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Introduction: Colorectal cancer (CRC), characterized by its complex genetic

heterogeneity and varied responses to treatment, is a leading cause of cancer-

related mortality worldwide. The role of N1-methyladenosine (m1A)-related

genes in tumor biology remains underexplored. This study aimed to investigate

the prognostic value of m1A-related genes in CRC, characterize their role in

tumor molecular subtyping, and explore their influence on the tumor

microenvironment (TME) and immune infiltration.

Methods: To identify prognostic markers, univariate Cox analysis was performed

using multiple datasets, including TCGA and GEO, identifying 43 m1A-related

genes. Four distinct molecular subtypes of CRC were defined based on the

expression of these genes using non-negative matrix factorization (NMF).

Immune infiltration analysis was conducted, and the TIDE algorithm was used

to predict response to immune checkpoint inhibitors (ICIs). Furthermore, a

prognostic model based on m1A-related genes was constructed and validated

across multiple datasets.

Results: The results demonstrated that the four CRC molecular subtypes

exhibited significant differences in survival outcomes and clinical

characteristics. Stromal cells showed higher m1A scores, suggesting a

regulatory role in the TME. There was a positive correlation between m1A-

related gene expression and immune checkpoint genes. Moreover, the

constructed prognostic model showed robust predictive performance and

outperformed other recently published models.

Discussion: The findings suggest that m1A-related genes are not only valuable

biomarkers for CRC prognosis but also have significant implications for the

immune landscape and could serve as potential targets for therapeutic

intervention, particularly in the context of immunotherapy. For instance,
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SLC12A2 was found to enhance invasion, proliferation, and migration of

colorectal cancer cells while inhibiting apoptosis. Further studies are needed

to understand the functional roles of m1A modifications across different cell

types within the TME.
KEYWORDS

colorectal cancer (CRC), m1A-related genes, tumor microenvironment (TME),
prognostic model, immune infiltration
1 Introduction
Colorectal cancer (CRC), one of the most common cancers

globally that contributes to approximately 10% of all cancer cases

and deaths worldwide, remains a leading cause of cancer-related

mortality (1, 2). Despite advances in prevention, early diagnosis,

and treatment, CRC continues to pose a significant public health

challenge, particularly in low- and middle-income countries where

the incidence and mortality rates are on the rise (3–5). The

multifactorial etiology of CRC, which involves genetic, epigenetic,

environmental, and lifestyle factors, contributes to its complex

pathophysiology (6, 7). Accordingly, there is an urgent need to

better understand the underlying mechanisms driving CRC

development, progression, and therapeutic resistance to improve

patient outcomes.

A defining feature of CRC is tumor heterogeneity that

significantly and adversely affects prognosis and therapeutic

responses (8, 9). CRC tumors can substantially vary in their

molecular and genetic characteristics, which results in

considerable differences in growth patterns, metastatic potential,

and sensitivity to treatments (10, 11). This heterogeneity can

manifest both on the inter-patient level, where different patients

present with tumors with distinct genetic and molecular profiles,

and on the intra-patient level, where different regions of the same

tumor exhibit varying features (12–14). Consequently, identifying

robust molecular subtypes reflecting the biological diversity of CRC

can assist in precise risk stratification and personalized treatment

planning (15). To date, numerous studies, including those from The

Cancer Genome Atlas (TCGA), have identified molecular subtypes

of CRC based on key genetic and transcriptomic alterations, such as

mutations in KRAS, BRAF, and TP53, as well as microsatellite

instability (MSI) status (16–18). However, to uncover additional

layers of complexity in CRC, a more thorough exploration into

other regulatory mechanisms, such as RNA modifications, is

still warranted.

Recently, RNA modifications have emerged as important

regulatory layers capable of modulating gene expression and

implicated in numerous physiological and pathological processes,

including cancer (19). Among over 170 known chemical

modifications of RNA, N1-methyladenosine (m1A) and N6-

methyladenosine (m6A) are prominent in eukaryotic cells (20, 21).
02
Extensive research on m6A demonstrated that m6A can regulate

RNA splicing, translation, and stability, all of which affects various

aspects of cancer biology (22, 23). In its turn, m1A is a relatively less

explored RNA modification, and its role in cancer, including CRC,

remained poorly understood. m1A modifications can alter RNA

structure and affect ribosomal RNA (rRNA) and transfer RNA

(tRNA) function, thereby impacting the protein synthesis

machinery, which is frequently dysregulated in cancers (24, 25).

Recent research also suggested that m1A-related genes might be

involved in oncogenic pathways and could serve as potential

biomarkers for cancer prognosis. Yet, their specific role in CRC

remains unclear.

The tumor microenvironment (TME) plays a crucial role in

CRC progression and therapeutic resistance. The TME in CRC

consists of various cell types, including immune cells, fibroblasts,

endothelial cells, and extracellular matrix components, all of which

interact with cancer cells in complex ways to either promote or

inhibit tumor growth (26, 27). There is also evidence to suggest that

immune landscape of CRC, characterized by immune cell

infiltration such as tumor-associated macrophages (TAMs), T

cells, and myeloid-derived suppressor cells (MDSCs), can

significantly impact the effectiveness of treatments such as

chemotherapy, targeted therapy, and immunotherapy (28). While

the interplay between tumor cells and the immune system was

reported to be affected by several factors, including genetic and

epigenetic modifications, the relationship between RNA

modifications like m1A and immune modulation in CRC is not

yet fully understood. Therefore, a thorough investigation into how

m1A-related genes influence immune infiltration and TME

composition can provide new insights into immunotherapeutic

strategies for CRC.

Recent advances in high-throughput sequencing technologies,

such as single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics, have enabled researchers to dissect the cellular

composition and spatial organization of tumors at an

unprecedented resolution (29). Such technologies are particularly

valuable in studying CRC, where of disease progression and patient

prognosis are largely determined by both tumor heterogeneity and

the TME. scRNA-seq allows for identifying distinct cell populations

within the tumor and the TME, revealing heterogeneity that would

be masked in bulk RNA analyses (30). Spatial transcriptomics

complements this by providing spatial context, which is essential
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for understanding cell-cell interactions and the functional

organization of the TME. These technologies can provide

comprehensive insights into how m1A-related genes contribute to

the heterogeneity of CRC and affect cellular communication within

the tumor.

In the present study, aiming to identify novel biomarkers that

could help stratify patients based on risk and predict therapeutic

outcomes, we explored the prognostic value of m1A-related genes

in CRC. Our hypothesis was that m1A-related genes are critically

involved in the regulation of CRC tumor behavior, affecting

processes such as tumor cell proliferation, metastasis, and

immune modulation. By characterizing the expression patterns of

m1A-related genes in CRC and defining molecular subtypes based

on their expression, we sought to provide novel insights into the

molecular mechanisms underlying CRC heterogeneity and identify

potential targets for therapeutic intervention. Overall, the results of

the present study provide a comprehensive analysis of m1A-related

genes in CRC, highlighting their potential as prognostic biomarkers

and therapeutic targets.
2 Methods

2.1 Acquisition and processing of
transcriptomic data

The RNA expression profiles (n = 606) and the corresponding

clinical data of colorectal cancer from the TCGA database were

selected as the training group, which was then used to construct the

model. The validation group was used to test the stability and

accuracy of the model. All data were converted to TPM format and

log2-transformed for subsequent analysis. In addition, microarray

datasets from the GEO database, including GSE12945 (n = 62),

GSE17536 (n = 177), GSE17537 (n = 55), GSE38832 (n = 122),

GSE39582 (n = 579), GSE41258 (n = 182), GSE87211 (n = 196), and

GSE103479 (n = 155), were used as the validation group.

Furthermore, colorectal cancer microarray data from GSE110224

(T = 17, n = 17), GSE22598 (T = 17, n = 17), and GSE41328 (T = 10,

n = 10) were included for differential gene analysis. Data correction

fo r the mic roa r r ay da t a was pe r fo rmed us ing the

normalizeBetweenArrays function from the limma package.
2.2 Acquisition and processing of single-
cell and spatial transcriptomic data

The single-cell dataset was obtained from the GEO database for a

total of 15 tumor samples: GSE166555 with 13 CRC tumor samples

and GSE221575 with 2 CRC tumor samples. R software (version

4.1.3) and the Seurat package were used for data analysis. For cell

quality control, mitochondrial content was required to be below 20%,

and the range for UMI counts and gene counts per cell was set

between 200-20,000 and 200-5,000, respectively. Data normalization,

selection of highly variable genes (2,000 genes), and data

transformation [eliminating cell cycle effects using the parameter
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vars.to.regress = c(“S.Score”, “G2M.Score”)] were performed using

the functions NormalizeData, FindVariableFeatures, and ScaleData

from Seurat. Dimensionality reduction was conducted using UMAP

and t-SNE, while clustering was performed using the Louvain

algorithm (all from Seurat). To identify differentially expressed

genes between clusters or cell types, we used the FindAllMarkers

function, with parameters set to p-value < 0.05, log2FC > 0.25, and

expression proportion > 0.1.

Spatial transcriptomic data were obtained from scCRLM

(http://www.cancerdiversity.asia/scCRLM/), including 4 tumor

samples. The downstream results, quality-controlled using

SpaceRanger software, were analyzed using SCTtransform for

data normalization, selection of highly variable genes, and data

transformation. The average number of spots amounted to 3,849,

with average UMI counts, gene counts, and mitochondrial content

of 12,138.6, 3,236.1, and 6%, respectively. Data analysis and

visualization were performed using Seurat. Deconvolution

analysis was conducted using the conditional autoregression-

based deconvolution (CARD) algorithm, with cell type

predictions for each spot based on single-cell annotations.

Visualization of cell types in the spatial transcriptomic data was

performed using the CARD software. The AUCell package was used

to calculate signature scores.
2.3 Cell annotation analysis

We initially used the following specific markers to annotate

different cell types: epithelial cell markers (“EPCAM”, “KRT18”,

“KRT19”, “CDH1”); fibroblast markers (“DCN”, “THY1”,

“COL1A1”, “COL1A2”); endothelial cell markers (“PECAM1”,

“CLDN5”, “FLT1”, “RAMP2”); T cell markers (“CD3D”, “CD3E”,

“CD3G”, “TRAC”); NK cell markers (“NKG7”, “GNLY”, “NCAM1”,

“KLRD1”); B cell markers (“CD79A”, “IGHM”, “IGHG3”, “IGHA2”);

mast cell markers (“KIT”, “MS4A2”, “GATA2”). Based on this

annotation, we isolated and clustered epithelial cells for the

subsequent analysis to explore tumor heterogeneity, and generated

visualizations including UMAP, t-SNE, bar plots, and heatmaps.
2.4 Acquisition of m1A-related genes and
related genes

From the literature, we obtained 10 m1A-related genes

(TRMT10C, TRMT61B, TRMT6, TRMT61A, ALKBH1, ALKBH3,

YTHDF1, YTHDF2, YTHDF3, and YTHDC1). We then identified

additional genes that significantly correlated with these 10 genes

and thus also had prognostic value.
2.5 Acquisition of prognostic genes and
consensus clustering analysis

Correlation analysis was performed between 10 m1A-related

genes and 43 prognostic genes (which were related to prognosis in
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at least 5 datasets), identifying 43 genes associated with m1A. We

then used three datasets with tumor and adjacent normal samples,

along with the TCGA dataset, to determine differentially expressed

genes between tumor and normal tissues. This resulted in the

identification of 35 m1A-related genes (PCOLCE2, PEG3, SCG2,

FABP4, RBM47, AOC3, CRYAB, KLK6, STIL, CALB2, SLC12A2,

TAGLN, FLNA, MAP1B, RAB3B, INHBB, CD3G, AKT3, HLX,

GDI1, PLAT, ABLIM3, MRS2, ACVR1, BEAN1, NPR3, TAPBPL,

CAV2, APOL6, HOXC6, TNIK, GUCY2C, PLK2, PTPN14, and

TMEM204). Using these 35 prognostic genes, we then applied a

clustering discovery method called nonnegative matrix factorization

(NMF) on the TCGA-CRC cohort, using the NMF package. The

optimal number of clusters was determined using the

cophenetic metric.
2.6 SNV analysis

Single nucleotide variant (SNV) mutation data were

downloaded from the TCGA database. The maftools package

were used to evaluate the tumor mutation burden (TMB) of each

sample. Differences between risk groups were analyzed using the

Wilcoxon test, with a p-value < 0.05 considered to indicate

statistical significance.
2.7 Analysis of cell-cell communication

The CellChat package was used to evaluate potential

intercellular communication. We also used the CellChat function

to import the normalized gene expression matrix to create the

CellChat object. The data were then preprocessed using the

functions identifyOverExpressedGenes, identifyOverExpressed

Interaction, and ProjectData with default parameters. The

computeCommunProb, filterCommunication, and compute

CommunProbPathway functions were then used to determine

any potential ligand-receptor interactions. Finally, the

aggregateNet function was employed to generate the cell

communication network.
2.8 Differential gene analysis and
enrichment analysis

To investigate gene expression differences between tumor and

adjacent normal samples, we conducted differential gene analysis

for GEO and TCGA datasets using the limma package. The genes

with adjusted p-value (padj) < 0.05 and |Fold Change| > 1.2 were

considered differentially expressed. The clusterProfiler package was

used for enrichment analysis of upregulated and downregulated

genes using GSEA, with functional databases HALLMARK, GOBP,

and KEGG, and signatures obtained from the msigdb database.

Enrichment results were visualized using the enrichplot package.
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2.9 Establishment of tumor-related
risk features

A prognostic model was established using 101 machine learning

methods, providing a risk score for each patient based on the

algorithm. We used the surv_cutpoint function to determine the

cutoff value for grouping, with patients in the TCGA cohort and

other cohorts divided into high-risk and low-risk groups. We then

evaluated the predictive consistency between the two groups and

evaluated accuracy of the model.
2.10 Risk features generated by an
ensemble machine learning method

To develop a model with high accuracy and stability, we

integrated 10 machine learning algorithms and 101 algorithm

combinations. The comprehensive algorithms included Random

Survival Forest (RSF), Elastic Net (Enet), Lasso, Ridge, Stepwise

Cox, CoxBoost, Cox Partial Least Squares Regression (plsRcox),

Supervised Principal Components (SuperPC), Generalized Boosted

Regression Model (GBM), and Survival Support Vector Machine

(survival-SVM). The signature generation procedure unfolded in

the following four steps:
1. Univariate Cox regression analysis was used to identify

prognostic genes (as described in the previous step)

across 9 datasets, including TCGA-CRC;

2. Subsequently, 101 algorithm combinations were applied to

fit a prediction model for the TCGA-CRC cohort based on

the leave-one-out cross-validation (LOOCV) framework;

3. All models were tested in 8 validation datasets

(GEO datasets);

4. For each model, the Harrell’s concordance index (C-index)

was calculated across all validation datasets, and the model

with the highest average C-index was considered the best.
2.11 Prediction of immunotherapy
response, IPS analysis, and immune
checkpoint analysis

We conducted immunotherapy response prediction using

datasets GSE100797 (Melanoma), phs000452 (Melanoma),

PRJEB23709 (Melanoma), and GSE35640 (Melanoma). The risk

scores for each dataset were calculated to predict immunotherapy

response. We also used the TIDE online analysis tool (http://

tide.dfci.harvard.edu/) to predict immune response and scores for

the TCGA dataset. The IOBR package was used to calculate relevant

IPS information, and the differences in IPS between risk groups

were evaluated. Finally, we computed the correlations between the

expression levels of immune checkpoint genes (“HAVCR1”,
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“CD28”, “ICOS”, “TNFRSF9”, “IL2RB”, “CD27”, “TNFSF14”,

“CD40”, “TNFSF18”, “TNFRSF4”, “TNFRSF18”, “CD276”,

“PVR”, “VTCN1”, “CD200”, “C10orf54”, “CD200R1”, “BTLA”,

“IDO1” , “TIGIT” , “LAG3” , “CD80” , “CD86” , “LAIR1” ,

“ADORA2A”, “CTLA4”, “KIR3DL1”, and “CEACAM1”) and

risk scores.
2.12 Tumor immune infiltration analysis

Using the IOBR package, we determined immune infiltration

levels in CRC patients from the TCGA database. To this end, four

different evaluation methods, including CIBERSORT, TIMER,

MCPcounter, and ESTIMATE, were used. Relative proportions of

immune cell infiltration in the TME were quantified and displayed

using heatmaps. The results of the ESTIMATE algorithm were used

to evaluated the relative abundance of stromal, immune, and tumor

cells, and these values were compared across different risk groups.
2.13 Drug sensitivity analysis

The R package “oncoPredict” was used to calculate the half-

maximal inhibitory concentration (IC50) of commonly used

chemotherapy drugs, enabling the subsequent assessment of the

relationship between risk scores and drug sensitivity. The Wilcoxon

rank-sum test was used to compare IC50 values between the two

risk groups.
2.14 Cell culture and transfection

This study used human colon epithelial cells (HCoEpiC) and

colorectal cancer cell lines (SW480, SW620, LOVO, HCT15). The

aforementioned cell lines were sourced from the Cell Bank of the

Chinese Academy of Sciences. The culture conditions were as

follows: HCoEpiC cells were maintained in the DMEM medium

(HyClone, USA) enriched with 10% fetal bovine serum (FBS, BI,

Israel) and 1% Penicillin-Streptomycin-Amphotericin B Solution;

SW480 and SW620 cells were cultured in the DMEM/F12 medium

(Gibco, Thermo Fisher Scientific, USA) supplemented with 10%

FBS, 1% L-glutamine (Gibco, Thermo Fisher Scientific, USA), and

1% Penicillin-Streptomycin-Amphotericin B Solution (Gibco,

USA); the LOVO cell line was sustained in ATCC-formulated

Ham’s F12K medium with 10% FBS, 100 U/mL penicillin, and

100 mg/mL streptomycin; finally, HCT15 cells were grown in

DMEM with 10% FBS, 100 U/mL penicillin, and 250 ng/mL

streptomycin. All cell lines were maintained in a humidified

incubator at 37°C with 5% CO2 to ensure logarithmic growth.

We then conducted transfection experiments on SW620 and

LOVO cell lines. To this end, a biotechnology company was

commissioned to design and produce a specific shRNA sequence

to knock down the expression of SLC12A2 in both cell lines, which

yielded SW620 sh-SLC12A2 and LOVO sh-SLC12A2 cell lines.

Initially, the two cell lines were detached from culture flasks using a
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gentle trypsinization process, followed by resuspension in complete

medium. This medium contained essential nutrients, vitamins,

amino acids, and growth factors to support cell viability and

proliferation. Resuspension ensured an even distribution of cells,

which was vital for accurate experimental results and consistent

growth in subsequent assays. In each well of a 6-well plate, a total of

1 × 104 cells were uniformly distributed, and complete medium was

added to reach the final volume of 2 mL per well. After the cells

adhered to the plate, we mixed the shRNA and the transfection

reagent PolyFast (Catalog No. HY-K1014, MCE, USA) following

the manufacturer’s instructions and allowed the mixture to sit at 23°

C for 15 min. The transfection mixture was then carefully

introduced into the designated wells using a pipette. After a 6-h

incubation, the medium was changed with fresh complete medium

to optimize nutrient supply. Subsequent experiments were carried

out 48 h post-transfection to allow sufficient time for expression of

the transfected material and stabilization of cellular conditions

for analysis.
2.15 Total RNA extraction and RT-qPCR

RT-qPCR was used to evaluate variations in mRNA expression

of the SLC12A2 among the groups. To this end, the cells were

initially detached from 6-well plates using trypsin (HyClone, USA)

and subsequently washed thrice with PBS. The samples were then

centrifuged at low temperatures to eliminate supernatant.

Subsequently, the cells were lysed by adding an appropriate

volume of Trizol (Takara, Japan) following the manufacturer’s

instructions. After a 5-min incubation on ice, we sequentially

added 200 mL of the chloroform (SINOPHARM, China), along

with an equal volume of anhydrous ethanol (SINOPHARM, China)

and isopropanol (SINOPHARM, China). Prior to each addition, the

solutions were thoroughly mixed and centrifuged at 4°C for 15 min.

All organic solvents were removed, and the RNA pellet was left to

air dry for 20 min.

Next, we resuspended RNA pellet in 20mL of DEPC-treated

water and measured the concentration using a Nanodrop 2000

(Thermo, USA). Following the manufacturer’s guidelines, reverse

transcription was performed using the PrimeScript RT Reagent Kit

(TaKaRa, Japan) to synthesize cDNA. The resulting cDNA samples

were pre-mixed with SYBR GreenER Supermix (TaKaRa, Japan).

Real-time quantitative PCR analysis was then performed using a

7500 Real-Time PCR System (Thermo Fisher Scientific, USA), with

reaction conditions set according to the SYBR GreenER Supermix

protocol. Relative expression levels of SLC12A2 were evaluated

using the 2–DDCt method, normalizing to the b-actin as the

reference gene.
2.16 CCK8 assay

At 48 h post-transfection, the cells were detached using trypsin

(KeyGEN, China) and evenly dispersed in the complete medium.

Based on the cell count, the cells were plated in a 96-well plate at a
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density of 5000 cells per well. To ensure accuracy, three replicates were

set up for each group. On observation of cell adherence under a

microscope, we mixed the CCK8 reagent (KeyGEN, China) with

complete medium to reach a total volume of 200 mL per well.

The mixture was then quickly added to the wells covered with

aluminum foil to protect from the light. Absorbance at 450 nm was

measured after 1.5 h using a suitable spectrophotometer. This

measurement facilitated the assessment of cell viability or

proliferation through the intensity of color generated by CCK8

reagent. This procedure was then repeated at 24, 48, and 72h to

evaluate cell viability over time.
2.17 Flow cytometry for apoptosis

For apoptosis analysis, SW620 sh-NC and SW620 sh-SLC12A2

cells were harvested by centrifugation at 2,000 rpm for 5 min,

facilitating the cells’ pelleting for subsequent analysis. Adherent

cells were detached using trypsin without EDTA, followed by two

washes with PBS and another centrifugation (2,000 rpm for 5

minutes) to collect 1–5 × 105 cells. The cells were resuspended in

500 mL of the binding buffer. After thoroughly mixing in 5 mL of

Annexin V-FITC, 5 mL of propidium iodide were added, and the

entire solution was gently mixed. The samples were incubated in the

dark at room temperature for 5 to 15 min. Finally, the samples were

analyzed using a flow cytometer within 1h.
2.18 Transwell assay

In the course of the study, a layer of Matrigel (Thermo, USA)

was applied to the inner surface of the chambers, diluted at a 1:9

ratio, with 30 mL deposited in each chamber, and allowed to dry.

Subsequently, 600 mL of complete medium were added to each well

of a 24-well plate. At 48h post transfection, the cells were detached

and resuspended in FBS-free medium. To ensure experimental

precision, the cell suspension was modified to achieve a

concentration of 30,000 cells per well, with 200 mL added to each

chamber. The chambers were then incubated for 24 h. Following

this incubation period, the medium in chambers was discarded, and

non-invading cells were removed using a moist cotton swab. To

further analyze results, the chambers were fixed with 4%

paraformaldehyde for 20 min. After three washes with PBS, a

0.1% crystal violet staining solution was added and left for 20

min. Chambers were washed again with PBS and allowed to dry.

Finally, images were captured under a microscope for further

analysis and discussion of the experimental results.
2.19 Protein extraction and western
blot analysis

Western blot analysis was performed to evaluate the differences

in protein expression levels of cleaved Bcl-2, caspase-3, vimentin,

and E-cadherin between the SW620 sh-NC and SW620 sh-
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SLC12A2 cell lines. Initially, the cells were detached from the

culture plates. A lysis buffer was prepared by combining RIPA

buffer (Beyotime, China) with protease inhibitors (Beyotime,

China) at a ratio of 100:1. This mixture was added to the

centrifuge tubes containing the cell pellet, which was thoroughly

resuspended. Subsequently, the cells were lysed using an ultrasonic

homogenizer with parameters set to 40% amplitude, applying 1 sec

pulses for three cycles. The lysate was then kept on ice for 30 min,

with intermittent mixing and centrifugation per 10 min. Following

the preparation of the lysis buffer, the lysate was centrifuged at

10,000 RPM for 15 min at low temperatures. The supernatant was

carefully collected, and the protein concentration was determined.

Based on this measurement, an appropriate volume of sample buffer

was added to each sample. The samples were then heated in a metal

bath at 95°C or about 5 min to denature the proteins and

subsequently allowed to cool.

For protein separation, we used 10%SDS-PAGE (20µg/lane)

and conducted electrophoresis at 100 V, followed by transfer to a

0.45 µM PVDF membrane (GE Healthcare, USA). The membrane

was blocked with a rapid blocking solution (Beyotime, China) for 10

min, followed by three washes with TBST containing 0.1% Tween-

20. It was then incubated overnight at 4°C with the corresponding

primary antibody. After 16 h, the membrane was washed thrice with

TBST and incubated at room temperature for 1.5 h with an HRP-

conjugated secondary antibody. Protein bands were visualized using

enhanced chemiluminescence (ECL, Beyotime, China). The

antibodies used in this study were sourced from Proteintech

Group, Inc.
2.20 Statistical analyses

All data processing, statistical analyses, and visualizations were

performed using R software (version 4.1.3). The correlation

between two continuous variables was assessed using Pearson or

Spearman correlation coefficients. The chi-square test was used for

comparing categorical variables, while the Wilcoxon rank-sum test

or t-test was used for comparing continuous variables. Cox

regression and Kaplan-Meier analysis were performed using the

survival package.
3 Results

3.1 Characterization of the target gene set

To analyze the data, univariate Cox analysis was first conducted

using TCGA along with eight GEO validation datasets; the results

were plotted using the forest plot (see Figure 1D). The genes that

were prognostic in at least five datasets were selected, resulting in a

total of 43 prognostic genes. The correlation between 10 m1A-

related genes and 43 prognostic genes is shown in Figure 1A,

highlighting significant associations and identifying m1A-related

genes linked to these prognostic markers. Next, differential

expression analysis was performed on TCGA, GSE110224,
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GSE22598, and GSE41328 between tumor and adjacent normal

tissues (see Figure 1B), and a total of 35 differentially expressed

genes were identified in at least one dataset. Figure 1C shows a

heatmap of the correlation of the expression of these differentially

expressed genes for TCGA, GSE110224, GSE22598, and GSE41328,

illustrating the strength and direction of the correlations across

datasets. In Figure 1C, the color gradient represents the correlation

coefficients, with red indicating positive correlations and blue

indicating negative correlations; significant correlations are

marked with asterisks. This visualization highlights clusters of
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genes with similar expression patterns, which may reflect shared

biological functions or regulatory mechanisms.
3.2 Functional characterization -
molecular subtyping

The NMF algorithm was used to perform consensus clustering

of the 35 prognostic genes. Based on the clustering results, four

groups were found to be the most suitable, and the consistency
FIGURE 1

Characterization Results of the Target Gene Set. (A) Relationship between 10 m1A-related genes and 43 mitochondrial-related gene sets (correlation
heatmap). A p value < 0.05 was considered statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001). (B) Differential expression of m1A-related
genes between tumor and adjacent normal tissues across TCGA, GSE110224, GSE22598, and GSE41328 (volcano plots). (C) Correlation heatmap of
differentially expressed genes from TCGA, GSE110224, GSE22598, and GSE41328 datasets. (D) TCGA and three GEO validation datasets (hazard ratio
(HR) forest plot).
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clustering heatmap and survival analysis results for the four groups

were presented. The results indicated a significant difference in

survival between C1 and C3, with C1 having a better prognosis (see

Figure 2A). The subsequent analysis on whether the composition of

clinical indicators such as age, gender, stage, and pathological grade
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differed among the four groups yielded significant differences

(Figure 2B). We then compared the immune subtypes and TCGA

subtypes of TCGA with the NMF groups (Figure 2C). Since there

was a significant survival difference between C1 and C3, differential

gene analysis was performed between C1 and C3 (see Figure 2D).
FIGURE 2

Functional Characterization - Molecular Subtyping Results. (A) NMF clustering results, consensus heatmap, and survival analysis for 35 prognostic
genes. (B) Association between NMF classification and clinical indicators such as age, gender, stage, and pathological grade (bar plots).
(C) Composition of TCGA immune subtypes and TCGA subtypes as compared to NMF groups (Sankey diagram). (D) Differential gene expression
between C1 and C3 subtypes (volcano plots). (E) Upregulated and downregulated genes between C1 and C3 (GSEA). (F) Enriched pathways and
ssGSEA scores of the 35 m1A-related genes (correlation heatmap).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1532602
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1532602
Enrichment analysis was conducted for upregulated and

downregulated genes, focusing on the respective functions of C1

and C3 (see Figure 2E). We then calculated the correlation

between enriched pathways and the ssGSEA scores of the 35 m1A

genes, which was followed by a heatmap analysis of the

correlation (Figure 2F).
3.3 Functional characterization - single-cell
and spatial transcriptomics

The results of cell classification using single-cell data were

presented, and the m1A score for each cell was calculated using
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the AUCell package for the 35 prognostic genes. The results

revealed that stromal cells had a higher score. Using the

AUCell_exploreThresholds function in the AUCell package, the

cells were divided into two groups, and the differential genes of

the two groups were calculated. Enrichment analysis was conducted

to explore functional differences between these two groups (see

Figure 3A). The results of our analysis of the spatial transcriptomic

sample revealed differences in the distribution of immune,

epithelial, and stromal cells; we also calculated the m1A score in

the spatial transcriptomic sample. The results showed that,

consistently with our single-cell findings, the regions with high

m1A scores were mainly in the stromal area (see Figure 3B). The

results also showed a negative correlation between epithelial cells
FIGURE 3

Functional Characterization - Single-Cell and Spatial Transcriptomics Results. (A) Dingle-cell analysis showing cell annotations, m1A grouping, and m1A
scores (UMAP plots); m1A scores (violin plot); functional enrichment in high and low m1A groups (GSEA plot). (B) H&E staining showing immune,
epithelial, stromal, and m1A scores in spatial transcriptomic data. (C) Epithelial, stromal scores, and m1A scores in spatial transcriptomic data (correlation
plots); epithelial, immune, and stromal scores sorted by ascending m1A scores (line plot); functional enrichment in high m1A group (GSEA plot).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1532602
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1532602
and m1A score, while immune and stromal cells were positively

correlated. Functional enrichment analysis was then performed for

the high m1A group (see Figure 3C).
3.4 Prognostic model construction based
on differential genes

Using TCGA as the training set and eight GEO datasets as the

test sets, we constructed a prognostic model using 12 prognostic

genes with 101 different algorithms, using TCGA as the training set

and eight GEO datasets as the test sets. The average C-index of the

eight test sets was used as the evaluation criterion, and Coxboost

+SuperPC was determined as the best model (see Figure 4A). We

then calculated the 5-, 7-, and 9-year AUC values for the 9 datasets

(see Figure 4B) and presented a bar chart of the C-index for the
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optimal model across all datasets (see Figure 4C). The survival

analysis results for the 9 datasets indicated that the high-risk group

had a worse prognosis (see Figure 4D).
3.5 Comparison of prognostic models

Risk plots and PCA plots for the 9 datasets are shown in

Figures 5A, B. The risk scores were compared with other clinical

indicators, showing that the C-index of the risk score was superior

to most clinical indicators (see Figure 5C). We also collected 22

recently published prognostic models from the past 1-2 years and

compared their C-indices. The results revealed that, although our

model was not superior in the TCGA cohort, it generally

outperformed most other models in the remaining eight test

datasets (see Figure 5D).
FIGURE 4

Construction Results of the Prognostic Model Based on Differential Genes. (A) C 101 algorithms and eight validation datasets (C-index heatmap).
(B) Area under the curve (AUC) values at 5, 7, and 9 years for 9 datasets. (C) C-index for the optimal model across all datasets (bar plot).
(D) Prognosis differences between high- and low-risk groups (survival analysis results for 9 datasets).
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3.6 Establishment of the nomogram model

The results of univariate and multivariate analysis results, along

with the forest plot for risk score and clinical indicators, are shown

in Figure 6A. A nomogram combining risk scores with clinical

indicators was constructed (Figure 6B). Decision curve analysis

(DCA) showed that the nomogram and risk score outperformed

other clinical indicators (see Figure 6C). Calibration curves for 5, 7,

and 9 years are shown in Figure 6D. The results of survival analysis

using the nomogram score revealed that a higher score was

associated with poorer prognosis (see Figure 6E).
3.7 Tumor immune infiltration analysis and
TMB analysis

The risk values were significantly different among the four NMF

classification groups (see Figure 7A). Correlation analysis was

performed between the risk scores and 50 hallmark gene sets (see

Figure 7A). Tumor mutational burden (TMB) was calculated using

mutation data, and significant differences were found between risk

groups (Figure 7A). The differences in immune, stromal,

ESTIMATE scores, and tumor purity between the two groups

were presented, followed by the use of the CIBERSORT algorithm

to show differences in immune cell infiltration. Further analysis

using other algorithms such as MCP-counter and TIMER was

conducted to estimate immune infiltration levels, and the
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correlation with risk scores was displayed using a heatmap

(see Figure 7B).
3.8 Immunotherapy analysis and drug
sensitivity analysis

The results of correlation analysis conducted between immune

scores and commonly used immune checkpoint genes revealed that

most of the genes were positively correlated. The TIDE algorithm,

which was used to predict immune response in the TCGA dataset,

showed significant differences between response and non-response

groups, with the non-response group having higher risk scores. The IPS

results were also incorporated, showing that the low-risk group had

higher IPS scores (see Figure 8A). This heatmap displays the

distribution of IPS scores across multiple cohorts, with the color

gradient ranging from blue to red to represent lower to higher IPS

scores, respectively. Each row corresponds to an immune-related

pathway or cell type, while the columns represent the cohorts

analyzed. The visualization highlights distinct patterns of immune

activity, supporting the conclusion that the low-risk group exhibits

a more favorable immune profile. The results of survival analysis and

risk scores for immune response groups were presented for the

GSE100797 (Melanoma), phs000452 (Melanoma), PRJEB23709

(Melanoma), and GSE35640 (Melanoma) datasets (see Figure 8B).

The results of drug sensitivity analysis showed that Staurosporine_

1034, Luminespib_1559, Dasatinib_1079, and AZD8055_1059 were
FIGURE 5

Comparison of Prognostic Models. (A, B) Risk plots and principal component analysis (PCA) plots for nine datasets. (C) Bar The C-index of risk scores with
other clinical indicators (bar plot). A p value < 0.05 was considered statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001). (D) C-index comparison
between our prognostic model and 22 other published prognostic models across 9 datasets.
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sensitive to the high-risk group, suggesting their suitability for

treatment of patients in this group (see Figure 8C).
3.9 Differences in cell communication of
high- and low-risk cells at the single-
cell level

We calculated risk scores for each cell in the single-cell dataset

using the risk model, grouped the cells based on the median value,

and then conducted CellChat cell communication analysis to

compare differences between the two groups. Figure 9 shows
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differences in communication among epithelial, endothelial, and

myeloid cells between the high- and low-risk groups.
3.10 SLC12A2 exhibits oncogenic
properties in colorectal cancer cells

We first analyzed SLC12A2 expression in the normal colonic

epithelial cell line HCoEpiC, as well as in the following four

colorectal cancer cell lines: SW480, SW620, LOVO, and HCT15.

This analysis aimed to compare the expression levels of SLC12A2

across these different cell lines to better understand its potential role
FIGURE 6

Establishment Results of the Nomogram Model. (A) Risk scores and clinical indicators (univariate and multivariate analysis results with forest plot).
(B) Nomogram plot combining risk scores with clinical indicators for individualized risk prediction. (C, D) Decision curve analysis (DCA) plot and
calibration curves for 5, 7, and 9 years, respectively. (E) Survival analysis plot using nomogram scores to assess prognosis. A p value < 0.05 was
considered statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001).
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in colorectal cancer. A marked upregulation of SLC12A2 in

colorectal cancer cells was observed (p < 0.05, Figure 10A). the

results of RT-qPCR confirmed effective knockdown of SLC12A2,

with SW620 sh-SLC12A2 and LOVO sh-SLC12A2 cell lines

exhibiting significantly reduced SLC12A2 expression (p < 0.01,

Figure 10B). The findings of the CCK-8 assay demonstrated that

silencing SLC12A2 led to a marked decrease in the viability of

SW620 and LOVO colorectal cancer cells. This finding indicates

that SLC12A2 is essential for enhancing cell proliferation in these

cancer cell lines, highlighting its potential role as an oncogene in

colorectal cancer (p < 0.01, Figures 10C, D). Furthermore, the

results of flow cytometry revealed a significant increase in apoptosis

following SLC12A2 knockdown (p < 0.01, Figure 10E). Transwell

assay results showed that SLC12A2 knockdown significantly

impaired the invasive capacities and the migratory of SW620 and

LOVO cells, suggesting that SLC12A2 is crucial for the metastatic

potential of colorectal cancer cells (p < 0.01, Figure 10F). The

Western blot analysis showed that the sh-NC group expressed Bcl-2

and vimentin at normal levels, whereas the sh-SLC12A2 group

exhibited increased expression of E-cadherin and c-caspase3.

However, the levels of Bcl-2 and vimentin were found to be

reduced. suggesting that knockdown of SLC12A2 led to

significant alterations in the expression of molecules associated
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with migration, invasion, and apoptosis (see Figure 10G). Based on

the results, it can be concluded that SLC12A2 plays an oncogenic

role in colorectal cancer cells, promoting their proliferation,

invasion, and migration.
4 Discussion

In this study, we conducted an in-depth analysis of m1A-related

genes in colorectal cancer (CRC). The specific focus was on

evaluating their prognostic potential, understanding their

relationship with tumor molecular subtypes, and exploring their

role in shaping the tumor microenvironment (TME). The results

provide new insights into the significance of m1A modifications in

CRC, highlighting their potential utility in prognosis prediction and

as therapeutic targets. In this discussion, we compare our results

with the previously reported findings, review implications of our

findings, and outline the strengths and limitations of the study.

Colorectal cancer, one of the leading causes of cancer mortality

worldwide, is characterized by a significant heterogeneity in its

clinical outcomes. The characterization of m1A-related genes has

emerged as a promising avenue for understanding tumor biology and

identifying novel biomarkers for CRC. RNA modifications,
FIGURE 7

Results of Tumor Immune Infiltration Analysis and TMB Analysis. (A) Risk values for the four NMF groups (box plot); correlation between risk scores
and 50 hallmark gene sets (heatmap); tumor mutational burden (TMB) between high- and low-risk groups (box plot). (B) Differences in immune,
stromal, ESTIMATE scores, and tumor purity between high- and low-risk groups (box plot); CIBERSORT analysis comparing immune cell infiltration
between the two groups (box plot); infiltration levels estimated by additional immune infiltration algorithms (heatmap). A p value < 0.05 was
considered statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001).
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particularly N1-methyladenosine (m1A), have recently gained

considerable research attention for their role in post-transcriptional

regulation of gene expression; however, the role of RNA

modifications in CRC has not been extensively studied. Our results

demonstrate that consistently with recent studies that demonstrated

the clinical relevance of other RNA modifications, such as N6-

methyladenosine (m6A), in various cancers (31), m1A-related

genes can serve as valuable biomarkers for prognosis in CRC.

Using performing univariate Cox analysis across multiple

datasets, including TCGA and GEO, we identified 43 m1A-related
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genes significantly associated with CRC prognosis. These genes were

subsequently used for molecular subtyping, revealing four distinct

subtypes with significantly different survival outcomes. This

stratification allowed us to identify groups with notably better

or worse prognoses, such as C1 and C3, respectively. The

identification of distinct molecular subtypes is in line with previous

research on CRC that demonstrated extensive genetic and molecular

heterogeneity (9). Previous studies that identified consensus

molecular subtypes (CMS) of CRC showed that distinct subgroups

of CRC patients have different outcomes and responses to treatment
FIGURE 8

Immunotherapy Analysis and Drug Sensitivity Analysis Results. (A) Risk scores and immune checkpoint genes (correlation heatmap); TIDE (Tumor
Immune Dysfunction and Exclusion) composition (bar plot); TIDE risk values (box plot); IPS (Immunophenoscore, box plot). (B) Survival analysis
results and risk scores for immune response groups in immunotherapy cohorts GSE100797 (Melanoma), phs000452 (Melanoma), PRJEB23709
(Melanoma), and GSE35640 (Melanoma). (C) Sensitivity of drugs Staurosporine_1034, Luminespib_1559, Dasatinib_1079, and AZD8055_1059
between high- and low-risk groups (box plots).
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(9). Aligning with this concept, our molecular subtyping, based on

m1A-related genes, provides additional insights into the impact of

epigenetic modifications on CRC prognosis.

One of the major findings of our study was the differential

correlation between m1A-related gene expression and immune and

stromal scores within the TME. Specifically, stromal cells were found

to exhibit higher m1A scores, while the regions with elevated m1A

scores were predominantly located in stromal areas. This suggests

that m1A-related genes may play a significant role in modulating

stromal components and shaping the TME in CRC. The TME plays a

critical role in cancer progression, immune evasion, and response to

therapy, and recent studies demonstrated that alterations in RNA

modifications can significantly influence the TME (32). For example,

previous research revealed that m6A RNAmodifications are involved

in immune cell recruitment and immune evasion in various cancers

(32–34). Similarly, our results suggest that m1A-related genes may

have a regulatory role in TME dynamics in CRC, affecting not only

stromal composition, but also immune cell infiltration.

Furthermore, using immune infiltration analysis, we found that

m1A-related gene expression was positively correlated with

immune checkpoint genes, indicating potential implications for

immunotherapy. The TIDE algorithm showed that low-risk groups,

as defined by our prognostic model, exhibited a better predicted
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response to immune checkpoint inhibitors (ICIs) compared to

high-risk groups. These findings are consistent with recent studies

indicating that RNA modifications can affect immune cell

infiltration and modulate responses to immunotherapy (35).

Available evidence suggests that patients with high levels of m6A

modifications exhibited improved responses to ICIs in melanoma

(35). Similarly our results show that m1A-related genes may serve

as predictive biomarkers for immunotherapy in CRC, suggesting

their role in the immune modulation of CRC tumors.

In addition to bulk RNA-sequencing analyses, we also

employed single-cell RNA sequencing (scRNA-seq) to investigate

heterogeneity of m1A-related gene expression on the single-cell

level. scRNA-seq allowed us to identify distinct cell populations in

the TME that exhibited different m1A scores, providing insights

into the cell-specific functions of m1A modifications in CRC. For

instance, epithelial cells had lower m1A scores as compared to

stromal and immune cells, suggesting differential roles of m1A

modifications across different cell types within the tumor. This

finding is consistent with previous research showing that the

distribution and function of RNA modifications can significantly

vary among different cell types, influencing their phenotype and

behavior in the tumor context (33). Given that the effects of such

modifications can differ depending on the cell type and its role in
FIGURE 9

Differences in Cell Communication of High- and Low-Risk Cells at the Single-Cell Level. (A) Communication differences in epithelial, endothelial,
and myeloid cells between high- and low-risk groups, focusing on interactions increased in the high-risk group (bubble plot). (B) Communication
differences in epithelial, endothelial, and myeloid cells between high- and low-risk groups, focusing on interactions decreased in the high-risk group
(bubble plot).
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the TME, oresults underscore the importance of considering

cellular heterogeneity when studying epigenetic modifications

in cancer.

We also explored cell-cell communication using the CellChat

algorithm, which revealed differences in communication patterns

between high- and low-risk cells, particularly among epithelial,
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endothelial, and myeloid cells. These results suggest that m1A-

related genes may affectcell-cell communication within the TME,

thereby contributing to CRC progression and therapeutic

resistance. Altered intercellular signaling is a hallmark of cancer,

and the TME plays a central role in facilitating tumor-promoting

interactions between cancer cells and their microenvironment. Our
FIGURE 10

Experimental data analysis. (A) Relative expression of SLC12A2 in various cell lines, indicating low expression in HCoEpiC cells and high expression in
SW480, SW620, LOVO, and HCT15 cells (p < 0.01). (B) Relative expression of SLC12A2 across different experimental groups, with efficient
knockdown observed in two cell lines. (C, D) Knockdown of SLC12A2 significantly reduces the proliferation capacity of cancer cells (CCK-8 assay
results). (E) Knockdown of SLC12A2 significantly increases the apoptotic rate of cancer cells (flow cytometry analysis). (F) Knockdown of SLC12A2
markedly inhibits the invasion and migration of cancer cells (transwell assays). (G) Thesh-SLC12A2 group exhibits elevated expression of E-cadherin
and cleaved caspase-3, along with reduced expression of Bcl-2 and vimentin (Western blot analysis).
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findings highlight that m1A modifications may be key regulators of

intercellular communication in CRC, affecting signaling pathways

that promote tumor growth and immune evasion (36).

Another major contribution of this study is the construction and

validation of a prognostic model based on m1A-related genes. Using

101 different algorithms, we identified the optimal model, using

TCGA as the training set and several GEO datasets as test sets. The

final model, Coxboost+SuperPC, demonstrated robust prognostic

performance across multiple datasets, outperforming other recently

published models in most cases. The model’s superior predictive

ability, as evidenced by its higher C-index and area under the curve

(AUC) values, highlights its potential utility for clinical applications

in CRC. Developing accurate prognostic models is essential for

guiding treatment decisions, particularly in heterogeneous diseases

like CRC. In this context, the proposedmodel, which integrates m1A-

related gene expression with clinical indicators in a nomogram,

provides a practical tool for individualized risk assessment and

personalized treatment planning (37).

The implications of our findings extend beyond prognosis.

Specifically, the positive correlation between m1A-related genes

and immune checkpoints suggests that these genes could serve as

potential biomarkers for selecting patients who are more likely to

respond to ICIs. Considering the increasing use of immunotherapy

in CRC, especially for patients with microsatellite instability-high

(MSI-H) tumors, it is crucial to identify biomarkers that predict

response to these therapies. While MSI status is currently used as a

biomarker for immunotherapy in CRC, our findings suggest that

m1A-related gene expression could complement existing markers

and enhance patient selection for immunotherapy (38).

We also found that the expression levels of SLC12A2 were

significantly higher in colorectal cancer cell lines than in normal cell

counterparts, suggesting its potential role in cancer development.

This finding may highlight SLC12A2 as a candidate biomarker or

therapeutic target in colorectal cancer. Furthermore, SLC12A2

knockdown significantly reduced the viability of colorectal cancer

cells, increased apoptosis, and diminished both migratory and

invasive capabilities. Our experimental results demonstrated that

SLC12A2 promotes CRC cell proliferation, migration, and invasion

while inhibiting apoptosis. Mechanistically, knockdown of

SLC12A2 increased cleaved caspase-3 and E-cadherin levels while

reducing Bcl-2 and vimentin, indicating its role in apoptotic and

epithelial-mesenchymal transition (EMT)-related pathways. Based

on this evidence, we hypothesize that m1A methylation may

regulate SLC12A2 expression by modifying mRNA stability or

translation efficiency. This hypothesis will be validated in our

future experiments, such as MeRIP-qPCR and mutagenesis. In

addition, the results of immune and stromal analyses revealed

that m1A-related gene expression positively correlates with

immune checkpoint genes and immune cell infiltration,

suggesting their role in immune evasion and response to

immunotherapy. Single-cell and spatial transcriptomics further

demonstrated cell type-specific and spatially organized expression

patterns of m1A-related genes, linking them to stromal and

immune cell regulation within the tumor microenvironment
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(TME). Taken together, these findings provide a foundation for

understanding the mechanistic roles of m1A-related genes in CRC

and outline directions for future research.

The present study has several limitations. First, our analysis was

based on publicly available datasets, and the results may have been

affected by the quality and heterogeneity of these datasets. Although

we validated our findings across multiple datasets, prospective

validation using independent cohorts, preferably from different

populations, would be necessary to confirm the robustness and

generalizability of our results. Second, in this study, we did not yet

experimentally validate the functional roles of the identified m1A-

related genes in CRC. While we provided evidence for their

association with prognosis and immune infiltration, further

mechanistic studies would be needed to elucidate how these genes

regulate CRC progression and response to therapy. In vitro and in

vivo studies could help confirm the causal relationships between

m1A modifications and the observed effects on tumor behavior and

the TME (38).

Another limitation is the lack of exploration into the potential

interplay between m1A and other RNA modifications, such as

m6A, m5C, and pseudouridine. These RNA modifications

frequently coexist and can interact to modulate gene expression

in a coordinated manner. To better understand the overall

epitranscriptomic regulation in CRC, in future research, it would

be meaningful to investigate the combinatorial effects of different

RNA modifications. In addition, while our single-cell analyses

provided valuable insights into the heterogeneity of m1A-related

gene expression, integrating spatial transcriptomics with single-cell

data could provide further information on the spatial organization

of these modifications within the TME.

In conclusion, our study provides a comprehensive analysis of

m1A-related genes in CRC, highlighting their role in shaping tumor

heterogeneity, influencing immune infiltration, and serving as

valuable prognostic biomarkers. By integrating multi-omics data,

characterizing molecular subtypes, along with evaluating the

prognostic value of m1A-related genes, we identified novel

markers that could inform precision oncology for CRC patients.

The construction of a robust prognostic model and its validation

across multiple datasets further supports the clinical relevance of

these genes providing a novel tool for personalized risk assessment

and treatment planning. Our findings suggest that m1A-related

genes could serve as potential targets for therapeutic intervention,

particularly in the context of immunotherapy. Future research

should focus on experimental validation of these findings and

further exploration of the mechanisms underlying the role of

m1A modifications in CRC.
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