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As research into tumour immunotherapy continues to accelerate, new frontiers

are being revealed in the field of cancer treatment. A significant focus has been

drawn to neoantigen-based personalised tumour vaccines, a pioneering

immunotherapy. This approach involves the use of genetic mutations that are

unique to tumor cells to custom-design personalized tumor vaccines. These

vaccines elicit an immune response that is specifically directed at targeting and

eliminating cancer cells. The incorporation of neoantigens, arising from

mutations within tumor cells, confers a distinct advantage to personalized

tumor vaccines in terms of precision and the mitigation of adverse effects.

However, the intricate pathways from antigen presentation to the activation of

tumor immunogenicity remain to be elucidated. This paper primarily delves into

the origins and characteristics of neoantigens, and also neoantigen prediction,

highlights existing screening methods, and addresses the limitations of current

approaches. It is hoped that this review will act as a catalyst, accelerating the

understanding of relevant knowledge and illuminating research hotspots for

scientists poised to venture into neoantigen research.
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Introduction

The treatment of malignant tumours is considered to be one of the most significant

medical challenges of the 21st century. In recent years, the advent of innovative cancer

therapies has illuminated potential pathways for surmounting the daunting challenge of

tumours to human health. Beyond the conventional treatment modalities such as

radiotherapy, chemotherapy, and targeted therapy, immunotherapies have emerged as a

pivotal approach, garnering significant attention in research endeavours, with cancer

vaccines emerging as a central focus in current research (1).

Nevertheless, numerous challenges persist in the realm of cancer vaccines, including

the fact that the clinical efficacy of vaccines is only modest, the selection of optimal antigens

is problematic, issues are encountered with vaccine delivery, and immune evasion tactics
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are employed. However, recent studies have demonstrated

encouraging results with personalised neoantigen treatments in

Phase I clinical trials, indicating a novel direction for the

advancement of cancer vaccines (2).

The antigens contained within tumour vaccines can be

categorised into four distinct classifications: Tumor-Associated

Antigen (TAA), Tumor Specific Antigen (TSA), Cancer-Testis

Antigen (CTA), and Viral Antigen. Traditional Tumor-Associated

Antigens are characterised by their expression in both normal

somatic cells and tumor cells. In contrast, tumor-specific antigens,

also known as neo-antigens, are not expressed in somatic cells but

are specifically mutated and generated in tumor cells. They feature

low side effects and are not restricted by central tolerance in the

thymus. Cancer-testis antigens, on the other hand, are primarily

expressed in testes and embryonic tissues, with low levels observed

in other adult tissues. However, these antigens can be reactivated

and expressed in various tumors. Finally, viral antigens are a

consequence of virus-infected tumours and are expressed in

tumour cells, thus serving as vaccine targets.

The clinical successes of neoantigens are not a matter of chance,

as their effectiveness and the mechanisms underpinning them are

being steadily corroborated (3). However, the development of

neoantigens is encumbered by a number of challenges, including

the necessity for complicated preparation, the imposition of high

costs, and the involvement of time-consuming processes, in

addition to the occurrence of high false-positive rates in

screening. However, the advent of big data and artificial

intelligence has engendered a favourable environment for the

development of neoantigen screening tools. The utilisation of

substantial machine learning data and optimised algorithms holds

the potential to provide valuable guidance for neoantigen screening.

This article provides a comprehensive review of the extant

literature on neoantigens, with a particular focus on recent

research developments. The aim of this review is to facilitate the

initiation of scientific research in this field by potential contributors.
The mechanism of T cells
and neoantigen

T cells represent a pivotal component of the human immune

system, endowed with the capacity to discern non-self peptides that

are presented on the cell surface via the Major Histocompatibility

Complex (MHC). In humans, MHC molecules are also known as
Abbreviations: nsSNV, A single - nucleotide substitution that causes changes in the

encoded protein sequence. It may affect the function and structure of the protein.

Through high - throughput technologies and computational biology methods, the

functional impacts of these variants can be systematically identified and evaluated;

ERAP trimming, The process by which endoplasmic reticulum aminopeptidase 1

(ERAP1) and ERAP2 trim the precursor peptides before they bind to major

histocompatibility complex class I (MHC class I); MOE, A model architecture

based on a gating network aims to scale up the model by effectively distributing the

computational load. MoE is composed of multiple specialized sub - models.
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Human Leucocyte Antigens (HLA). T cell recognition represents

the most selective stage in the process of antigen presentation. T

cells initially develop from pluripotent hematopoietic stem cells in

the bone marrow, maturing in the thymic microenvironment. Prior

to migrating from the thymus to the peripheral blood and immune

organs, T cells undergo positive and negative selection, both of

which are crucial for their development. Positive selection confers

MHC restriction, while negative selection ensures self-tolerance.

Only T cells that successfully pass both selections develop into

mature T cells; otherwise, they undergo apoptosis (4).

The MHC is critical to the process of antigen presentation and

is a key component of the immune response system. MHC subtypes

are numerous and polymorphic, and are generally classified into

MHC Class I and MHC Class II molecules (see Figure 1). As

demonstrated in Figure 1, both have four functional regions: the

peptide-binding region, the immunoglobulin-like domain, the

transmembrane region, and the cytoplasmic region. MHC Class I

molecules consist of a heavy chain (alpha chain) and a light chain

(beta chain), while MHC Class II molecules comprise an alpha

chain and a beta chain.

MHC Class I molecules primarily engage with endogenous

antigenic peptides, thereby establishing the foundation for their

subsequent recognition upon binding to CD8 T cells. In contrast,

MHC Class II molecules chiefly interact with exogenous antigenic

peptides, with these complexes being identified by CD4 T cells upon

binding. However, tumor cells have been observed to employ a

deceptive tactic, suppressing the expression of MHC on their

surface, thus undermining the presentation of antigens to CD8 T

cells. This results in a state of immunosuppression, where CD8 T

cells are rendered incapable of eliminating tumor cells.

The complex process of antigen presentation is illustrated in

Figure 2. Within the context of tumour cells, aberrant proteins

undergo degradation into peptides by the action of the proteasome.

Concurrently, MHC Class I molecules, with the assistance of

calnexin, are synthesised. The peptides then embark on a journey

through the endoplasmic reticulum via the transporter associated

with antigen processing (TAP), culminating in the formation of an

antigen peptide-MHC Class I complex. This complex then traverses

the Golgi apparatus, reaching its final destination on the cell surface,

where it binds to the T-cell receptor (TCR) (5).

The binding of the antigen to the MHC complex on the surface

of the antigen-presenting cell (APC) initiates a series of reactions

that result in the transformation of CD8 T cells into active cytotoxic

T lymphocytes (CTLs). The body thus initiates an immune response

through this cascade of reactions. Equipped and ready, CTLs can

then unleash their cytotoxic activity, targeting and eliminating

tumor cells (6).
Tumour neoantigens

Contemporary scientific research has elucidated that the genesis

of tumours originates from mutations in the genes of somatic cells,

which accumulate over time. Genes impacting tumorigenesis are

divided into two categories: oncogenes and tumor suppressor genes.

In the context of normal cellular processes, these genes play a
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pivotal role in orchestrating cell proliferation. However, in the event

of these genes undergoing aberrant mutations, the equilibrium that

governs cell proliferation regulation becomes compromised,

thereby paving the way for the emergence of tumors (7).
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With the advent of epigenetics, it has been unveiled that the

factors underpinning carcinogenesis are multifaceted, the processes

incredibly complex, encompassing not just alterations in genetic

material but also abnormal epigenetic modifications of histones or
FIGURE 1

Molecular structure of MHC class I and MHC class II: MHC class I: transmembrane heavy chain (orange) non-covalently bound to b2-microglobulin
(red). MHC class II: transmembrane a-chain (green) and b-chain (blue) connected by disulfide bonds. Both classes feature antigen-binding grooves
(a1/b1 for II, a1/a2 for I).
FIGURE 2

Antigen presentation:Proteasomal degradation generates peptides transported via TAP-1/2 to ER. MHC I-peptide complexes assemble and traffic
through Golgi to cell surface.
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DNA (8), capable of triggering the transformation of normal cells

into cancerous ones.

The hallmark of neoantigens is their exclusive expression in

tumour cells. These short peptides, which are the product of the

degradation of an abnormal protein resulting from somatic

mutations, are distinctive features of neoplastic cells (9).

The process by which antigen engages with the T-cell receptor

(TCR) is delineated in Figure 3. These short peptides are identified

by antigen-presenting cells (APCs). Short peptides that adhere to

the major histocompatibility complex (MHC) binding motif are

pinpointed by the TCR, thereby initiating an antitumor immune

response. Armed with this recognition, T cells can then wield their

power to lyse tumor cells, unleashing additional tumor neoantigens.

This cascade of events can ultimately culminate in a broadened

antitumor immune response (10).

It is imperative to acknowledge that the process by which

neoantigens galvanise tumour immunity is influenced by a

multitude of factors. Research elucidates that the crosstalk

between tumours and the immune system shapes the

immunogenicity of neoantigens. The dynamic interplay between

the tumor and the immune system can be broadly categorised into

three phases:First Phase (Elimination Phase): Under the leadership

of the immune system, antigens are targeted and subsequently

eliminated, particularly those with high antigenicity, such as

tumor cells;Second Phase (Equilibrium Phase): Tumor cells with

less conspicuous antigenicity evade the immune system’s onslaught.

Due to the influence of the adaptive immune system, they retreat

into a dormant state. The dynamic equilibrium between the

production and clearance of tumor cells is a hallmark of this

phase. In this phase, the immune system selects and enriches

tumor cells that can thwart the immune system’s killing, a phase

also designated as immune editing. Finally, the Third Phase (Escape
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Phase) In this phase, refined and reconfigured tumor cells evade the

immune system’s recognition, forging an immunosuppressive

tumor microenvironment. The balance is thus disrupted, and the

tumor cells initiate a rapid proliferation (11).
Progress on research into neoantigens

In 2014, Ton N. Schumacher et al. published a study on an

advanced cholangiocarcinoma patient whose symptoms showed

significant improvement following treatment with a neoantigen

vaccine. This study demonstrated the research value of

neoantigens in tumour treatment (12).

In 2017, Ugur Sahin et al. published two articles with a close

relation to neo-antigens. The first of these articles involved the use

of neoantigen-personalised peptide vaccines in the context of

melanoma research. The results demonstrated that patients

receiving neoantigen vaccine treatment exhibited phenomena

such as reduced recurrence and significant tumour shrinkage (13).

The second research detailed the administration of personalised

peptide vaccines based on neoantigens to six melanoma patients.

Notably, four of these patients exhibited no recurrence 25 months

following vaccine inoculation (2).

In 2018, Ugur Sahin and others, who wield significant influence

within the domain of tumour research, undertook a thorough and

exhaustive review of recent research on neoantigens. Through

meticulous analysis of a substantial amount of research data,

clinical cases and cutting-edge achievements, they provided a

positive evaluation of the exciting effects shown by neoantigen-

based tumour treatments. This has engendered a renewed sense of

optimism among patients, who had previously been constrained by

the limitations of conventional tumour treatments (14).
FIGURE 3

The antigen-MHC complex is recognized by the TCR: The antigen (Ag) is presented by the antigen-presenting cell (APC) to the T cell receptor (TCR)
via the major histocompatibility complex (MHC), which activates CD8+ T cells.
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Prediction and screening
of neoantigen

The advent of gene sequencing technology has led to significant

advancements in the field, with next-generation sequencing (NGS)

now capable of performing whole exome sequencing (WES) with

unparalleled precision. Nevertheless, a critical limitation persists:

single-base-pair nucleotide mutations frequently go unidentified,

which significantly complicates reliance on WES for the reliable

prediction of tumour neoantigens (15).

Whilst the WES does not offer a direct solution to the issue of

neoantigen screening, its development has created additional

pathways for neoantigen identification, thereby rendering

computer-aided neoantigen prediction a possibility. The methods

for neoantigen prediction and screening can generally be

categorized into four types.The initial method employs a

comprehensive strategy involving MHC and antigen affinity

screening. Initially, WES sequencing is performed on both normal

and tumour cells from the patient to uncover non-synonymous

single nucleotide variants (nsSNVs), insertion/deletion sites, and

fusion genes (16), precisely pinpointing mutation sites. However, it

should be noted that due to the high mutational load of tumour

cells, over 50% of mutations are not further transcribed, thus

rendering WES sequencing ineffective in addressing this issue.

Consequently, RNA-seq on the initially identified mutation sites

is essential to confirm transcription (17). Subsequent analysis of the

patient’s HLA typing through WES and RNA-seq on peripheral

blood cells employs prediction tools to assess the affinity of HLA

and antigens. The top-scoring antigens are then subjected to

experimental validation to identify candidate neoantigens. The

merits of this method are its expediency and capacity for large-

scale parallel prediction; however, it is accompanied by the necessity

for substantial data support, exhibits low prediction accuracy, and

necessitates downstream experimental validation.

The second method is centred upon the screening of neoantigens

through the utilisation of short gene tandem sequences. The process

and steps for obtaining nsSNVs and MHC typing are similar to

method one, but instead of predicting MHC-antigen affinity with

prediction tools, several genes containing mutation sites are

concatenated to create short tandem minigenes (TMGs). These

TMG control the expression of mutated genes into peptides of

around nine amino acids in length. These TMGs are then spliced

onto plasmids for in vitro transcription and expression. Finally, the

immunogenicity of these mutated genes expressed as peptides is

verified through T-cell reactivity analysis (18).

The third method utilises neoantigen screening from databases.

In addition to gene sequencing methods, there are numerous

existing literature and databases that have introduced antigen

epitopes proven to have immunogenicity. The method involves

the identification of high-frequency mutation sites from existing

resources with a view to ultimately uncovering potential neoantigen

epitopes (19). The primary benefit of these antigens is that they have

already undergone experimental validation. However, the

disadvantage is that the coverage is extremely limited, catering to

a small number of patients.
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Method four employs the process of predicting neoantigens

through the execution of mass spectrometry elution experiments.

Specifically, an elution experiment is performed on antigen peptides

bound to MHC molecules in tumor tissues. The immunogenicity of

the antigens is then analysed based on the resulting mass

spectrometry data.

The core experimental workflow is outlined as follows. Initially,

peptides bound to MHC molecules are to be immunopurified.

Subsequent to this, high-resolution tandem mass spectrometry is

to be performed under liquid-phase conditions. Subsequent to this,

a comprehensive protein database is to be constructed. Subsequent

to this, advanced protein quantification and identification analysis

tools, such as Peaks (20) and MaxQuant (21), are to be utilised in

conjunction with the constructed database to thoroughly analyse

the mass spectrometry data and pinpoint mutated peptides. Finally,

the immunogenicity of the peptides must be validated through in

vitro assays.As this method encompasses a series of information

from antigen processing to presentation, it avoids false positive

predictions stemming from these intermediate processes, thus

significantly enhancing the accuracy of neoantigen prediction

(22). The merits of this approach are evident in its ability to

directly detect the final neoantigen with high precision. However,

it is important to note the limitations imposed by mass

spectrometry, which results in a higher rate of false negatives.
Problems and solutions of neoantigen

The preceding section provides a detailed exposition of the four

predominant methodologies for neoantigen screening. The advent

of bioinformatics and the subsequent arrival of the big data era have

engendered a proliferation of data, thereby creating a wealth of

opportunities for machine learning in artificial intelligence

algorithms and models that predict MHC molecule-antigen

affinity. Consequently, the focus of neoantigen screening has

transitioned to method one: screening through MHC and antigen

affinity. It is acknowledged that numerous tools are currently

available for predicting MHC-antigen affinity.

NetMHCpan-4.0 is a notable example of an accurate neoantigen

prediction tool. The author hypothesises that the majority of

contemporary prediction tools are constructed using binding

affinity (BA) data to formulate machine learning models.

However, BA is only capable of representing a single event,

namely whether the MHC and peptide bind tightly. While this

event constitutes the most selective step in the entire antigen

presenta t ion process , BA does not reflec t the t rue

immunogenicity of an antigen. Prediction tools that are modeled

using BA data frequently exhibit a high false positive rate, and the

underlying reason for this is not difficult to explain. The antigen

presentation process encompasses numerous other steps, including

peptide processing, TAP transport, and ERAP trimming, which are

not adequately captured by BA data. Mass spectrometry (MS) data

can incorporate this information, but unfortunately, the amount of

MS data in the Immune Epitope Database (IEDB) (23) vastly

outmatches that of BA data. Consequently, the author
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amalgamated MS and BA data to establish a neoantigen prediction

model employing an Artificial Neural Network (ANN) method. The

model comprises four input categories based on peptide length: L ≤

8, L=9, L=10, and L≥11, and two outputs: BA prediction and MS

prediction. The model can also predict the optimal peptide length

for antigens binding to different MHC types based on MHC typing.

However, given the substantial disparities in affinity scores between

different MHC subtypes and antigens, establishing a unified

evaluation benchmark presents a challenge. The author converted

the scores into a percentile Rank, and the node with the optimal

specificity and sensitivity based on the Rank score is utilised to

screen for neoantigens. Peptides with a Rank value in the topmost

0.5% are deemed to have robust binding ability to MHC molecules;

peptides with a Rank value between 0.5% and 2% exhibit weak

binding ability; and peptides with a Rank value exceeding 2% are

incapable of binding to MHC molecules (24). Despite the

integration of BA and MS data in the NetMHCpan-4.0 training

set, the scarcity of MS data gives rise to the problem of false positives

in prediction outcomes.

In a recent publication in Cell, Daniel K. Wells et al. introduced

the use of multiple tools to predict the immunogenicity of tumour

epitopes and analysed some key parameters that can improve the

accuracy. The author coordinated 25 research teams to predict

neoantigens for the same cancer patients; subsequently, 608

peptides were selected from all the results for experimental

testing, among which 37 were identified as immunogenic.

Statistical outcomes revealed that each team correctly predicted 1-

20 immunogenic peptides among their top 100 peptides, but the

ranking of these immunogenic peptides varied significantly

among teams.

Subsequent to this, the 37 immunogenic results were subjected

to rigorous scrutiny from multiple dimensions, encompassing the

duration and strength of binding to MHC molecules, peptide

expression abundance, hydrophobicity, and mutation site

locations. The analysis revealed that immunogenic results

exhibited enhanced binding affinity, elevated expression levels,

increased binding stability, and diminished hydrophobicity.

Furthermore, it was observed that mutation sites in peptides

frequently occurred at the third amino acid, while the second

amino acid was rarely mutated. The incorporation of this

information into prediction tools could lead to the exclusion of

93% of non-immunogenic peptides (25).

The critical parameters outlined in this study can be employed

as new features in future machine learning models, with the

potential to generate highly accurate prediction models that

exhibit a reduction in false positives. It is acknowledged that there

are other tools for predicting MHC-peptide affinity, including

PSSMHCpan (26), NetMHCpan (27),antigen.garnish (28) and

BOTA (29), amongst others.

The aforementioned prediction tools predominantly

concentrate on neoantigen prediction stemming from somatic

mutations that engender novel epitope peptides, a prevailing

approach in contemporary neoantigen prediction research.

However, such predictions frequently yield false positives.

However, it is important to note that neoantigens can also arise

from alternative pathways, such as the transcription of silenced
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genes in adult tissues, which have the potential to transform into

tumour neoepitopes, and anomalous splicing of introns, which can

serve as an additional source of tumour neoepitopes. These retained

introns are frequently overlooked due to false negatives.

Van Allen’s research ensemble developed an algorithm that

predicts retained introns predicated on RNA sequencing, capable of

pinpointing translated intron segments situated between exons and

terminators. The algorithm then forecasts the affinity of the

corresponding intron peptide sequences to MHC molecules. The

experimental corroboration of peptides with elevated predicted

affinities has the potential to unveil novel candidate neoantigens.

This methodology permits investigators to pinpoint neoantigens

from a more expansive gamut of origins, contributing to a more

nuanced comprehension of tumour immune responses. However, a

limitation is its substantial dependence on the precision of RNA

sequencing (30).

It has been hypothesised by certain scholars that, irrespective of

the method employed, whether that be the comparison of

differential genes between tumour and normal tissues through

DNA sequencing or the screening for retained introns via RNA

sequencing, neither of these methods provides a direct reflection of

the binding strength of peptides to MHCmolecules. Proteomics can

provide a more direct indication of the strength of peptide-MHC

binding. Consequently, the authors have devised a high-precision

deep learning algorithm, AutoRT, geared toward underpinning

neoantigen prioritization based on proteomics, enabling more

sensitive and direct neoantigen prediction (31).

At present, the data sources employed for modelling neoantigen

prediction models are predominantly experimental data. The

acquisition of both BA data and MS data is time-consuming and

resource-intensive, which undoubtedly delays the progress of

neoantigen prediction research. Molecular docking is a

technology that emerges from the intersection of biology,

computer science, biochemistry and other disciplines. Its

fundamental principle is the ‘lock and key’ model, which allows

for the prediction of the strength of ligand-receptor interactions and

binding conformations. While molecular docking scores may not

perfectly align with BA data, the ranking ability of docking scores

regarding binding tightness can be highly correlated with BA data

(32). If the ranking information of peptides is predicted using

molecular docking, this would expand the data for building

neoantigen prediction models, which is of significant importance

for neoantigen research.

Nevertheless, studies predicting neoantigens through molecular

docking remain scarce. The authors have initiated preliminary

investigations utilising the MOE molecular docking software (33).

The crystal structure of a class I MHC molecule in complex with a

nonamer peptide, which has been validated for strong binding

affinity (PDB code: 3QFD), was selected for analysis. The retrieved

crystal structure underwent a series of preprocessing steps,

encompassing removal of water molecules, addition of hydrogens,

elimination of heteroatoms, and energy optimization. The binding

mode of the nonamer peptide to the MHC molecule is illustrated in

Figure 4. The MHC molecule is depicted as a ribbon, with red

signifying alpha-helices, yellow denoting beta-sheets, and white

symbolizing loop structures. The nonamer peptide is illustrated
frontiersin.org
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using a stick model, while the binding pockets are rendered

as surfaces.

In order to ascertain the reliability of the docking software, a

standard practice is to initially dock the original ligand prior to

formal docking, in order to ascertain whether it can accurately

replicate the crystal structure. The docking mode that was selected

was protein-protein docking, which generated 20 conformations.

The docking outcome conformation of the original ligand is

depicted on the left in Figure 5. The green stick model signifies

the conformation of the nonamer as per the crystal structure, and

purple delineates the conformation of the docked structure. It is

noteworthy that the two conformations can be superimposed

virtually, thereby indicating that MOE’s protein-protein docking

can adeptly reproduce the crystal structure.

A 3Dmodel of a nonamer (AAGIGILTV) was constructed, with

the ligand sequence mirroring that of the crystal structure. This was

achieved using the Protein Builder module, followed by energy

minimization. Subsequently, docking was executed using the
Frontiers in Oncology 07
identical docking mode, with the results illustrated on the right in

Figure 5. It is evident from the figure that the docking outcome

(green) does not align well with the crystal structure (purple), and

an opposing orientation is even observed.

The top five docking score outcomes for both the original ligand

and the modeled ligand are displayed in Table 1. It is evident that a

lower score is indicative of a more robust binding between the

ligand and the receptor. A clear distinction emerges between the

original ligand and the modeled ligand, with the former

demonstrating a significantly higher score.

The configuration of the ligand is a pivotal factor in

determining the outcomes of docking. As illustrated at the top of

Figure 6, the green stick model exemplifies the conformation of the

original ligand, whereas purple delineates the conformation of the

modeled ligand. The root mean square deviation (RMSD) values for

each Ca atom of both are delineated at the bottom of Figures 6, 7,

with an average RMSD value of 7.37Å. The red dashed line denotes

an RMSD value of 2Å. Conformations can be regarded as

comparable if the RMSD is below 2Å (34).This disclosure

indicates that the peptide 3D structure engineered via the Protein

Builder module and energy minimization diverges markedly from

the crystal structure, possibly accounting for the substantial

discrepancy in the docking conformations and docking scores.

The paucity of resolved MHC and peptide crystal structures

underscores the utility of molecular docking as a potent

methodology for forecasting docking conformations and binding

affinity. As demonstrated by the aforementioned outcomes, it is

evident that MOE’s protein-protein docking can replicate the
FIGURE 5

Docking results of the original ligand and the modeling ligand:Crystal structure peptides (green sticks) vs. MOE-docked conformations (purple sticks)
demonstrating structural overlap (RMSD <2Å).
FIGURE 4

MHC binding pattern to nine peptides:Ribbon diagram depicts a-
helices (red), b-sheets (yellow), and loops (white). Binding pocket
surface with nine bound peptides (stick models).
TABLE 1 Docking scores of the original ligand and the modeling ligand.

Top 5 PROLIGAND score Modeling ligand scores

1 -96.004 kcal mol-1 -38.142 kcal mol-1

2 -95.163 kcal mol-1 -29.396 kcal mol-1

3 -36.579 kcal mol-1 -28.466 kcal mol-1

4 -35.339 kcal mol-1 -28.255 kcal mol-1

5 -34.805 kcal mol-1 -27.757 kcal mol-1
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crystal structure conformation and deliver commendable scoring,

albeit with the precondition of possessing a peptide conformation

that closely mirrors the authentic conformation. This is currently

unattainable through the Protein Builder module and energy

minimization alone.

The authors also attempted to obtain precise peptide structures

via the utilisation of homology modelling utilities. However, the

majority of modelling tools impose restrictions on the number of

amino acids, with SWISS-MODEL requiring over 30 amino acids

(35) and Robetta demanding over 26 amino acids (36), whereas the

length of antigens typically ranges around 10 amino acids,

rendering these modelling tools ineffective. Conformational

searches were also executed by the authors, yet the outcomes

remained disappointing.

The recent unveiling of AlphaFold by the DeepMind team has

made it possible to predict the 3D structures of proteins with the

same level of accuracy as that achieved by crystallographic

techniques. It is anticipated that a similar tool for forecasting

peptide 3D structures will be developed in the near future. At

that juncture, molecular docking will undoubtedly assume a pivotal

role in research concerned with predicting neoantigens.
Frontiers in Oncology 08
Future work

Genetic aberrations have been identified as a key factor in the

development of tumours. However, these aberrant genes are also

subject to surveillance by the immune system, contributing to the

immunogenicity of the tumours. The advent of high-throughput

sequencing technology has empowered researchers to expeditiously

sequence patients’ DNA and RNA, thereby acquiring mutated gene

loci. The employment of computational tools to predict the binding

capacity of MHC and antigens facilitates the identification of potential

neoantigens. Despite the plethora of prediction tools currently

available, they commonly grapple with high false positive rates.

In the domain of tumour immunotherapy, the stimulation of

cytotoxic T cells is of paramount importance. In this context, the

process of antigen presentation constitutes the most discriminative

phase, exhibiting a close interconnection with bioinformatics and

computer science. Consequently, the development of neoantigen

prediction methodologies with high sensitivity and specificity,

capable of swiftly, cost-effectively and efficiently identifying

neoantigen immunogenicity, is pivotal for advancing the

application and development of tumour neoantigen therapy.
FIGURE 6

Conformations of the original ligand and the modeled ligand:Overlay of crystallographic ligand (green) and computational model
(purple) configurations.
FIGURE 7

RMSD values of the original ligand and the modeled ligand:Ca RMSD between original and modeled ligands (mean 7.37Å). Dashed line at 2Å
indicates conformational similarity threshold.
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The advent of neoantigen-tailored immunotherapy promises to

herald a new era in the fight against malignant tumours, with the

potential to transform the landscape of cancer treatment.
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