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The aggrephagy-related gene
TUBA1B influences clinical
outcomes in glioma patients
by regulating the cell cycle
Zesheng Sun1†, Pengcheng Huang2†, Jialiang Lin1†,
Guiping Jiang1, Jian Chen1 and Qianqian Liu1*

1Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong
University, Nantong, Jiangsu, China, 2Tianjin Medical University, General Hospital, Tianjin, China
Background: Gliomas are common primary malignant brain tumors, with

glioblastoma (GBM) being the most aggressive subtype. GBM is characterized

by high recurrence rates and treatment resistance, leading to poor patient

outcomes. Current prognostic models have limited predictive power,

underscoring the need to elucidate underlying mechanisms and identify novel

biomarkers to improve therapeutic strategies and prognostic models.

Methods: Gene expression and clinical data for GBM and LGG were obtained

from the TCGA and CGGA database, while single-cell sequencing data from

GSE167960 were selected from the GEO database. Molecular characteristics of

gliomas were revealed through normalization, consensus clustering analysis,

immune scoring, cell infiltration analysis, and pathway analysis. TUBA1B,

identified as a key gene through machine learning, was incorporated into a

nomogrammodel using multivariate Cox regression. Its functions were validated

through qRT-PCR, in vitro functional assays, and mouse xenograft models. All

data analyses and statistics were performed using R software.

Results: Consensus clustering of the TCGA glioma dataset identified two

aggrephagy subtypes (C1 and C2), with C2 showing worse survival outcomes

and higher immune infiltration. TUBA1B was identified as an independent

prognostic marker, with high expression associated with upregulated cell cycle

pathways and alterations in the immune microenvironment. TUBA1B was shown

to influence glioma cell proliferation, migration, invasion, and autophagy,

impacting tumor progression and treatment response through intercellular

communication and metabolic pathways.

Conclusion: The study demonstrates that high TUBA1B expression is closely

associated with glioma malignancy and poor prognosis, making it a potential

therapeutic target.
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1 Introduction

An estimated 40% of all brain tumors are gliomas, which are the

most common primary malignant brain tumors (1). Among them,

glioblastoma (GBM) is the most aggressive subtype. According to

the World Health Organization (WHO) classification, gliomas are

categorized into four histopathological grades: I, II, III, and IV.

GBM (WHO grade IV) is the most invasive subtype, characterized

by neovascularization, and WHO grades II and III are considered

lower-grade gliomas (LGG) (2, 3). Histologically, gliomas exhibit

high cellular density, active mitosis, vascular proliferation, and

necrosis (4). Due to the aggressive nature of the tumor and

resistance to chemotherapy and radiotherapy, patients often face

high recurrence rates and functional impairments (5). Gliomas are

currently treated with surgical resection, adjuvant chemotherapy,

and radiotherapy. The median survival for LGG patients can range

from five to ten years with combination therapies, while GBM

patients typically have a median survival of only one to two years (6,

7). The prognosis of glioma patients varies significantly and is

influenced by factors such as tumor grade, isocitrate dehydrogenase

(IDH) mutation (8), and epidermal growth factor receptor

(EGFR) amplification (9). Current glioma prognosis models

are mainly based on clinical factors, but their predictive

capacity is limited (10–13). Therefore, it is urgently needed to

discover the mechanisms underlying glioma genesis and to

identify biomarkers for improving therapeutic strategies and

prognostic models.

Aggrephagy is a selective form of autophagy responsible for

degrading misfolded or aggregated proteins (e.g., those generated by

genetic mutations or cellular stress), which are typically recognized

as damaged or misfolded within cells and need to be eliminated to

prevent their accumulation (14). Aggrephagy plays a crucial role in

cellular homeostasis by removing protein aggregates that might

otherwise accumulate and disrupt cellular function. These

misfolded proteins may arise continuously within cells due to

genetic mutations, incomplete mRNA translation, post-

translational misfolding, improper protein modifications, and

oxidative stress (15). While these misfolded proteins are typically

degraded via the ubiquitin-proteasome system (UPS), in certain

cases (such as during protein aggregation), UPS may fail to degrade

the target proteins effectively (16). Under these circumstances,

aggrephagy becomes an alternative pathway for protein

degradation. Aggrephagy is important in maintaining cellular

homeostasis and is implicated in various human diseases,

including neurodegenerative disorders, cataracts, and type II

diabetes (17, 18).

Autophagy plays a dual role in tumorigenesis: at low levels,

autophagy can facilitate the initial stages of cancer progression by

providing energy and promoting cellular adaptation to stress. However,

at elevated levels, autophagy enables tumor cells to survive under

nutrient-scarce conditions by maintaining cellular homeostasis and

removing damaged components, such as aggregated proteins, thus

contributing to tumor cell survival in the later stages of cancer

progression (18). Despite high autophagy-related gene expression

and activity in glioma tissues and cells (16, 19, 20), whether
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aggrephagy exerts a similar regulatory role in glioma remains largely

uninvestigated. As a result, the study of aggrephagy in gliomas is of

considerable academic and clinical interest.

In this study, we explore the role of aggrephagy and its key gene,

TUBA1B, in glioma, uncovering its multiple impacts on the tumor

microenvironment. Through clustering analysis of The Cancer

Genome Atlas (TCGA) dataset, we found that a high level of

TUBA1B expression in gliomas indicates a poor prognosis and a

rapid progression of the disease. Elevated TUBA1B expression

promotes cell proliferation and migration and significantly affects

the cell cycle, autophagy, and apoptosis. Immunological analysis

indicates that TUBA1B is linked to cancer-associated fibroblasts

and various immune cell infiltrations, implying its involvement in

modulating the tumor microenvironment and intercellular

communication. Furthermore, high TUBA1B expression is

correlated with enhanced tumor stemness and decreased

sensitivity to immunotherapy in glioma. These findings not only

enhance our understanding of aggrephagy in glioma but also

provide potential directions for developing new therapeutic

targets with important clinical implications.
2 Methods

2.1 Processing and collection of data

In this study, we obtained data on glioblastoma and lower-grade

gliomas (GBM and LGG) from the TCGA database. The gene

expression data underwent log2(TPM+1) transformation to

standardize the data and mitigate the effects of sequencing depth

and gene length. Additionally, corresponding clinical data were

acquired. During data curation, samples lacking survival data were

excluded, resulting in a final cohort of 660 samples with complete

expression profiles and clinical information.

Additionally, we incorporated glioma data from the Chinese

Glioma Genome Atlas (CGGA) database to further validate our

findings. The CGGA database includes three mRNAseq data

(mRNAseq_301, mRNAseq_325 and mRNAseq_693). Gene

expression data from these cohorts were processed similarly to

the TCGA and GEO datasets, with log2(TPM+1) transformation to

standardize the data. The clinical data for these samples were also

curated, and only samples with complete survival and clinical

information were included.

For single-cell sequencing results, we selected the single-cell

sequencing dataset GSE167960 from the Gene Expression Omnibus

(GEO) database, which includes six samples. We performed data

normalization and quality control to remove outliers or samples

with low cell counts, as well as annotated cell types based on gene

expression characteristics.

Subsequently, we integrated the multi-sample data from TCGA

with the single-cell data from GEO. Through survival analysis,

differential gene expression analysis, and cellular heterogeneity

analysis, we systematically explored the molecular characteristics

of gliomas to identify potential prognostic biomarkers and key

molecular pathways. These analyses provide an essential foundation
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for elucidating the relationships between different molecular

subtypes and their roles within the tumor microenvironment.
2.2 Consensus clustering analysis

To assess the differential expression of autophagy-related genes

across glioma patients, we applied consensus clustering (CC) to

classify the patients (21). Initially, we divided all samples based on a

range of cluster numbers (k = 2-9). We then calculated the

consensus score matrix and plotted CDF curves along with Delta

area plots to determine the optimal number of clusters. The optimal

k value was then selected for further analysis.
2.3 Immune scoring and immune
checkpoint analysis

For immune infiltration analysis, we used multiple algorithms,

including TIMER, CIBERSORT, MCP-counter, and xCell. These

bioinformatics tools apply different algorithms to infer and quantify

the relative proportions of various immune cell types in tumor

samples based on gene expression data. TIMER is a tool for

estimating the abundance of immune cells from RNA-seq data,

while CIBERSORT uses a deconvolution algorithm to estimate the

fraction of immune cells in a mixed tissue sample.
2.4 Cell infiltration analysis

To comprehensively analyze the cell types within the tumor

microenvironment, we employed multiple bioinformatics tools,

including TIMER, CIBERSORT, MCP-counter, and xCell. Each

tool applies distinct algorithmic principles to infer and quantify the

relative proportions of various immune cell types within tumor

samples. The analysis involved importing gene expression data,

running the “IOBR” package, and organizing the output to reveal

the infiltration characteristics of different cell types. These insights

provide a detailed understanding of the cellular composition of the

tumor microenvironment.
2.5 Pathway analysis

In the pathway analysis, we utilized Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the

functions and pathways associated with differentially expressed

genes. Additionally, Gene Set Enrichment Analysis (GSEA) was

employed to investigate the enrichment of differentially expressed

genes within known pathways, aiding in the identification of

functional and significant pathways. During the analysis, we input

a filtered set of genes with differential expression (criteria: adjusted

P < 0.05, log2FC > 1) and compared them against reference pathway

sets from the Reactome or KEGG databases to identify highly

correlated pathways. The activity levels of various biological

pathways were assessed by calculating enrichment scores and
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conducting statistical tests, which helped elucidate these

pathways’ potential roles in tumor biology.
2.6 Selection of TUBA1B

To identify the key gene TUBA1B, the study employed three

machine learning methods: LASSO regression, random forest, and

support vector machine (SVM). LASSO regression is a method that

applies a penalty to reduce the number of candidate genes,

effectively narrowing down the gene list. Random forest, a

decision tree-based algorithm, evaluates gene importance scores

by constructing multiple decision trees and selecting the most

influential genes based on their contribution to the classification.

SVM is used to classify candidate genes and validate their

classification performance. By cross-analyzing the results from

these methods, TUBA1B was identified as a key gene associated

with autophagy in gliomas.
2.7 The construction and evaluation of
the nomogram

Our nomogram was constructed using univariate and

multivariate Cox regression analyses to identify independent

prognostic factors significantly associated with survival. A

nomogram provides a visual representation of patient survival

probabilities, helping clinicians predict survival rates at 1 year, 3

years, and 5 years based on multiple factors. To assess the predictive

performance of the nomogram, several statistical methods were

used. Receiver Operating Characteristic (ROC) curves were plotted

to evaluate the model’s ability to discriminate between patients with

different survival outcomes. The area under the curve (AUC) was

calculated at 1-year, 3-year, and 5-year intervals to measure the

accuracy of the model. Calibration curves were then constructed to

compare the predicted survival probabilities with the actual

observed outcomes, evaluating the degree of agreement between

them. A closer alignment between predicted and observed survival

indicates a better model performance. Finally, Decision Curve

Analysis (DCA) was performed to assess the clinical net benefit of

the nomogram. DCA evaluates whether the model provides a net

benefit compared to a strategy of treating all patients or treating

none. This method helps to identify the most clinically relevant

thresholds for the model’s decision-making. These comprehensive

evaluations demonstrated the nomogram’s superiority in survival

prediction, supporting its clinical application.
2.8 RNA extraction and quantitative
RT-PCR

TRIzol reagent (Invitrogen, Carlsbad, CA) was used to isolate total

RNA from transfected and control cell samples. The qRT-PCR

reactions were performed in triplicate using Taq Pro Universal SYBR

qPCRMaster Mix (Vazyme Biotech Co., Ltd., Nanjing, Jiangsu, China)

as directed by the manufacturer. The experiment utilized TUBA1B-
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spec ific pr imers , inc lud ing the forward pr imer 5 ′ -
GAGCAGCTCATCACAGGCATT-3′ and reverse primer 5′-
TGCCTGTGATGAGCTGCTCTT-3′. A 2−DDCt method, normalized

to GAPDH as an internal control, was used to determine the relative

expression of TUBA1B following qRT-PCR.
2.9 Culturing and transfecting cells

Human glioma U251 and U87 cell lines were cultured and

maintained in DMEM (Gibco, Grand Island, NY, USA)

supplemented with 10% fetal bovine serum (FBS, Gibco, USA)

and 1% penicillin-streptomycin solution in an incubator at 37°C

with 5% CO2. To explore the functional complexity of TUBA1B in

GBM, TUBA1B was knocked down in U251 and U87 cells using

negative control shRNA (shNC) and shTUBA1B. The transfection

was performed using Lipofectamine 3000 reagent (Invitrogen,

Carlsbad, CA, USA) strictly according to the manufacturer’s

protocol. Transfection was initiated when U251 and U87 cells

reached approximately 70%-80% density in 6-well plates.

Transfected cells were incubated under standard conditions for

48-72 hours to ensure effective knockdown of TUBA1B.
2.10 In vitro functional experiments

2.10.1 Cell proliferation
Following TUB1B knockdown, glioma cell proliferation was

assessed using the CCK-8 assay. Following transfection with

TUBA1B-specific shRNA for 48 hours, cells were harvested and

counted. In 96-well plates, cells were seeded at a density of 2×10³

per well. At 37°C, 10 mL of CCK-8 reagent (Dojindo, Japan) was

added every 24 hours and incubated for 2 hours. The proliferation

of cells was evaluated by measuring absorbance at 450 nm using a

microplate reader.

2.10.2 Migration and invasion
The Transwell assay assessed cell migration and invasion after

TUBA1B knockdown. After 48 hours post-transfection, cells were

harvested and counted, then seeded at a density of 5×104 per well in

the upper chamber of 24-well Transwell inserts (8 mm pore size,

without Matrigel, Corning, USA). The lower chamber was filled

with a complete medium supplemented with 20% FBS. The upper

chamber was swabbed with cotton swabs after 24 hours, and the

cells were stained with crystal violet and fixed with 4%

paraformaldehyde. Invasion assays followed similar procedures,

utilizing Matrigel-coated inserts, seeding 8×104 cells per well, and

incubating for 48 hours to assess the number of invasive cells.

2.10.3 Cell cycle analysis
Flow cytometry analyzed cell cycle distribution following

TUBA1B knockdown. We harvested the cells 48 hours post-

transfection, washed them with PBS, and incubated them for 15

minutes in RNase-containing PBS containing PI reagent (BD
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Biosciences, USA). Cells were analyzed using a flow cytometer,

and data were processed with ModFit LT software.
2.11 Western blot analysis

Using RIPA lysis buffer (containing protease inhibitors, Beyotime,

China), total protein was extracted from treated cells. Protein

concentrations were determined via the BCA method. To conduct

electrophoresis, 30-50 mg of protein were loaded onto 6% or 10% SDS-

polyacrylamide gels. Separated proteins were transferred to methanol

activated PVDF membranes (Millipore, USA). Membranes were

blocked with 5% BSA (Sigma-Aldrich, USA) in TBST at room

temperature for 1 hour. An overnight incubation at 4°C with

primary antibodies was performed on membranes: anti-LC3B

(1:1000, Cell Signaling Technology, USA), anti-p62 (1:1000,

Proteintech, USA), anti-Bcl-2 (1:1000, Cell Signaling Technology,

USA), anti-Cyclin D1 (1:1000, Cell Signaling Technology, USA), and

loading control anti-Tubulin 1 (1:5000, Proteintech, USA). Following

three 10-minute TBST washes, membranes were incubated for 1 hour

at room temperature with HRP-conjugated secondary antibodies (anti-

rabbit or anti-mouse IgG, 1:5000, Cell Signaling Technology, USA),

followed by three additional 10-minute TBST washes. Protein bands

were developed with ECL-plus™ chemiluminescent kit (Thermo

Fisher, USA) and visualized using a chemiluminescence

imaging system.
2.12 In vivo xenograft mouse experiments

We obtained female BALB/c nude mice from the Animal

Laboratory at Nantong University Medical College, aged 4 weeks.

Well-growing U251 cells were prepared and transiently transfected

with control and TUBA1B knockdown siRNA. Trypsinization and

PBS washing were performed after 24 hours. The cells were counted

and diluted to a concentration of 5 × 106 cells/100 mL. Under
respiratory anesthesia, 100 mL of control/TUBA1B knockdown cells

were subcutaneously injected into the mice. The growth of

subcutaneous tumors was monitored. After 28 days, in vivo

imaging experiments were conducted to measure tumor size. In

accordance with animal welfare guidelines, this animal study was

approved by the Animal Ethics Committee of Nantong University

Medical College (S20240116-009).
2.13 Tumor stemness and immunotherapy
benefit analysis

Six tumor stemness indices were utilized: DMPss (differentially

methylated probes), DNAss (DNA methylation), ENHss (enhancer

elements/DNAmethylation), EREG.EXPss (epigenetically regulated

RNA expression), EREG-METHss (epigenetically regulated DNA

methylation), and RNAss (RNA expression). Spearman analysis

was performed to explore the correlation between stemness

characteristics and TUBA1B expression (22). Tumor Immune
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Dysfunction and Exclusion (TIDE) was applied to predict the

response to immune checkpoint blockade therapy (23).
2.14 Analyses of single-cell sequencing

Single cell sequencing data from multiple samples were

collected and processed using the “Seurat” package for quality

control and normalization. UMAP dimensional reduction was

applied to perform clustering analysis, identifying different cell

groups. Known cell markers were used to classify cells into eight

groups: Oligodendrocytes, Macrophages, Glioma cells, Endothelial

cells , Monocytes, T cells , Pericytes, and B cells . The

“AddModuleScore” package was employed for gene set variation

analysis to evaluate the autophagy-related gene expression levels in

different cell groups. The expression of TUBA1B was analyzed

across these cell groups, focusing on its distribution in

Oligodendrocytes, Macrophages, Glioma cells, and Pericytes.

Using the “CellChat” package, cell communication analysis was

performed to explore communication patterns among cell groups

with high TUBA1B expression, with particular attention to

interactions with other cell groups. Signal pathway enrichment

analysis was conducted using “cellchat” to identify the main input

and output signaling pathways. Additionally, the “scMetabolism”

package was used for in-depth analysis of metabolism pathways

related to Glioma cells, identifying associations with starch and

sucrose metabolism, propionate metabolism, oxidative

phosphorylation, fatty acid degradation, and butyrate metabolism.

These steps helped reveal the potential mechanisms by which

TUBA1B regulates glioma cell biological behavior through

intercellular communication and metabolic pathways in the

tumor microenvironment.
2.15 Statistical analysis

The research data was analyzed statistically using R software

(version 4.3.1). Data were evaluated using the Shapiro-Wilk test to

determine whether they were normally distributed. Students’ t-tests

and one-way ANOVAs were conducted to compare two groups and

multiple groups of normally distributed variables. The Wilcoxon

test was used for comparisons between two groups of non-normally

distributed data, and the Kruskal-Walli test was used for

comparisons among multiple groups. Survival analysis was

performed using the Kaplan-Meier method, which estimates the

probability of survival over time. Log-rank tests were used to

compare the survival distributions between groups. The Kaplan-

Meier method generates survival curves, and the log-rank test

assesses whether there are statistically significant differences

between these curves. To ensure the robustness of the findings,

the Cox proportional hazards regression model was applied for

multivariate analysis, adjusting for potential confounders such as

age, gender, and clinical features. The hazard ratio (HR) and

corresponding 95% confidence interval (CI) were calculated to

evaluate the risk of death associated with each variable. A

statistically significant difference was considered when P < 0.05.
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3 Results

3.1 Biological characteristics and clinical
significance of aggrephagy subtypes
in glioma

In order to investigate aggrephagy’s potential role in glioma, we

performed aggrephagy subtype classification using the

ConsensusClusterPlus algorithm on the TCGA dataset (GBM

+LGG). All samples were divided into k (k = 2–9) clusters. By

analyzing the cumulative distribution function (CDF) curve, and

Delta area plot, we identified k = 2 as the optimal number of

subtypes (Figures 1A–C). Aggrephagy scores were significantly

different between the two clusters, with patients in the C2 cluster

showing worse survival outcomes (Figures 1D, E). To further

understand the immunological differences between the two

clusters, we employed multiple algorithms to assess immune

infiltration, including TIMER, CIBERSORT, MCP-counter, xCell,

Immune checkpoints, and ESTIMATE. The results revealed that

overall immune infiltration was notably greater in the C2 cluster

(Figures 1F, G, Supplementary Figure 1). Based on this, we defined

the C1 cluster as “immune-cold” tumors and the C2 cluster as

“immune-hot” tumors. Further analysis of key differentially

expressed genes revealed that multiple tubulin-related genes (such

as TUBA1A, TUBA1B, TUBA1C, TUBA3C, TUBA4B, TUBA3E,

TUBA3D, TUBA4A, and TUBA8) were significantly altered in the

C2 cluster compared to the C1 cluster. In addition, genes associated

with protein degradation and stress response (such as UBB, UBC,

UBA52, RPS27A, VCP, and HSF1) also showed significant changes

(Figure 1H). Pathway and functional analysis of these differentially

expressed genes indicated their involvement in cell adhesion

molecules and trans-synaptic signaling regulation. Specifically, the

“immune-hot” tumors exhibited significant upregulation in several

pathways, including cell cycle, proliferation, metabolism, signaling,

immune regulation, and stress response pathways, such as MYC

Targets, E2F Targets, G2M Checkpoint, Interferon Alpha/Gamma

Response, Inflammatory Response, TNFA Signaling via NFKB,

PI3K/AKT/mTOR Signaling, IL6 JAK/STAT3 Signaling, and

Glycolysis (Figures 1I–K). These results suggest that the C2

cluster not only Contributes significantly to maintaining cellular

functions and responding to external stimuli but also that its

extensive pathway activity may have significant implications for

glioma progression.
3.2 TUBA1B as a key aggrephagy gene and
independent prognostic marker for
glioma patients

To identify key genes associated with aggrephagy in glioma, we

employed threemachine learningmethods: LASSO regression, random

forest, and support vector machine, to narrow down candidate genes

(Figures 2A–C). Through cross-analysis, we identified seven

aggrephagy-related common genes: TUBA1C, VIM, TUBA1B,

DYNC1H1, TUBA1A, PRKN, and DYNLL2 (Figure 2D). A

subsequent univariate and multivariate Cox regression analysis found
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that, except for PRKN, all of the remaining genes played independent

prognostic roles. Among them, TUBA1C, VIM, TUBA1B, and

TUBA1A were confirmed as risk factors, while DYNC1H1 and

DYNLL2 were considered protective factors (Figures 2E, F). We

identified TUBA1B and TUBA1C as the most significant prognostic

genes in glioma by integrating results from random forest, univariate,

and multivariate Cox regression analyses, highlighting their high

weights. It has been shown that TUBA1C regulates the cell cycle and

is associated with poor prognoses in glioma cells (24). Therefore, we

chose to investigate the other gene, TUBA1B. In the TCGA database,

Kaplan-Meier curve analysis showed that patients with low TUBA1B

expression had significantly better prognoses than those with high

expression. The low-expression group exhibited a significantly longer

survival time compared to the high-expression group, suggesting that
Frontiers in Oncology 06
elevated TUBA1B expression may correlate with poor prognosis

(Figure 2G). In addition to the TCGA and GEO datasets, we further

validated our findings using data from the CGGA database, which

includes a broader data of glioma samples. As shown in Supplementary

Figure 2, our analysis of CGGA data confirmed the significant

association between TUBA1B expression and poor prognosis in

glioma patients. These results, consistent with our findings from the

TCGA and GEO datasets, reinforce the robustness and relevance of

TUBA1B as a potential prognostic biomarker in glioma. According to

the ROC curve analysis, TUBA1B has AUC values of 0.812, 0.806, and

0.801 for predicting 1-year, 3-year, and 5-year survival, respectively

(Figure 2H). To facilitate the clinical application of TUBA1B as a

prognostic marker, we constructed a nomogram incorporating various

clinicopathological factors, including TUBA1B expression, to better
FIGURE 1

Characteristics of autophagy subtypes in glioma. (A, B) Cumulative distribution function (CDF) curves and Delta area plots for consensus scores of
autophagy subtypes in the TCGA (GBM+LGG) dataset. (C) Consensus score matrix for all samples when k = 2. A higher consensus score between
two samples indicates a higher likelihood of their co-clustering in different iterations. (D) Autophagy scores of the two clusters. (E) Kaplan-Meier
survival curves for the two clusters. (F) Comparison of Immune score, Estimate score, Stromal score, and Tumor purity between the two clusters. (G)
Expression of immune checkpoint genes between the two clusters. (H) Heatmap showing differentially expressed genes between the two clusters. (I,
J) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes between the two
groups. (K) Heatmap of Gene Set Enrichment Analysis (GSEA) for differentially expressed genes between the two groups.
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predict overall survival rates for glioma patients (Figure 2I). Calibration

curves, ROC curves, and DCA were used to evaluate this model.

Calibration curves showed that the nomogram’s predictions of survival

after a year, three years, and five years were very close to the actual
Frontiers in Oncology 07
outcomes (Figure 2J). Based on the ROC curve analysis, the

nomogram’s AUC values for predicting 1-year, 3-year, and 5-year

survival were 0.881, 0.880, and 0.867, respectively (Figure 2K). A DCA

revealed that the nomogram had a higher clinical net benefit between
FIGURE 2

TUBA1B as an independent prognostic marker in glioma patients. (A) The relationship between partial likelihood deviance and log(l) in the LASSO
Cox regression model. The lambda parameter represents the coefficient of a feature. The x-axis shows the influence of lambda on the independent
variables, while the y-axis represents the coefficient of the independent variables. (B) Random Forest results. (C) Support vector machine (SVM) curve
results. (D) Venn diagram of key genes identified through the intersection of three machine learning methods. (E, F) Univariate and multivariate Cox
regression analysis of seven key genes. (G) Kaplan-Meier survival analysis of glioma patients stratified by high and low TUBA1B expression. (H)
Receiver operating characteristic (ROC) curves predicting 1-, 3-, and 5-year prognosis of glioma patients based on TUBA1B expression. (I)
Nomogram constructed using TUBA1B expression and various clinical characteristics. (J) Calibration curves of the nomogram for 1-, 3-, and 5-year
overall survival probabilities. (K) ROC curves demonstrating the predictive value of the nomogram for 1-, 3-, and 5-year survival in glioma patients.
(L) Decision curve analysis (DCA) curves comparing the predictive performance of the nomogram.
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20% and 80% (Figure 2L). Based on these findings, the nomogram is

more accurate in predicting glioma patient survival than any single

diagnostic feature, highlighting the potential of TUBA1B as a valuable

prognostic biomarker.
3.3 Pathway analysis of TUBA1B-
related genes

We divided the TCGA database into high and low TUBA1B

expression groups based on the median expression level in order to

examine TUBA1B’s role in gliomas. We identified differentially

expressed genes between the two groups and concentrated on those

upregulated in the high-expression group for functional and

pathway analysis. The KEGG analysis showed that these

upregulated genes were mainly involved in several key pathways,

including the cell cycle, the AGE-RAGE signaling pathway, ECM-

receptor interactions, complement and coagulation cascades, as well

as p53 signaling. GO analysis indicated that these genes significantly

influenced several biological processes, such as mitotic cell cycle

phase transition, chromosome segregation, and nuclear

chromosome segregation (Figures 3A–C). These findings suggest

a strong association between many genes and the cell cycle. Key

genes involved include PTTG1, CCNB1, CCNB2, CDKN2C,

AURKB, CDK1, CCNA2, TGFB2, CDCA5, NDC80, CDC45,

BUB1, WEE1, and MCM2 (Figure 3C). Additionally, we

performed GSEA on the upregulated genes in the TUBA1B high-

expression group, which again highlighted the cell cycle as a major

pathway of interest (Figure 3D).
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3.4 TUBA1B mediates malignant
progression of glioblastoma by regulating
the cell cycle

The pathway analysis results suggest that TUBA1B may be

associated with the cell cycle. Therefore, we performed a correlation

analysis and found that the expression of TUBA1B was significantly

positively correlated with the cell cycle score (Figure 4A). This

finding prompted us to conduct a series of in vitro experiments to

explore the role of TUBA1B in regulating cell cycle progression and

its effect on glioma cell proliferation. First, we successfully knocked

down TUBA1B expression in U251 and U87 cells (Figure 4B). Next,

flow cytometry was used to analyze the cell cycle, and the results

showed that knockdown of TUBA1B led to significant changes in

the cell cycle distribution, particularly in the proportion of cells in

the G1 and S phases. The percentage of cells in the G1 phase was

significantly increased, while the proportion of cells in the S phase

was significantly decreased (Figures 4C, D). These results suggest

that TUBA1B may regulate cell proliferation by affecting the

progression of the cell cycle. Furthermore, we evaluated cell

proliferation using the CCK-8 assay. Knockdown of TUBA1B

significantly reduced the proliferation rate of U251 and U87 cells

(Figure 4E). Additionally, migration and invasion assays showed

that TUBA1B knockdown significantly inhibited the migration and

invasion capabilities of U251 and U87 cells (Figures 4F, G).

However, the addition of the cell cycle activator Cyclin D1

partially restored the inhibitory effect of TUBA1B knockdown on

cell migration and invasion, further validating that TUBA1B

regulates glioma cell behavior through the cell cycle. Next, we
FIGURE 3

Pathway analysis of genes associated with TUBA1B expression. (A−C) Gene Ontology (GO) and KEGG pathway analysis of upregulated differentially
expressed genes (DEGs) in the high and low TUBA1B expression groups. (D) Gene Set Enrichment Analysis (GSEA) of upregulated DEGs in the high
and low TUBA1B expression groups.
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performed Western blot analysis, which revealed that knockdown

of TUBA1B led to a significant decrease in Cyclin D1 levels, while

p27 protein levels were significantly increased (Figure 4H). This

result further confirms the regulatory role of TUBA1B on key cell

cycle proteins. Additionally, autophagy-related proteins such as

LC3B and Bcl-2 also showed changes in expression, indicating that

TUBA1B may also be involved in autophagy regulation. These
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effects were also partially reversed by Cyclin D1, supporting the

involvement of the cell cycle in the regulation of TUBA1B’s role in

glioma. Finally, we further validated the impact of TUBA1B on

tumor progression using a mouse xenograft model. Fluorescence

imaging results showed that tumor growth was significantly

inhibited in the TUBA1B knockdown group (Figure 4I).

Statistical analysis (Figure 4J) indicated that the total fluorescence
FIGURE 4

TUBA1B influences tumor malignancy progression. (A) Correlation analysis between TUBA1B expression and cell cycle score in glioma samples from
the TCGA database. (B) qPCR analysis confirming the successful knockdown of TUBA1B in U251 and U87 cells. (C, D) Flow cytometry analysis of the
cell cycle in U251 cells with TUBA1B knockdown. (E) CCK-8 assay showing the effect of TUBA1B knockdown on cell proliferation in U251 and U87
cells. (F, G) Migration and invasion assay in U251 and U87 cells with TUBA1B knockdown. (H) Western blot analysis showing the expression of Cyclin
D1, p27, LC3B, and Bcl-2 in U251 and U87 cells with TUBA1B knockdown. (I) In vivo tumor growth analysis using a mouse xenograft model. (J)
Statistical analysis of the total fluorescence intensity from the in vivo imaging.
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intensity of the tumor in the TUBA1B knockdown group was

significantly lower than that in the control group, further proving

the oncogenic role of TUBA1B in glioma. In conclusion, TUBA1B

regulates cell cycle progression and associated pathways,

significantly affecting glioma cell proliferation, migration, and

invasion. It also promotes tumor growth in the mouse xenograft

model, suggesting that TUBA1B plays a crucial role in the

progression of glioma.
3.5 TUBA1B affects the immune
microenvironment of glioblastoma

Based on correlation analyses and immune infiltration

assessments, we investigated how TUBA1B affects the immune

microenvironment in glioblastoma. First, we evaluated the

correlation between TUBA1B expression and EstimateScore,

ImmuneScore, StromalScore, and TumorPurity. In the high-
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expression TUBA1B group, the EstimateScore, ImmuneScore, and

StromalScore were significantly elevated and positively correlated

with TUBA1B expression (Figure 5A). The higher the expression of

TUBA1B, the lower the TumorPurity, while there was a negative

correlation between TUBA1B expression and TumorPurity

(Figure 5A). Next, we used multiple algorithms (XCELL,

QUANTISEQ, MCPCOUNTER, TIMER, CIBERSORT-ABS, EPIC,

and CIBERSORT) to assess differences in immune infiltration

between the high and low TUBA1B expression groups (Figure 5B).

Our analysis focused on results with correlation coefficients greater

than 0.3 to determine whether TUBA1B expression correlated with

specific immune cell subtypes (Supplementary Figure 3). According

to EPIC and MCPCOUNTER algorithms, TUBA1B expression and

CAF infiltration are significantly correlated (R = 0.45, P < 2.2e-16). In

the XCELL algorithm, the immune infiltration of T helper type 2 cells

(CD4+Th2) also exhibited a strong positive correlation with

TUBA1B expression (R = 0.56, P < 2.2e-16). The TIMER

algorithm demonstrated that CD8+T cell infiltration was
FIGURE 5

TUBA1B affects immune microenvironment in glioblastoma. (A) Comparison of Immune score, Estimate score, Stromal score, and Tumor purity
between high and low TUBA1B expression groups. (B) Heatmap depicting significant differential immune responses between high and low TUBA1B
expression groups using TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms.
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significantly positively correlated with TUBA1B expression (R = 0.52,

P < 2.2e-16). Additionally, the QUANTISEQ algorithm revealed a

positive correlation between M1-type macrophage infiltration and

TUBA1B expression (R = 0.3, P = 1.8e-15), while the CIBERSORT-

ABS algorithm showed a positive correlation between M2-type

macrophage infiltration and TUBA1B expression (R = 0.37, P <

2.2e-16). By contrast, the MCPCOUNTER algorithm found that

monocyte infiltration was significantly correlated with TUBA1B

expression (R = -0.35, P < 2.2e-16), and in the XCELL algorithm,

NK cell (natural killer cell) infiltration was also negatively correlated

with TUBA1B expression (R = -0.51, P < 2.2e-16). The results

indicate that TUBA1B potentially modulates tumor biology in

human gliomas by affecting the immune microenvironment,

especially through its impact on fibroblast infiltration and diverse

immune cell types.
3.6 TUBA1B influences stemness and
therapy response in glioma

To explore the impact of TUBA1B expression on tumor

stemness in glioma, we conducted a Spearman correlation

analysis. The results demonstrated that TUBA1B expression was

significantly positively correlated with four tumor stemness indices

(DNAss, EREG-METHss, DMPss, and ENHss), while it was

significantly negatively correlated with RNAss and EREG.EXPss,

all showing statistical significance (Figures 6A–F). Next, we used the

TIDE (Tumor Immune Dysfunction and Exclusion) algorithm to

assess the predictive ability of TUBA1B expression for

immunotherapy benefits. High-expression TUBA1B had higher

TIDE and Exclusion scores than low-expression TUBA1B,

suggesting a higher immune escape potential. A lower MSI

(Microsatellite Instability) score was also observed in the high-

expression group, whereas no significant change was seen in the

Dysfunction score. The results of a correlation analysis confirmed

these findings, showing a significant positive correlation between

TUBA1B expression, TIDE, and Exclusion, as well as a significant

negative correlation with MSI (Figures 6G–J). These results suggest

that high TUBA1B expression may promote tumor stemness and

decrease sensitivity to immunotherapy in gliomas, highlighting the

potential importance of TUBA1B in glioma progression and

treatment response.
3.7 Intercellular crosstalk disrupts
glioblastoma progression

From six samples, we analyzed single cell sequencing data to

understand TUBA1B’s role in the tumor microenvironment. After

the initial screening, 23,520 cells were collected. Using the UMAP

method for dimensionality reduction and unsupervised clustering,

and with the help of known markers, the cells were classified into

eight groups: Oligodendrocytes, Macrophages, Glioma cells,

Endothelial cells, Monocytes, T cells, Pericytes, and B cells

(Figure 7A; Supplementary Figure 4). We then calculated
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autophagy scores based on gene expression levels across these cell

groups. As shown in Figure 7B, the results indicated that

Oligodendrocytes and Glioma cells exhibited relatively high

autophagy scores, suggesting that these cell groups may have high

autophagic activity within the tumor microenvironment. Analysis

of TUBA1B expression across different cell groups revealed that

TUBA1B was predominantly expressed in Oligodendrocytes,

Macrophages, Glioma cells, and Pericytes (Figure 7C). Based on

this, we conducted a cell-cell communication analysis to clarify the

interactions between TUBA1B-high-expressing cell groups. As

expected, TUBA1B-high-expressing Oligodendrocytes,

Macrophages, and Glioma cells displayed strong communication

abilities (Figure 7D). Specifically, in Glioma cells, regardless of

TUBA1B expression levels, these cells mainly interacted with

Macrophages, Glioma cells, and Pericytes (Figure 7D). We then

analyzed the main input and output signaling pathways of Glioma

cells. For TUBA1B-high-expressing Glioma cells, signal output was

primarily through the PTN, ANNEXIN, VEGF, PROS, and BMP

pathways, while signal input occurred via the PTN, SPP1, and MK

pathways. In contrast, TUBA1B-low-expressing Glioma cells

mainly transmitted signals through the PTN pathway and

received signals via the PTN, MK, EGF, and CALCR pathways

(Figure 7E). Finally, we explored the metabolic pathways associated

with Glioma cells. Both TUBA1B-high and TUBA1B-low Glioma

cell groups were found to be involved in pathways related to starch

and sucrose metabolism, propionate metabolism, oxidative

phosphorylation, fatty acid degradation, and butyrate metabolism

(Figure 7F). These findings suggest that TUBA1B may regulate

glioma cell behavior by affecting intercellular communication and

metabolic pathways within the tumor microenvironment.
4 Discussion

In glioma research, autophagy is regarded as a “double-edged

sword.” On one hand, autophagy exacerbates tumor malignancy by

promoting the maintenance and differentiation of glioma stem cells.

This function can be attributed to the role of autophagy in protein

degradation and cellular energy homeostasis (25). On the other

hand, tumor development could be inhibited by autophagy via

degrading waste, such as aggregated proteins (26). This dual role

makes the regulation of autophagy a critical target for glioma

therapy (27, 28). The cross-regulation between autophagy and the

ubiquitin-proteasome system also plays a significant role in the

growth and chemoresistance of glioma cells (19, 25). Aggrephagy, a

selective form of autophagy that targets aggregated proteins for

degradation, is pivotal in tumorigenesis and progression (29).

Recent studies, particularly by Zhang et al. (30), have identified

five aggrephagy-related genes (ARPS) and constructed prognostic

signatures, validating their clinical relevance. These findings

underline the importance of aggrephagy in gliomas, especially

regarding the tumor microenvironment and prognosis.

In this comprehensive study, we have, for the first time, revealed

the molecular subtypes of aggrephagy in gliomas and their complex

interactions with the immune microenvironment and tumor
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progression. Through an integrated analysis of the TCGA database,

two aggrephagy subtypes were identified: “immune-cold” and

“immune-hot.” The latter is associated with poor survival

outcomes, suggesting that aggrephagy may modulate tumor

progression by influencing the immune microenvironment.

Extensive immune cell infiltration in the “immune-hot” subtype

may correspond with a pro-inflammatory state of the tumor,

aligning with the intricate immune landscape of gliomas and

indicating the potential influence of aggrephagy on immune

evasion. However, it is important to note that while the
Frontiers in Oncology 12
“immune-hot” subtype shows significant immune infiltration, it

may also be indicative of immune evasion mechanisms, and future

studies should explore the precise immune modulatory role of

aggrephagy and its interaction with immune checkpoints.

TUBA1B, a member of the tubulin family, is involved in

cytoskeletal formation and cell division (31). In this study,

TUBA1B was identified as a core gene of aggrephagy, showing

potential as an independent prognostic marker. Machine learning

analysis indicates that TUBA1B is a key driver of glioma progression,

with high expression correlating with poor prognosis and aggressive
FIGURE 6

TUBA1B influences stemness and treatment response in glioma. (A−F) Correlation of tumor stemness with TUBA1B levels analyzed using DNAss,
EREG-METHss, DMPss, ENHss, RNAss, and EREG.EXPss. (G) TIDE prediction scores between high and low TUBA1B expression groups in the TCGA
dataset. (H−J) Comparison of responses to immunotherapy between high and low TUBA1B expression groups in the TCGA dataset.
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tumor behavior. Moreover, TUBA1B has been implicated in poor

prognosis and chemoresistance in various cancer types (32, 33). Our

findings support these observations and suggest that TUBA1B’s role

in glioma may be multifaceted, affecting not only tumor growth but

also the tumor microenvironment, potentially enhancing immune

evasion. Transcriptomic and functional analyses revealed a close

association between TUBA1B overexpression and cell cycle

regulatory genes such as Cyclin D1. Additionally, TUBA1B

overexpression modulates various signaling pathways, including

AGE-RAGE, ECM-receptor interactions, and complement and

coagulation cascades. These pathways are associated with tumor

growth, metastasis, and immune evasion in other cancer types (34–

37), supporting the multifaceted role of TUBA1B in tumor biology.

Studies have shown that a protein encoded by a short open reading

frame in the TUBA1B gene plays a role in regulating tumor cell

proliferation (38). Our in vitro experiments further validated the
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multifaceted role of TUBA1B in promoting cell proliferation and

migration and inhibiting autophagy and apoptosis in gliomas,

suggesting its potential as a therapeutic target. These findings

underscore TUBA1B’s oncogenic potential and its critical role in

glioma malignancy. However, future research should focus on

developing specific inhibitors targeting TUBA1B, as well as

understanding the broader molecular network through which it

operates, including potential interactions with autophagy and

immune pathways. Some studies have found that TUBA1B and its

homolog TUBA1C are involved in regulating immune cell infiltration

within the tumor microenvironment (39, 40). Our research reveals

that high TUBA1B expression correlates significantly with decreased

tumor purity and increased immune and stromal scores, possibly

regulating tumor behavior by influencing immune infiltration.

Notably, TUBA1B expression was found to correlate with a shift in

immune cell composition, particularly in terms of macrophage
FIGURE 7

Analysis of TUBA1B in regulating glioma cell communication and metabolism within the tumor microenvironment. (A) UMAP plot used for cell type
annotation in glioma and control samples. (B) Autophagy scores in different subsets of cells. (C) Heatmap of TUBA1B expression across different cell
clusters. (D) Communication networks among different cell clusters and between high and low TUBA1B expression groups in gliomas. (E) Input and
output signaling patterns of glioma cell communication in high and low TUBA1B expression groups. (F) Dot plot displaying activity of metabolic
signaling pathways in different cell populations.
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infiltration, which may contribute to immune evasion mechanisms in

gliomas. This highlights the need for future studies to investigate the

interplay between TUBA1B and immune cell subsets in more detail.

Finally, single-cell sequencing analysis provides new insights into the

role of TUBA1B in cell-cell communication and metabolic pathways.

TUBA1B is highly expressed in specific cell populations, such as

oligodendrocytes and glioma cells, and is associated with extensive

communication networks, indicating its potential collaborative

regulatory role in gliomas.

Despite the compelling findings of our study, there are several

limitations that must be addressed. First, the primary data used in

this study, including TCGA, GEO, and CGGA datasets, are publicly

available databases. Although these datasets are robust and widely

used in glioma research, they are not exhaustive and may not fully

represent the diversity of glioma patients in clinical settings. For

example, the lack of detailed treatment regimens and patient follow-

up data in some of these datasets may introduce bias in the survival

analysis and clinical correlation. Additionally, our study primarily

relied on bioinformatic analyses and computational tools to identify

molecular signatures and relationships. While these methods are

powerful, they cannot replace experimental validation, and we

acknowledge that the predictive value of TUBA1B as a biomarker

or therapeutic target must be further confirmed through in vitro

and in vivo experiments. Furthermore, the retrospective nature of

the data used in our analysis may limit the generalizability of our

findings, and prospective studies are necessary to validate the

clinical relevance of TUBA1B in glioma patients.

TUBA1B has shown promising potential as a prognostic

biomarker for glioma patients, with higher expression levels

correlating with poor survival outcomes. These findings suggest

that TUBA1B could be an effective therapeutic target for glioma,

providing a new avenue for glioma treatment. However, translating

these findings into clinical practice will require further validation in

preclinical and clinical settings. Combining TUBA1B inhibition

with other therapeutic strategies, such as chemotherapy, radiation

therapy, or immunotherapy, could also hold promise for improving

treatment efficacy.

Furthermore, TUBA1B expression levels could be used to

stratify glioma patients based on their risk of progression,

enabling more personalized treatment approaches. Patients with

high TUBA1B expression could benefit from more aggressive

treatment regimens or experimental therapies targeting cell cycle

regulators. Moreover, as TUBA1B is implicated in modulating the

tumor microenvironment, future research could explore the

synergy between TUBA1B inhibition and immunotherapy, which

might enhance the immune response against glioma.

In summary, this study delineates the complex mechanisms of

TUBA1B in gliomas, offering a new perspective on the role of

aggrephagy in malignant tumors. Future in-depth experimental

validation of the functions of TUBA1B, as well as its application

in diverse clinical conditions, may propel the development of

precision medicine and targeted therapies in gliomas.
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5 Conclusion

This study deeply explores the biological characteristics and clinical

significance of aggrephagy in gliomas. By analyzing the TCGA dataset,

we identified two aggrephagy subtypes and revealed their differences

within the tumor microenvironment through immune infiltration

analysis. Among the highlighted genes, TUBA1B emerged as a key

gene, demonstrating potential as an independent prognostic marker.

In vitro functional experiments further confirmed that TUBA1B

promotes the proliferation, migration, and invasion of glioma cells

and is related to dynamic changes in the immune microenvironment.

Single-cell sequencing analysis indicates that high TUBA1B expression

is associated with specific intercellular communications and metabolic

pathways, impacting tumor progression. Collectively, these findings

underscore the vital role of TUBA1B in the occurrence, development,

and treatment of gliomas, suggesting its potential as a clinical target.

This provides a possible direction for precision medicine and new

therapeutic strategies for gliomas.
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