBX1, YBX2 also has an alanine/proline (A/P)-rich N-terminal

domain, a variable C-terminal domain (CTD), and a highly

conserved cold shock domain (CSD) (58). YBX2 is a major

component of mRNP and regulates mRNA stability and

translation (29, 59, 60). Because MAPK phosphorylates YBX2,

ubiquitination-mediated degradation is suppressed. The

accumulated YBX2 then activates brown adipose tissue, thereby

promoting glucose utilization and lactic acid production in

glycolysis (61). In addition, methylated YBX 2 can be recognized

by ALYREF, promoting YBX 2 nucleation and increasing YBX 2

protein expression, which is an important way to regulate lipolysis

(62). Moreover, YBX2 is essential for maintaining the normal

function of germ cells (63). m5C methylation regulates the

activity of YBX2, a novel m5C binding protein, and that can

undergo liquid-liquid phase separation in vitro and in vivo (21).

Pan-cancer analysis showed that YBX family genes are associated

with most tumor progression and can predict tumor prognosis to a

certain extent (64).
4.4 RAD52

RAD52 is a multimeric cyclic DNA repair protein consisting of

418 amino acids. The human Rad52 protein, which is composed of

a heptameric ring, resembles a windmill (65).In ROS-induced DNA

double-strand break damage, RAD52 can preferentially bind to

DNA: RNA hybrids containing m5C methylation-modified RNAs

with the help of the m5C methyltransferase TRDMT1 to promote

homologous recombination (23). This observation suggests that

RAD52 may serve as a reader of m5C RNA in DNA: RNA hybrid at

the DNA damage site and that m5C methylation modification of

RNA is crucial for gene repair and maintaining genomic stability

(66). Additionally, the activity, stability, and function of RAD52 are

also affected by post-translational modifications such as

phosphorylation and ubiquitination (67, 68). In tumors, RAD52

interacts with RNA polymerase-associated factor 1 (PAF1) to

inhibit cisplatin and gemcitabine resistance (69).
4.5 YTHDF2

Based on structural and functional studies of YTHDF2, it was

found to be a versatile reader that recognizes M6A, M1A and M5C

(70, 71). Dai et al. demonstrated that three aromatic amino acid

residues in the hydrophobic pocket of YTHDF2 that bind m6A can

bind directly to m5C-methylated RNA. Considering that YTHDF2

recognizes multiple methylated forms, whether YTHDF2 acts on
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the m5C site can be verified by immunoprecipitation in vitro pull-

down assays and LC-MS/MS, and can also be distinguished by the

difference in YTHDF2 binding to the m5C and m6A docking

structural domains (22). Functionally, YTHDF2 participates in

the processing of precursor ribosomal RNAs (pre-rRNAs) in an

m5C-dependent manner and regulates translation (22, 72). Histone

lactation controls YTHDF2 expression, and tumors with high levels

of YTHDF2 are associated with a poor prognosis. Additionally,

YTHDF2 regulates immune processes by affecting immune cell

infiltration in the tumor microenvironment (73, 74). The deletion of

YTHDF2 in the tumor microenvironment has been observed to

result in increased apoptosis and impaired suppression of Treg cells

(75). Additionally, it has been shown to promote reprogramming of

tumor-associated macrophages, enhance antigen cross-

presentation, inhibit tumor growth, and enhance the efficacy of

PDL-1 antibodies (76, 77). As YTHDF2 interacts with more than

one type of methylation modification, the mechanism by which it

acts needs to be further explored and differentiated. However, the

role of YTHDF2 in tumor is still controversial, showing very

different effects in different cancer types. For example, it plays a

dual role in gastric cancer (78, 79). A comprehensive and detailed

examination is necessary to clarify its precise mechanism of action.
4.6 FMRP

FMRP is an RNA-binding protein with three structural

domains: the N-terminus, the central structure, and the C-

terminus, which is associated with the structure and function of

synapses, is involved in the exit of mRNA from the nucleus, and also

has a wide range of regulation of gene expression (80, 81). Early

nervous system development requires FMRP to identify and bind

mRNAs in the hippocampus and cerebral cortex, which are critical

for memory and learning (82). Furthermore, FMRP plays a role in

RNA methylation modification as an m5C reader, facilitates the

interaction between the methyltransferase TRDMT1 and the

demethylase TET1, influences transcription and translation, and

contributes to DNA damage repair and cell survival (24, 83).

Beyond its role in gene regulation, FMRP is also important in

metabolic processes. It has been demonstrated that FMRP

deficiency increases hepatic protein synthesis and affects lipid

metabolism, indicating that FMRP is involved in the regulation of

systemic metabolic homeostasis (84). In solid tumors, FMRP up-

regulation contributes to poor prognosis, inhibits immune attack,

promotes tumor growth, immune escape and epithelial-

mesenchymal transition (EMT) conversion (85, 86).
4.7 SRSF2

SRSF2 belongs to the family of RNA-binding proteins known as

serine/arginine-rich (SR) proteins, which are involved in constitutive

and selective splicing of RNAs and suppress intron splicing (87–89).

SRSF2 contains an RNA recognition motif (RRM) and an RS domain,

the former for binding to RNA and the latter for binding to other
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proteins. Additionally, the interactions between different SR splicing

factors are realized in the RS domain (90). It has been reported that SR

proteins play a role in the process of mRNA egress and translation, in

addition to RNA splicing (91). Aberrant expression of SRSF2 is closely

associated with tumorigenesis (92). Recent studies find that

knockdown of NSUN2 decreases RNA methylation levels, reduces

SRSF2 binding, and alters RNA splicing, which evidences SRSF2 can

act as an m5C reader and may be associated with the development of

malignancy (25, 93). Besides, SRSF2 has been linked to immune system

depletion in the tumor microenvironment. It is a potential therapeutic

target for reversing immune depletion because it regulates the

transcription of immune checkpoint genes by influencing signal

transduction and promoter recruitment (94). SRSF2 is a key

molecule for cell survival and not only has a role in tumors but also

regulates myocyte proliferation and myogenesis by preventing

premature aging, differentiation, and apoptosis of myocytes (95).

Moreover, SRSF2 acts as a strong transcriptional activator that

promotes hepatic energy homeostasis and bile acid metabolism.

Mutation or deletion in the expression of SRSF2 can lead to aberrant

hepatic splicing, metabolic dysfunction, bile acid accumulation, and the

subsequent induction of endoplasmic reticulum stress and oxidative

stress, ultimately leading to liver failure (96).
5 The roles of m5C readers in
human cancers

5.1 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the material cause of

morbidity and mortality among all cancers, and is a major threat to

global health (97). The majority of liver cancer patients are

concentrated in Asia, with China having the most liver cancer cases

(98, 99). The low survival rates of liver cancer creates a significant

challenge for treating this disease (100, 101). As a binding protein for

m5Cmethylation, ALYREF can stabilize RNA and activate subsequent

signaling pathways to exert a tumorigenic effect (102). Xue et al. found

that ALYREF deficiency can inhibit hepatocellular carcinoma cells

proliferation and tumor growth, increase the rate of apoptosis, and is

associated with tumor immune infiltration (103, 104). In hepatocellular

carcinoma, the overexpression of YBX1 remodels the tumor

microenvironment, increasing the infiltration of immune cells and

the transcription of PD-L1 (105, 106). YBX1 interacts with circular

RNA to promote metastasis and drug resistance of liver cancer:

circASH2 influences the liquid-liquid phase separation and

cytoskeletal remodeling of YBX1, thereby promoting the metastasis

of hepatocellular carcinoma (107, 108); cFAM210A binds to YBX1,

which reduces YBX1 phosphorylation and inhibits the trans-activating

effect on EMT. At the same time, cFAM210A is regulated by YTHDF2,

which induces cFAM210A degradation and promotes hepatocellular

carcinoma progression (109). The elevated expression of RAD52 in

hepatocellular carcinoma is linked to age and gender, and it is

associated with promoting proliferation and migration of

hepatocellular carcinoma cells (110). YTHDF2 is associated with

stemness and drug resistance in hepatocellular carcinoma cells,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1534948
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1534948
improving genomic stability and promoting immune escape and

angiogenesis, while also facilitating hepatocellular carcinoma

metastasis in vivo (111–114). SRSF2 is frequently mutated or

overexpressed in cancerous cells, and SRSF2 deletion can stimulate

the regeneration of hepatic progenitor cells and the activation of

oncogenes in hepatocellular carcinoma, which increases the

proliferative and tumorigenic potential of hepatocellular carcinoma

cells, mediates drug resistance, and promotes the progression of

hepatocellular carcinoma (115, 116). FMRP is overexpressed in

hepatocellular carcinoma, promotes the translation of STAT3, and

can bind to STAT3 mRNA, thereby facilitating its localization to

cellular protrusions and the promotion of hepatocellular carcinoma

metastasis (117).
5.2 Pancreatic cancer

Pancreatic cancer is globally recognized as one of the deadliest

malignant tumors, and clinical treatment is facing great challenges.

There is an urgent demand to explore its pathogenesis, discover

therapeutic targets, and prevent its progression more effectively

(118). ALYREF can affect amino acid metabolism in pancreatic

cancer cells, promote immune escape, and is associated with poor

prognosis (119). YBX1 directly promotes mucin expression and

establishes a barrier to prevent chymotrypsin from digesting

pancreatic cancer cells, a mechanism that ensures the survival of

pancreatic cancer cells in the pancreatic microenvironment (120).

Overexpression of YBX1 in pancreatic cancer binds to the promoter

of GSK3b, resulting in upregulation of CBX3, which activates TGF-

b signaling to regulate the cell cycle and promotes the growth and

proliferation of pancreatic cancer cells (121, 122). YBX1 also

promotes IL-18 transcription, increases immune cell infiltration,

and regulates the immune microenvironment in pancreatic cancer

(123). YTHDF2 regulates EMT via YAP, which in turn hinders the

migration and invasion of pancreatic cancer cells (124).
5.3 Esophageal carcinoma

Esophageal cancer belongs to malignant tumors of the digestive

system and progresses rapidly in the later stages. As the tumor grows

in size, it can nearly completely obstruct the esophagus, which greatly

reduces patients’ quality of life. Research shows that esophageal

cancer occurs more frequently in men, with higher morbidity and

mortality rates compared to women (125). m5C, one of the most

common RNA modifications, plays an important role in esophageal

cancer progression. YBX1 is upregulated in most cancers and

esophageal cancer is no exception. Both in vivo and in vitro, YBX1

promotes the proliferation, migration, and invasion of esophageal

cancer cells (5). In esophageal carcinogenesis, long non-coding RNAs

are significant (126). LINC00941 can interact with YBX1, bind to the

promoter region of SOX2, upregulate SOX2 transcription, increase

RNA stability, and promote the malignant phenotype of esophageal

cancer (127). MiR-323a-3p inhibits the proliferation, migration, and

invasion of esophageal cancer cells by regulating FMR1 (128).
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5.4 Breast cancer

Breast cancer is the most prevalent malignant tumor and the

second principal cause of cancer deaths in women (129, 130).

ALYREF has been demonstrated to promote the development of

breast cancer by affecting transcriptional regulation and

mitochondrial energy metabolism, and regulate the growth,

apoptosis, and migration of breast cancer cells (6). Jin et al. found

that ALYREF, in addition to regulating the nuclear export of

mRNA, also affects the stemness of breast cancer cells and is

associated with adriamycin resistance (131). In breast cancer,

YBX1 is linked to genetic stability; it can interact with m5C

methyltransferase NSUN2 to influence mRNA stability, protein

synthesis, and promote tumor progression (132–134). YBX1

regulates the invasion and migration of breast cancer cells by

down-regulating the levels of the protein coronin-1C (135). The

YBX1 protein has been demonstrated to regulate the proliferation of

breast cancer cells through the PI3K/AKT/mTOR signaling

pathway. Furthermore, there is evidence that YBX1 is connected

to the development of tamoxifen resistance (136). The interaction

between DSCAM-AS1 and YBX1 in positive feedback regulates the

expression of ERa and promotes the progression of breast cancer

(137). Wu et al. identified a new piRNA, named piR-YBX1. This

piRNA can bind directly to YBX1, resulting in a reduction in the

levels of both mRNA and protein. Additionally, YBX1 has been

observed to bind to RAF1, an important role in the MAPK signaling

pathway, which plays a crucial role in the development and

progression of triple-negative breast cancer (138). RAD52 is

connected to the breast cancer susceptibility genes BRCA1 and

BRCA2. Research has shown that mutations in RAD52 can

suppress certain BRCA2-related phenotypes in breast cancer (139,

140). In cells lacking BRCA2, overexpression of RAD52 can

compensate for the loss of BRCA2-associated function. However,

simultaneous deficiencies of both RAD52 and BRCA2 have been

shown to be lethal to cells (141). YTHDF2 reverses RNA

demethylase-induced alterations in cellular phenotype by

increasing mRNA stability (72). Furthermore, it has been found

to promote cell proliferation, invasion, and tumorigenic properties

in vitro, as well as promoting osteolytic metastasis of breast cancer

in vivo (142, 143). Triple-negative breast cancer is characterized by

the absence of specific markers and therapeutic targets, which

contributes to worse outcome and high recurrence and metastasis

rates. The main treatment modalities for triple-negative breast

cancer are chemotherapy and immunotherapy. YTHDF2 has been

reported to affect the pre-tumor phenotypic polarization of

macrophages and antigen-presenting signals between immune

cells in triple-negative breast cancer. Furthermore, it also inhibits

immune activity and associates with drug resistance (144). SRSF2,

another m5C methylation binding protein, promotes angiogenesis

under hypoxic conditions by selectively splicing vascular

endothelial growth factor A (VEGFA) and is associated with poor

prognosis in breast cancer (145). Similar to other tumors, FMRP

expression is elevated in breast cancer. Furthermore, there are

considerable variations in FMRP expression among metastatic

breast cancer lesions, with low expression in the brain and bones
frontiersin.org

https://doi.org/10.3389/fonc.2025.1534948
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1534948
and high expression in the liver and lungs. Consequently, FMRP is

regarded as a prognostic factor for site-specific metastasis (146).
5.5 Lung cancer

Lung cancer has a high incidence rate in both men and women,

and common types include lung adenocarcinoma, squamous cell

carcinoma, and small cell lung cancer, of which adenocarcinoma

and squamous cell carcinoma are collectively known as non-small

cell lung cancer (NSCLC) (97, 147). A recent study has indicated

that ALYREF and YTHDF2 are correlated with mRNA stability in

lung adenocarcinoma and act on the YAP signaling pathway to alter

immune cell infiltration in the tumor microenvironment (148, 149).

Furthermore, they have been shown to enhance the secretion of

exosomes and activate the downstream pathway in lung

adenocarcinoma by regulating YAP transcription, which

promotes drug resistance, tumor progression, and metastasis

(150, 151). In lung adenocarcinoma, YBX1 is highly expressed

and binds to the promoter region of CDC25a and HOXC8,

thereby regulating cell cycle progression, cell proliferation, and

apoptosis (152, 153). The Runx3-miR-148a-3p axis targets and

regulates YBX1, adjusting the levels of multiple genes like Cyclin

D1 and MMP2. This affects the proliferation, migration, and

invasion of non-small cell lung cancer, and promotes NSCLC

progression (154). `The regulation of YBX1 on the stemness of

NSCLC is complex: on the one hand, it can inhibit the expression of

MUC5AC and the integrin b4/pSrc/p53 signaling pathway,

reducing lung cancer cell stemness and increasing the therapeutic

sensitivity of erlotinib (155). On the other hand, YBX1 can promote

the activation of NANOG to enhance the stemness and spheroidal

ability of non-small cell lung cancer and regulates MUC1

transcription to promote cancer metastasis and stem cell

properties (156, 157). The phase separation of YBX1 is identified

as a key process in the development of non-small-cell lung cancer,

affecting carcinogenesis and progression by regulating the biological

behavior of cancer cells (158). RAD52 is expressed at high levels in

non-small cell lung cancer, and regulates cell cycle and apoptosis

and correlates with tumor size, degree of differentiation, lymphatic

metastasis, and susceptibility (159, 160). SRSF2 is overexpressed in

non-small cell lung cancer and interacts with long non-coding

RNAs to up-regulate the expression of VEGFR1-i13, affecting the

proliferation and invasion of lung cancer cells (161–163). In

neuroendocrine lung tumors, SRSF2 also makes a difference.

Highly expressed SRSF2 acts as a cell cycle regulatory protein that

regulates the proliferation of lung cancer cells and promotes cancer

progression (164).
5.6 Prostate cancer

Prostate cancer is a common malignant tumor in males,

representing a substantial risk to the quality and longevity of life

(165). Methylation modification of RNA has a visible impact on

prostate cancer. The m5C-binding protein YBX1 inhibits

ubiquitination of the androgen receptor, increasing intracellular
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androgen levels and stability. While AURKA phosphorylates

residues of YBX1 and promotes its stabilization and nuclear

translocation so that a positive feedback loop is formed and plays

an important role in prostate cancer (166). YTHDF2 promotes

mRNA stabilization and protein expression in androgen-negative

prostate cancer, upregulates EMT-related factors, and activates the

AKT pathway, which in turn promotes cell proliferation to promote

metastasis (114, 167). Besides, A high level of SRSF2 expression is

correlated with an adverse prognosis in prostate cancer (168).
5.7 Bladder cancer

Bladder cancer is a malignant cancers with a high recurrence

and metastasis rates and has a poor prognosis (169, 170). Studies

show that bladder cancer is strongly associated with genetic

mutations and partly with epigenetic dysregulation (171, 172). In

bladder cancer, ALYREF enhances the stability of mRNA encoding

the glycolysis rate-limiting enzyme PKM2 in an m5C-dependent

manner, upregulates PKM2 expression, and promotes the

progression and deterioration of bladder cancer (173). ALYREF

recognizes the NSUN2 locus on methylated mRNA and promotes

mRNA stabilization to enhance the proliferation and invasion of

bladder cancer cells in an m5C-dependent manner (28). The study

revealed that YBX1 is crucial in bladder carcinogenesis and the

tumorigenic effects of YBX1 were closely associated with glycolysis

(19). Furthermore, the upregulation of glycolytic enzymes to

facilitate glycolysis by regulating c-MYC and HIF1-a expression

(56). SRSF2 interacts with miR-193a-3p, and compelling evidence

suggests that this interaction is strongly associated with multidrug

resistance in bladder cancer (174).
5.8 Colorectal cancer

Due to the unique disease characteristics of colorectal cancer,

symptoms usually appear at a late stage, resulting in most cases

being diagnosed late and treatment being passive. Research find that

the morbidity of colorectal cancer is generally on the rise (175).

Therefore, clarifying the pathogenesis of colorectal cancer will

provide more possibilities for treatment. In colorectal cancer, the

function of YBX1 is regulated by non-coding RNAs, transcription

factor NF-kb, etc, and is associated with the activation of various

signaling pathways (176, 177). Lnc-SOX9-4 inhibits YBX1

degradation, stabilizes YBX1 protein levels, and accelerates the

proliferation and metastasis of colorectal cancer cells (178). YBX1

is an m5C reader and can also be modified by methylation, and the

modified YBX1 shows different effects in tumors: when methylated

by PRMT5, YBX1 can inhibit the growth, migration, and invasion

of colorectal cancer cells (176). Phosphorylated YBX1 activates the

NF-kB signaling pathway and promotes colorectal cancer

progression (179). The reprogramming of glucose metabolism by

YBX1 and NSUN2 in an m5C-dependent manner promotes lactate

production and accumulation. Furthermore, lactate accumulation

positively feedback regulates the pro-cancer effects of NSUN2 by

promoting NSUN2 transcription (32). YTHDF2 is widely involved
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in the pathogenesis of colorectal cancer, recognizing methylated

XIST and mediating its degradation to inhibit colorectal cancer

progression (180). YTHDF2 also plays a role in aerobic glycolysis in

P53 wild-type colorectal cancer and suppresses the malignant

phenotype of the tumor (181). In terms of treatment, YTHDF2

increases the sensitivity of post-surgical radiotherapy in colorectal

cancer patients (182). The expression of SRSF2 in colorectal cancer

is apparently higher than that in normal tissues. The high

expression of SRSF2 acts as a cell cycle regulator, promoting the

proliferation of colorectal cancer cells both in vivo and in vitro, and

contributing to the progression of colorectal cancer (92).

Overexpression of FMRP and RAD52 is associated with colorectal

cancer progression. FMRP regulates necrotic activation of cancer

cells by controlling the expression of RIPK1 and results in poorer

prognosis (66, 183).
5.9 Gastric cancer

Gastric cancer is one of the most common malignancies, with

high malignancy and lethality. It is prone to metastasis, recurrence,

and drug resistance, and is the second most common cause of cancer

death (184). The study indicated that ALYREF has an influence on

accelerating cell proliferation and metastasis by regulating the cell

cycle and preventing cell apoptosis (185). Long non-coding RNAs

(lncRNAs) have been reported to play a multitude of roles in cancer.

One example is the lncRNA PIN1P1, which has a high expression in

gastric cancer and promotes cancer progression by interacting with

the YBX1 (186). Under hypoxic conditions, HIF-1 mediates high

expression of YTHDF2, which is correlated with unfavorable

prognosis of gastric cancer and increases the expression and

stability of CyclinD1, promoting the proliferation of gastric cancer

cells, and being associated with chemotherapy resistance (78). In

contrast, the study conducted by Shen et al. reveals that YTHDF2 has

the potential to impede the proliferation of gastric cancer cells by

negatively modulating the FOXC2 signaling pathway (79). It can be

seen that YTHDF2 exercises multiple functions in gastric cancer,

acting on different molecules or pathways and producing distinct

regulatory effects on tumors. Acetylated SRSF2 promotes the

methylation of precursor RNA in gastric cancer cells, stimulates

cell proliferation and migration, and mediates the malignant

phenotype of gastric cancer cells, which correlates with poor

prognosis of gastric cancer (187).
5.10 Other tumors

YBX1 functions as a splicing factor, upregulating pro-carcinogenic

VEGF165 to promote the proliferation, migration, and invasion of

osteosarcoma cells and induce angiogenesis (188). YTHDF2 plays a

role in osteosarcoma demethylation, inactivating the STAT3 pathway

and inhibiting tumor cell proliferation, while simultaneously blocking

the cell cycle and accelerating apoptosis (189). YBX1 is a key molecule

in acute myeloid leukemia cell survival, regulating cell proliferation,

apoptosis, cell cycle, and cell signal transduction (190). In ovarian

cancer, high expression of YBX1 and YTHDF2 is relevant to poor
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prognosis, with YBX1 up-regulating the expression of E2F1 by a phase

separation manner, leading to tumor progression (31, 191). In

addition, YBX1 is closely related to drug resistance in ovarian

cancer, improving the ability of cell gene damage repair by

increasing the stability of mRNA, thereby enhancing the resistance

of tumor cells to platinum-based chemotherapy drugs (192). YBX2

promotes the properties of endometrial cancer stem cells and enhances

their pellet-forming ability and chemotherapy resistance (193). YBX1

inhibits apoptosis of renal clear cell carcinoma cells, promotes

migration and invasion, and is a potential prognostic marker and

therapeutic target for renal cell carcinoma (194). SRSF2 is not only

involved in alternative splicing but also related to the expression of

apoptotic genes. The expression of SRSF2 in renal clear cell carcinoma

is lower, which inhibits the activity of caspase-9 and enhances the

survival ability of renal cell carcinoma (195). m5C binding proteins

YBX1, YBX2, and ALYREF are highly expressed in head and neck

squamous cell carcinoma, accelerating cell proliferation and tumor

metastasis, and are associated with poor prognosis (196–199).
3 Discussion

m5C methylation has been shown to contribute to the

development of various diseases, and m5C methylation-binding

proteins are vital elements of m5C methylation that have an

indispensable impact on the function of m5C methylation. The

increasing popularity of m5C methylation research will inevitably

lead to a greater demand for m5C methylation detection to more

intuitively identify the presence and type of methylation. This

article comprehensively summarizes the structure, function, and

common detection methods of m5C methyl-binding proteins that

have been identified so far, and focuses on the impact these proteins

have on the development and progression of various tumorigenesis,

providing potential targets and new perspectives for the clinical

treatment of tumors.

In addition to ALYREF and YBX1, this article complements the

recently discovered m5C readers, enriching the understanding of

m5C methylation. Current studies show that m5C methylation-

binding proteins include ALYREF, YBX1, YBX2, RAD52, YTHDF2,

FMRP, and SRSF2, which can perform functions independently or

work together. m5C methylation-binding proteins can specifically

recognize methylated genes, affect s, participate in RNA nucleation

and other processes, and realize the regulation of gene expression at

the post-transcriptional level. As important methylation forms,

m6A and m5C are closely related, and some m5C methylation-

binding proteins also act on m6A, such as YTHDF2, which can

specifically recognize m5C and catalyze m6A. Understanding their

interactions can help us to explore the synergies and networks

between them, and benefit us to understand their mechanisms

more comprehensively.

The m5C reader is associated with a variety of diseases,

including various malignancies, and affects tumor proliferation,

migration, invasion, and drug resistance by inducing cancer stem

cell properties and promoting EMT transformation. In addition,

methylation modification is related to tumor immunity. It regulates

immune cell infi l trat ion, changes the tumor immune
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microenvironment, mediates immune escape, and is closely

associated with poor prognosis. Of course, there are two sides to

everything, and m5C methylated binding proteins do not always

contribute to promoting cancer, different binding proteins play

varied roles in different tumors, and even the role of the same

protein in the same cancer type is inevitably controversial. For

example, high expression of YTHDF2 under hypoxic conditions

promotes the proliferation and chemoresistance of gastric cancer

cells (78). Similarly in gastric cancer, Shen et al. find that YTHDF2

can inhibit the growth of gastric cancer cells by negatively

regulating the FOXC2 signaling pathway (79). Of course, current

research on the mechanism of m5C methylation is still limited and

one-sided and needs to be further explored and supplemented.

There is a rich variety of RNA modifications, and while

abundant modification types have been discovered, other forms of

modifications may still exist. Therefore, it is necessary to develop

more precise and sensitive detection methods. For m5C

methylation, in addition to the several detection methods

described here, more specific strategies and innovative techniques

are needed to detect RNA modification.

While it is essential to understand the molecular mechanisms of

methylation, the ultimate goal of studying microstructure is to serve

clinical treatment. Currently, there is still a gap in targeted drugs for

m5C methylated molecules, and specific targeted inhibitors are

worth further exploring. In addition, m5C methylation is associated

with tumor immune invasion and can mediate drug resistance,

suggesting that the use of targeted inhibitors may be expected to

improve the effectiveness of immunotherapy and improve tumor

prognosis. However, targeted RNA modification still faces great

challenges, and it is necessary to overcome the difficulties of off-

target and specificity, minimize the impact on unmethylated RNA,

reduce side effects, and maximize the efficacy as much as possible.

Secondly, RNA modification is a dynamic process, and achieving

precise targeting of the modification site requires advanced

technology. In a word, although the mechanism of action of m5C

methylation-binding protein in tumors is controversial, various

studies have shown that it is still a potential target for tumor

treatment, providing new ideas for tumor treatment and bringing

new hope to cancer patients.
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MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids
Res. (2018) 46:D303–D7. doi: 10.1093/nar/gkx1030
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m5C 5-Methylcytosine
Frontiers in Oncology
ALYREF RNA and export factor-binding protein 2
YBX1 Y-box-binding protein 1
YBX2 Y-box-binding protein 2
RAD52 DNA repair protein
YTHDF2 YTH N6-methyladenosine RNA binding protein F2
FMRP Fragile X messenger ribonucleoprotein 1
SRSF2 Serine and arginine-rich splicing factor 2
NSUN NOL1/NOP2/sun
DNMT2 DNA methyltransferase 2
ALKBH1 1Alpha-ketoglutarate-dependent dioxygenase ABH1
TET Ten-eleven translator family proteins
QSOX1 Quiescin sulfhydryl oxidase 1
PVDF Polyvinylidene fluoride
m6A N6-methyladenosine
ELISA Enzyme-linked immunosorbent assay
MS Mass Spectrometry
1D One-dimensional
2D Two-dimensional
TLC Thin layer chromatography
LC-MS/MS Liquid chromatography-tandem mass spectrometry
TP53 Tumor protein p53
mTOR Mammalian target of rapamycin
CTD C-terminal domain
CSD Cold shock domain
mRNP Messenger ribonucleoprotein
MAPK Mitogen-activated protein kinase
ROS Reactive Oxygen Species
PAF1 RNA polymerase-associated factor 1
PD-L1 Programmed cell death 1 ligand 1
EMT Epithelial-mesenchymal transition
SR Serine/arginine-rich
RRM RNA recognition motif
HCC Hepatocellular carcinoma
FAM210A Family with sequence similarity 210 member A
15
STAT3 Signal transducer and activator of transcription 3
GSK3b Glycogen synthase kinase 3 beta Gene
CBX3 Chromobox 3
TGF-b Transforming Growth Factor Beta
IL-18 Interleukin 18
YAP Yes1 Associated Transcriptional Regulator
NANOG Nanog Homeobox
SOX2 SRY-Box Transcription Factor 2
PI3K Phosphoinositide-3-Kinase
AKT AKT Serine/Threonine Kinase
LINC00941 Long Intergenic Non-Protein Coding RNA 941
BRCA1 BRCA1 DNA Repair Associated
BRCA2 BRCA2 DNA Repair Associated
VEGFA Vascular endothelial growth factor A
NSCLC Non-small cell lung cancer
CDC25a Cell Division Cycle 25A
HOXC8 Homeobox C8
MMP2 Matrix Metallopeptidase 2
MUC5AC Mucin 5AC, Oligomeric Mucus/Gel-Forming
MUC1 Mucin 1, Cell Surface Associated
AURKA Aurora Kinase A
PKM2 Pyruvate Kinase M2
MYC MYC Proto-Oncogene, BHLH Transcription Factor
HIF1-a Hypoxia Inducible Factor 1 Subunit Alpha
PRMT5 Protein Arginine Methyltransferase 5
NF-kB Nuclear Factor Kappa B
RIPK1 Receptor Interacting Serine/Threonine Kinase 1
FOXC2 Forkhead Box C2
VEGF165 Vascular Endothelial Growth Factor 165
E2F1 E2F Transcription Factor 1
SAM S-adenosyl methionine
f5 C 5-Formylcytosince
hm5 C 5-Hydroxymethylcytosine
ca5C 5-Carboxycytosine.
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