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Objectives: To develop and validate a multiparametric prognostic model,

incorporating dynamic contrast-enhanced (DCE) quantitative parameters and

multi-modality radiomic features, for the accurate identification of isocitrate

dehydrogenase 1 (IDH1) mutation status from glioma patients.

Methods: A total of 152 glioma patient data with confirmed IDH1 mutation status

were retrospectively collected. A segmentation neural network was used to

measure MRI quantitative parameters compared with the empirically oriented

ROI selection. Radiomic features, extracted from conventional MR images (T1CE,

T2W, and ADC), and DCE quantitative parameter images were combined with

MRI quantitative parameters in our research to predict IDH1 mutation status. We

constructed and analyzed Clinical Models 1–2 (corresponding to manual and

automatic MRI quantitative parameters), Radiomic Feature Models 1–3

(corresponding to structural MRI, DCE, and multi-modality respectively), and a

Multivariable Combined Model. We tried different usual classifiers and selected

logistic regression according to AUC. Fivefold cross-validation was applied

for validation.

Results: The Multivariable Combined Model showed the best prediction

performance (AUC, 0.915; 95% CI: 0.87, 0.96) in the validation cohort. The

Multivariable Combined Model performed better than Clinical Model 1 and

Radiomic Feature Model 1 (DeLong all p < 0.05), and Radiomic Feature Model

3 performed better than Radiomic Feature Model 1 (DeLong p < 0.05).
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Conclusions: Compared with the conventional MRI Radiomics and Clinical

Models, the Multivariable Combined Model, mainly based on DCE quantitative

parameters and multi-modality Radiomics features, is the most promising and

deserves attention in the current study.
KEYWORDS

glioma, dynamic contrast enhanced, quantitative parameter, radiomics,
logistic regression
Introduction

Glioma is the most common primary brain tumor, with its most

frequent subtype glioblastoma, in particular, being one of the

deadliest types of cancer. Brain tumors typically exhibit numerous

genetic mutations, spanning several cellular pathways, that open

multiple avenues to oncogenesis that no single intervention could

conceivably block. The inclusion of mandatory molecular markers

for diagnosis in the World Health Organization (WHO)

Classification of Tumors of the Central Nervous System (CNS)

was revised in 2021 (1), which has made a more rigid definition of

prognostically distinct entities. Variations in glioma survival and

response to therapy are ascribed to genetic and histological

characteristics, particularly the degree of isocitrate dehydrogenase

(IDH) mutation, the presence of 1p/19q co-deletion, and the tumor

grade (2–4). IDH is the most critical prognostic marker, and the

prognostic value of many other molecular markers (such as 1p/19q

codeletion, TERT promoter mutation, and ATRX loss) depends on

IDH (5), whose mutation is a positive prognostic factor. The

product of the mutated IDH genes, d-2-hydroxyglutarate (D-2-

HG), can induce global DNA hypermethylation and interfere with

the immune system, thereby stimulating tumor growth (6).

Previous studies have shown that the IDH1 status was the most

prominent single prognostic factor (RR 2.7; 95% CI 1.6–4.5)

followed by age, histological diagnosis, and MGMT (7). The

survival benefit associated with surgical resection differs based on

IDH1 genotype in malignant astrocytic gliomas. IDH1 mutant

malignant astrocytomas are more amenable to surgical resection

(8), and IDH1 mutation is associated with improved resection rates,

progression-free survival, and overall survival (9). IDH inhibitors

play a crucial role in the targeted therapy of gliomas and are one of

the key types of drugs for glioma-targeted treatment. Selective

inhibitors of mutant IDH, such as ivosidenib and vorasidenib,

have been shown to reduce D-2-HG levels and induce cellular
ed; IDH1, isocitrate

a under the receiver

e transcriptase; ATRX,

I, magnetic resonance
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differentiation in preclinical models (10, 11). The phase III INDIGO

trial has demonstrated that vorasidenib is superior to placebo in

patients with non-enhancing grade 2 IDH-mutated gliomas after

surgery (12). IDH mutations can affect tumor immunogenicity

leading to the generation of neoantigens and changes in

tumor-associated antigens (13). Second, they can shape the

tumor microenvironment creating an immunosuppressive

microenvironment and promoting tumor angiogenesis, which

provides favorable conditions for tumor cells to escape immune

surveillance (14). IDH mutations can influence immunotherapy

targets through epigenetic regulation and can serve as biomarkers

for predicting the efficacy of glioma immunotherapy (15).

The IDH genotype can be detected by surgery or biopsy, but it

suffers from several drawbacks such as invasive operation, sampling

error, tumor heterogeneities, and risk of surgical complications.

Thus, it is essential to find a non-invasive technique. Conversely,

magnetic resonance imaging (MRI), with its non-invasive, rapid,

and extensive detection capabilities, and excellent resolution of soft

tissue, is considered the most promising option to support clinical

practice decisions (16). Numerous researches have investigated the

possibility of using MRI-based Radiomics analysis to noninvasively

facilitate the evaluation of prognosis, molecular subtyping, and

tumor grading in gliomas (17–22). The pharmacokinetic

parameters derived from dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) can be used to non-invasively

predict the microvascular characteristics of tumor (23), and assess

tumor characteristics and stage, providing independent prognostic

indicators and enabling risk stratification for cancer patients (24,

25). Although DCE biomarkers have been validated through

various reference methods and utilized for the assessment of a

wide range of tumors, including gliomas (26), breast cancer (27, 28),

and prostate cancer (29, 30), the process of manually segmenting

DCE to extract image features is time consuming and prone to

errors, and adversely impacts reproducibility, which is a significant

issue in clinical applications, especially in longitudinal studies. The

latest progresses in artificial intelligence (AI), especially deep

learning, have demonstrated promising potential for dealing with

these challenges (31, 32). Trained on extensive datasets of annotated

MRI scans, deep learning models are capable of automating the

segmentation process (33, 34). They not only bring about speed and
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high efficiency but also hold the prospect of minimizing human

errors. However, integrating deep learning into clinical practice

poses numerous technical challenges (such as the need for large,

diverse training datasets and the management of imaging

variability), as well as broader concerns regarding algorithm

validation, integration into clinical workflows, and ethical

considerations. To our knowledge, as of now, the research on

predicting and evaluating IDH gene typing using a combination

of DCE perfusion parameters and radiomic features through

machine learning methods has not been explored in the literature.

We hope to apply deep learning to mine and analyze glioma

imaging data aiming to improve clinical decision making and

patient care.

In this study, we proposed a fully automated method to predict

IDH1 mutation in patients with glioma, requiring no user

intervention, and proving highly suitable for clinical practice. We

employed two methods, manual delineation of regions of interest

and fully automated volume segmentation to extract apparent

dispersion coefficient (ADC) and DCE perfusion parameters from

the tumor core. The Radiomic features were extracted within the

tumor core by the fully automated segmentation from DCE

quantitative parameter images, ADC, T1CE, and T2W. Based on

these features and parameters, we all constructed two clinical

models, three Radiomic feature models, and a Multivariable

Combined Model. We evaluated and compared the stability and

predictive performance of these models for IDH genotyping and

selected the most promising one.
Materials and methods

This retrospective study was approved by the Research Ethics

Committee of the Affiliated Nanjing Drum Tower Hospital of

Nanjing University and performed in accordance with the

Declaration of Helsinki.
Patients

Patients were retrospectively enrolled from our hospital

between January 2018 and December 2022. The requirement for

informed consent was waived due to the retrospective nature of this

research. The patient enrollment process is shown in Figure 1. The

exclusion criteria were as follows: (1) incomplete images, (2) poor

image quality with severe motion or artifacts, and (3) DCE data

post-processing failure. According to the above criteria, 152 patients

[mean age, 56 years; age range, 22–76 years; 42 women (47.3%);

IDH1 status (64 mutations and 88 wild type)] were recruited in

this research.
Image

MRI in the enrolled patients was performed on the same 3.0-T

system (uMR790, United Imaging Healthcare, Shanghai, China)
Frontiers in Oncology 03
using a 32-channel phased-array head coil. All patients underwent

the same MRI protocol including the following sequences: DWI,

T1WI, T2WI, T1CE, and DCE. The DCE sequences consisted of T1

mapping and dynamic scan. For T1 mapping, variable flip-angle

scans with flip angles FA 5°, 10°, 15° were acquired and used.

Dynamic scan was a T1-gradient echo sequence with the following

technical parameters: time of echo, 3.47 ms; time of repetition, 1.9

ms; flip angle, 13°; matrix size, 160 × 160; field of view, 240 × 220

mm2; slice thickness, 5 mm. A series of 1,800 images at 90 dynamic

phases for 20 axial sections were obtained with a temporal

resolution of 4 s for each dynamic phase. The contrast agent

(Gadovist, 1 mmol/ml, Bayer Healthcare, Berlin, Germany) was

administered (0.1 mmol/kg of bodyweight) through the antecubital

vein via a power injector at a rate of 2 ml/s. The protocol details of

the morphological sequences (DWI, T1WI, T2WI, and T1CE) are

summarized in Supplementary Table S1. The quality of the

sequences was assessed by two experienced neuroradiologists

(Meiping Ye and SiXuan Chen), with more than 5 years of

experience in neuro-oncological radiology.
Tumor automatic segmentation

In this study, we used the VB-Net (35), a segmentation neural

work, to obtain the region of interest (the tumor core) according to

T1CE and T2WI. The VB-Net is a modified 3D convolutional neural

network, which combines V-Net with innovative bottleneck

structures and computes much faster than V-Net (36). VB-Net,

which has been published, is an advanced adaptation of the

segmentation-centric V-Net architecture. The improvements in

VB-Net include the replacement of traditional convolutional

layers in the down- and upsampling modules with a bottleneck

structure. This bottleneck structure is designed to optimize
FIGURE 1

Flowchart of patient inclusion and exclusion.
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parameter efficiency and is composed of three sequential

convolutional layers: the first with a kernel size of 1 × 1 × 1, the

second with 3 × 3 × 3, and the third reverting back to 1 × 1 × 1. This

arrangement reduces redundancy and improves computational

efficiency while maintaining performance integrity. Furthermore,

VB-Net employs a cascaded framework tailored to accommodate

varying regions of interest (ROIs) with multiple sizes. This

adaptability ensures its suitability for diverse segmentation tasks

providing robust and accurate results. For loss function

optimization and enhanced model training, VB-Net integrates a

combination of common Dice loss, pixel-class cross-entropy loss,

and focal loss. This multi-faceted loss strategy ensures a well-

constrained parameter update process contributing to the overall

stability and performance of the network. As far as we know, the

VB-Net has been successfully applied to the segmentation of

multiple organs and lesions in previous researches (37–39).

In the segmentation model construction phase, we exclusively

used 1,000 cases (comprising T1CE and T2WI) from the public

BraTs2021 dataset (http://www.braintumorsegmentation.org) for

training and validation, and 250 cases were used to test the

model’s performance. Additionally, we supplemented our analysis

by incorporating a private dataset, which consisted of 204 T1CE

images and 184 T2WI images. To construct the segmentation

masks, we merged the labels from BraTS2021 based on the

defined regions of interest, specifically targeting the whole tumor

region in T2WI and the tumor core in T1CE. Notably, the thickness

of all selected images was less than 1 mm ensuring high-resolution

data for analysis. Regarding preprocessing, for the private dataset,
Frontiers in Oncology 04
we applied N4 bias field correction using the SimpleITK package.

Subsequently, the T1CE images were spatially aligned with the

T2WI image spacing using the ANTs tool. Finally, all image

intensities were normalized to the range [−1, 1] enabling

consistency across all input data. These preprocessing steps were

critical in mitigating imaging artifacts and ensuring uniformity

between datasets. Given the distinctions between the two

segmentation tasks - whole tumor segmentation in T2WI and

tumor core segmentation in T1CE - separate models were

constructed for each. The segmentation models were evaluated

using the Dice similarity coefficient (DSC). The DSC of the whole

tumor segmentation model in BraTS2021 is 0.83 and 0.70 in the

private dataset. Meanwhile, the DSC of the tumor core

segmentation model in BraTS2021 is 0.72 and 0.85 in the private

dataset. Figure 2 shows examples of automated segmentation and

co‐registration with other sequences.
Region of interest analysis and quantitative
MRI parameter acquirement

DCE-MRI data were imported into the United Imaging post-

processing workstation for processing (United Imaging Healthcare,

Shanghai, China). Arterial input functions were extracted in a

manual manner, with the ROI positioned in the middle cerebral

artery (40). Five quantitative pharmacokinetic DCE-MRI

parameters (Ktrans, Kep, Ve, Vp, and iAUC) were acquired using

the improved Tofts–Kermode two‐compartment model.
FIGURE 2

Examples of the automated segmentation and co‐registration with other sequences. (a) a case of glioblastoma. The lesion showed obvious
enhancement, and tumor core was automatically segmented based on T1CE. (b) a case of diffuse astrocytoma (WHO 2 grade, IDH1-mut). The lesion
showed no obvious enhancement, and tumor core was automatically segmented based on T2WI.
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Two kinds of sketching methods of ROI, manual delineation

and automatic segmentation, were applied to obtain regional-DCE

parameters in our research. For the manual way, first, the

quantitative MRI parameter maps (Ktrans, Kep, Ve, Vp, iAUC, and

ADC maps) were fused with the structural MRI (T1CE or T2WI) in

the workstation. Then, three manual circular-like ROIs among 20–

40 mm2 were drawn by two experienced neuroradiologists (Z.Y.Z.

and M.P.Y., with 3 and 8 years of experience in neoro-oncology

imaging, respectively) on the significantly enhanced solid area of the

tumor on T1CE (enhancing lesion), or the hyperintense region on

T2WI in the central area of the tumor (non-enhancing lesion), at the

axial slice with the maximum tumor area. The whole process

avoided the peritumoral edema, hemorrhage, cysts, necrosis,

calcification, and large vessels (21). The consistency of the MRI

quantitative parameters averaging intensity above 3 ROIs from two

neuro-radiologists was evaluated with the Intraclass Correlation

Test. Under the condition of good consistency, the data extracted by

the neuroradiologists with longer practice time prevailed. For the

automatic way, the tumor core segmented by the neural network

was consider as the ROI for calculating DCE perfusion parameters

and ADC. Then, we compared the MRI quantitative parameters

(Ktrans, Kep, Ve, Vp, iAUC, and ADC), extracted by manual

delineation and automatic segmentation, and clinical index (age)

between IDH1-mut and IDH1-wt groups. Parameters with

statistically significant differences between groups were selected

for input the following prediction models.
Radiomics feature extraction

We used uAI Research Portal (Shanghai United Imaging

Intelligence, Co., Ltd.) (41) to extract features from 3D-ROI of

automatic segmentation. The uAI Research Portal is a clinical

research platform and implemented by Python programming

language (version 3.12.1, https://www.python.org). The widely

used package-PyRadiomics (https://pyradiomics.readthedocs.io/

en/latest/index.html) was embedded into this platform. The pre-

processing of feature extraction included bias field correction, skull

stripping, resampling, intensity normalization, and feature

normalization. Specifically, the MRI images were resampled to the

same spatial resolution, 1× 1 × 1 mm3, and the intensity values of

each image were linearly normalized into the range [−1, 1]. The

Radiomics features were computed from 3D-ROIs based on

PyRadiomics. A total of 2,552 features were extracted based on

conventional MR images (T1CE, T2W, and ADC), and 14,220

features were extracted based on DCE parameter images (Ktrans,

Kep, Ve, Vp, and iAUC).
Model construction and evaluation

The basic setup for the model was a pipeline consisting of four

components as follows: a standardizer using Z-score normalization,

feature selection using selection operator (LASSO) and the
Frontiers in Oncology 05
maximum correlation and minimum redundancy method,

oversampling using the synthetic minority oversampling

technique (SMOTE), and a classifier using logistic regression. The

Z-score normalization algorithm was first used to remove the

limitations imposed by the units of each feature. Subsequently,

the dimension of the features was reduced by lasso regression

analysis, then the most relevant features were selected by the

maximum correlation and minimum redundancy method. Finally,

7 features were selected from conventional MR Radiomic features

(T1CE, T2W, and ADC), 5 features were selected from DCE

Radiomic features (Ktrans, Kep, Ve, Vp, and iAUC), and 9 features

were selected from the combination of the abovementioned 12 two

kinds of Radiomic features.

In our research, we used six kinds of different model inputs for

data training, including: (a) Clinical Model 1: age, six MRI

quantitative parameters obtained by manual extraction; (b)

Clinical Model 2: age, six MRI quantitative parameters obtained

by automatic extraction; (c) Radiomic Feature Model 1: 7 features

selected from conventional MR Radiomic features; (d) Radiomic

Feature Model 2: 5 features selected from DCE Radiomic features;

(e) Radiomic Feature Model 3: 9 features selected from the above 12

selected Radiomic features; (f) Multivariable Combined Model: 11

features selected from multi-modality features (the above 9 twice-

selected Radiomic features, age, and six MRI quantitative

parameters by automatic extraction). For maximizing Radiomics

algorithm’s discrimination, convolutional neural networks (CNN),

recurrent neural network (RNN), K near neighbor (KNN), logistic

regression (LR), random forest, decision tree, support vector

machine (SVM), and Naive Bayes (NB) were implemented for

model construction, respectively. Fivefold cross-validation was

applied for validation. By trying different classifiers, we finally

chose logistic regression according to a comparison of the

classification results of the different models. The study workflow

is depicted in Figure 3.
Statistical analysis

Python (version 3.12.1, https://www.python.org). was used for

data analyses and visualization in this study. Categorical variables

were subjected to Chi-square testing, while continuous variables

were analyzed using either the independent samples t-test or the

Mann–Whitney U test, depending on their distribution

characteristics. The intraclass correlation coefficient (ICC) was

used to determine the intraobserver and interobserver agreement

of ADC and DCE parameters. One‐way analysis of variance

(ANOVA) and Bonferroni post‐hoc tests were used to test the

differences in age and MRI quantitative parameters among

groups. Values of p less than 0.05 indicated statistical significance.

The diagnostic performance of the classification model was

measured in terms of accuracy, area under the receiver operating

characteristic curve (AUC), using the “PRROC” R package. The

95% confidence interval (CI) of the AUC was calculated from 2,000

iterations of bootstrapping with the predicted probabilities from the
frontiersin.org
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models. The probability threshold for the accuracy calculation was

set to 0.5. Thus, a predicted probability of ≥0.5 was classified as an

IDHmutation, and other values were classified as IDH wild type. To

maximize the recognition rate of the Radiomics algorithm, multiple

methods were used to construct models, respectively, such as the

Convolutional Neural Network (CNN) and Logistic Regression

(LR). The optimal cutoff was determined using Youden’s index.

AUC comparisons were performed between the various models

using Delong’s method. We mainly referred to the AUC value to

compare the prediction performance of different common

classifiers. Finally, we selected LR as the final classifier to compare

the performance of different model inputs. Fivefold cross-validation

was adopted to ensure the robustness and reliability of these models.
Results

Clinical characteristics

The baseline demographics and clinical characteristics of the

study participants are summarized in Table 1. One hundred and

fifty-two patients (55.8 ± 12.0 years; 79 females and 73 males) were

included in this retrospective research, including 64 IDH-mutant

(IDH1-mut) and 88 IDH1-wild type (IDH1-wt). The study

participants were divided into two groups based on IDH1 gene

status. Age was statistically significant between groups. For manual

delineation, ADC value, Ktrans, Kep, Ve, Vp, and iAUC were

statistically significant between groups. As for automatic

segmentation, Ktrans, Kep, Ve, Vp, and iAUC were statistically

significant between groups.
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Radiomic feature extraction and
feature selection

A total of 2,552 features were extracted based on conventional

MR images (T1CE, T2W, and ADC), and 14,220 features were

extracted based on DCE parameter images (Ktrans, Kep, Ve, Vp, and

iAUC). After applying logistic regression and the maximum

correlation and minimum redundancy method, seven key

Radiomic features were selected from conventional MR Radiomic

features, and five features were selected from DCE Radiomic features.
Model validation, evaluation,
and comparison

Wemainly referred to the AUC value to compare the prediction

performance among different usual classifiers. Finally, we selected

LR as the final classifier to compare the performance of different

model inputs. Five-old cross-validation was applied to ensure the

robustness and reliability of these models. The results showed that

the AUCs in the validation cohort of Clinical models 1–2, Radiomic

feature models 1–3, and Multivariable Combined Model were 0.849

(95% CI: 0.79, 0.91), 0.881 (95% CI: 0.81, 0.91), 0.867 (95% CI: 0.81,

0.92), 0.906 (95% CI: 0.86, 0.95), 0.908 (95% CI: 0.86, 0.95), and

0.915 (95% CI: 0.87, 0.96), respectively. The accuracy in the

validation cohort of the above models were 0.803, 0.849, 0.803,

0.836, 0.855 and 0.862, respectively. More details are summarized in

Table 2; Figure 4. The Multivariable Combined Model showed the

best classification performance. There was no significant difference

between Clinical Model 1 and Clinical Model 2, Radiomic Feature
Acquiring quantitative MRI parameters

Radiomics Feature Extraction and Selection

Model Construction and Validation

Classifiers

T1CE

T2WI

Tumor Core

ROI Definition

T1CE T2WI ADC

Imaging Input

Ve Kep Vp iAUCKtrans

Ve Kep Vp iAUCKtrans ADC

Manual Delineation Automatic Segmentation

0 0 2 1 1

1 1 3 2 2
0 0 0 1 1
3 0 1 0 1
0 1 2 2 2

Shape Intensity Texture Wavelet

1. logistic regression
2.the maximum correlation and 
minimum redundancy method

Conventional MR images (2252 features)

DCE parameters images (14220 features)

12 Radiomic Features

Clinical Model 1

Clinical Model 2

Radiomic Feature Model 1

Radiomic Feature Model 2

Radiomic Feature Model 3

Multivariable Combined Model

CNN, RNN, KNN,LR, 

random forest, decision 

tree, SVM, NB

Classifier: LR Five-fold cross validation

Accuracy     
AUC

Sensi�vity    
Specificity
F1-score      

FIGURE 3

A study flow chart for predicting IDH1 mutation in gliomas. Firstly, Region of interest (ROIs) covering the tumor core was delineated according to
T1CE or T2WI. Secondly, 16472 Radiomic features were totally extracted, seven features from conventional MR Radiomic features (T1CE, T2WI, ADC)
and five features from DCE Radiomic features (Ktrans, Kep, Ve, Vp, and iAUC) were selected among them. Thirdly, two kinds of methods, manual
delineation and automatic segmentation, were tried to obtain quantitative MRI parameters. Those parameters with differences between IDH1-mut
and IDH1-wt groups were selected to input the following prediction models. Lastly, six models were constructed, the best classifier was selected by
trying different usual classifiers and five-fold cross-validation was applied for validation. We compared the classification performance and selected
the promising one among these six prediction models.
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Model 2 and Radiomic Feature Model 1 in the validation cohort

(DeLong p > 0.05), whereas Radiomic Feature Model 3 performed

better than Radiomic Feature Model 1 (DeLong p < 0.05).

Multivariable Combined Model performed better than Clinical

Model 1 and Radiomic Feature Model 1 (DeLong p all < 0.05).

More details are summarized in Supplementary Table S2.
Discussion

We developed and validated a multiparametric prognostic

model to predict IDH mutation status in glioma using MR
Frontiers in Oncology 07
Radiomics features combined with clinical factor (age) and MRI

quantitative parameters (DCE and ADC), which showed improved

performance over the model using only conventional MRI or

mono-modality radiomic features. Compared with the

independent Radiomics and Clinical Models, the Multivariable

Combined Model could be the most promising, and in the

current study, its advantages are deserved for attention. First, we

provided a binary classifier to preoperatively predict IDH mutation

of glioma with satisfactory performance. Second, our model made

full use of DCE quantitative parameters and their Radiomics

features to explore the value of MRI perfusion imaging in

predicting IDH-mut glioma. Third, we compared the differences
TABLE 1 Clinical features of patients in the IDH-mut and IDH1-wild groups.

Variables IDH1 status p-Value*

IDH1-wt type IDH1-mut

Age (years) 60.88 ± 8.70 48.81 ± 12.46 < 0.001

Gender 0.225

Female, no. (%) 38 (43.2) 34 (53.1)

Male, no. (%) 50 (56.8) 30 (46.9)

Histology NA

Glioblastoma, IDH-wild, no. (%) 88 (100) 0 (0)

Astrocytoma, IDH-mut, no. (%) 0 (0) 45 (70)

Oligodendroglioma, IDH-mut, no. (%) 0 (0) 19 (30)

Grade NA

G2, no. (%) 0 (0) 32 (50)

G3, no. (%) 0 (0) 16 (25)

G4, no. (%) 88 (100) 16 (25)

Automatic segmentation

ADC0,1000 (mm2/s) 1,206.37 ± 224.08 1,229.56 ± 269.00 0.564

Ktrans (/min/1,000) 68.82 (49.42, 93.15) 31.99 (13.53, 52.93) <0.001

Kep (/min/1,000) 338.15 (279.00, 422.31) 572.04 (355.92, 1433.20) <0.001

Ve (/100) 238.23 (171.37, 353.27) 68.32 (17.36, 164.70) <0.001

Vp (ml/100 g/1,000) 4.59 (2.47, 8.67) 2.85 (1.53, 6.25) 0.004

iAUC (minmmol/L/100) 20.99 (15.42, 29.60) 8.24 (3.36, 15.38) <0.001

Manual delineation

ADC0,1000 (mm2/s) 1,009.30 ± 217.37 1,156.06 ± 283.11 0.001

Ktrans (/min/1,000) 74.45 (48.55, 105.85) 29.05 (11.40, 55.23) <0.001

Kep (/min/1,000) 342.95 (235.40, 507.03) 729.20 (358.78, 1750.28) <0.001

Ve (/100) 228.20 (139.70, 419.23) 48.30 (12.20, 216.33) <0.001

Vp (ml/100 g/1,000) 6.30 (1.65, 16.25) 2.95 (1.10, 6.08) 0.005

iAUC (minmmol/L/100) 25.70 (19.13, 47.28) 8.30 (3.43, 23.58) < 0.001
Data are presented as mean ± standard deviation, number with percentage in parentheses, or median with interquartile range in parentheses. *Calculated using chi-square test for categorical
variables, either independent t test or Mann–Whitney U test for continuous variables depending on their normality distribution. G2, grade 2; G3, grade 3; G4, grade 4; ADC0,1000, apparent
diffusion coefficient, calculated based on b0 and b1000; Ktrans, volume transfer constant; Kep, rate constant between the extravascular extracellular space and blood plasma; Ve, volume of
extravascular/extracellular space per unit volume of tissue; Vp, fractional blood plasma volume; iAUC, initial area under the curve.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1530144
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ye et al. 10.3389/fonc.2025.1530144
between MRI quantitative parameters extracted by manual 2D-ROI

and automatic 3D- ROI.

The IDH1/2 mutation plays a crucial role in glioma in glioma

diagnosis, treatment, and prognosis (42, 43). Previous studies have

shown that IDH1/2 gene mutation can cause a-ketoglutaric acid

reduction and 2-hydroxyglutaric acid increase, indirectly affect

angiogenesis, hypoxia stress, cell maturation and differentiation,

and other physiological and pathological processes, and interfere

with the expression of vascular endothelial growth factor and other

tumor-related genes (6, 44). Lusien et al. (45) concluded that

gliomas with different IDH genotypes had unique vascular gene

expression patterns related to vascular remodeling. Yue Hu et al.

(46) showed that IDH1-wt gliomas expressed significantly higher

vascular endothelial growth factor (VEGF) expression and

perfusion metrics in contrast to IDH-mut gliomas. Multiple

studies have shown that perfusion features obtained by perfusion-

weighted MRI could predict glioma survival/progression and the
Frontiers in Oncology 08
critical tumor characteristics of glioma such as genetic mutations

(47, 48). Yue Hu et al. (46) demonstrated that histogram analysis of

DCE-MRI could non-invasively predict IDH mutation. In addition,

histogram DCE-MRI also showed good diagnostic performance in

predicting O6-methylguanine-DNA methyltransferase (MGMT),

telomere reverse transcriptase (TERT), and evaluating the

prognosis of glioma (49). These insights in phenotype and

genotype account for the application of perfusion MRI to predict

IDH mutation. It is also valuable and persuasive to use multi-

modality Radiomic features including DCE to predict

IDH genotype.

Zhang et al. found that the histogram DCE-MRI demonstrated

good diagnostic performance in identifying IDH1 mutation (49).

We found that the values of Ktrans, Ve, and iAUC in IDH wild-type

gliomas were higher than those of IDH mutant gliomas, and the

values of Kep were lower than those of IDH mutant gliomas.

Furthermore, the difference between groups of ADC values
TABLE 2 The classification performance of the different diagnostic models.

Models Features
(no.)

Cohort AUC ACC SEN SPE F1-score

Clinical Model 1 7 Training 0.871 0.829 0.719 0.909 0.780

Validation 0.849 0.803 0.688 0.886 0.739

Clinical Model 2 7 Training 0.893 0.847 0.734 0.929 0.802

Validation 0.881 0.849 0.703 0.932 0.790

Radiomic Feature
Model 1

7 Training 0.884 0.816 0.734 0.875 0.770

Validation 0.867 0.803 0.719 0.864 0.748

Radiomic Feature
Model 2

5 Training 0.908 0.842 0.809 0.867 0.812

Validation 0.906 0.836 0.797 0.864 0.802

Radiomic Feature
Model 3

9 Training 0.914 0.862 0.801 0.906 0.830

Validation 0.908 0.855 0.781 0.909 0.814

Multivariable
Combined Model

11 Training 0.917 0.857 0.789 0.906 0.823

Validation 0.915 0.862 0.797 0.909 0.824
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
Clinical Model 1 (AUC = 0.849 [0.79,0.91])
Clinical Model 2 (AUC = 0.881 [0.81,0.91])
Radiomic Feature Model 1 (AUC = 0.867 [0.81,0.92])
Radiomic Feature Model 2 (AUC = 0.906 [0.86,0.95])
Radiomic Feature Model 3 (AUC = 0.908 [0.86,0.95])
Multivariable Combined Model (AUC = 0.915 [0.87,0.96])
Luck

Clinical Model 1 (loss = 0.140)
Clinical Model 2 (loss = 0.142)
Radiomic Feature Model 1 (loss = 0.142)
Radiomic Feature Model 2 (loss = 0.164)
Radiomic Feature Model 3 (loss = 0.152)
Multivariable Combined Model (loss = 0.161)
Perfect calibrated

(b) (c)
Clinical Model 1
Clinical Model 2 
Radiomic Feature Model 1 
Radiomic Feature Model 2 
Radiomic Feature Model 3 
Multivariable Combined Model 
Treat all
Treat none 
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FIGURE 4

Evaluation of the different diagnosis model. (a) Decision curve analysis for six diagnosis models, the x-axis represents the threshold probability, and
the y-axis measures the net benefit. (b) the ROC curve of different diagnosis model in the validation cohort. (c) the calibration curves for assessment
of the clinical diagnosis models.
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obtained by automatic extraction was inconsistent with manual

extraction, which should be related to the heterogeneity of gliomas

and the delineated area of ROI. Ignoring this difference, we included

six quantitative MRI parameters and age to predict glioma IDH

mutation in two clinical models. We hope to explore the effect of

MRI quantitative parameters obtained by two different ROI

extraction methods on the prediction of IDH mutation in clinical

models. We found that the AUC of Clinical Model 2 (automatic

extraction) was higher than that of Clinical Model 1 (manual

extraction) in the testing cohort (DeLong p > 0.05). We consider

that the influence of different ROI sketching methods on

quantitative MRI studies could be ignored.

In the following research, we constructed three Radiomic

feature models and one Multivariable Combined Model. We

found that the classification performance of the Radiomic feature

model of DCE quantitative parameters was higher than the model

of traditional MRI image features (DeLong p > 0.05), and lower

than the combination model of these two kinds of Radiomic

features (DeLong p > 0.05). Among these models, the

Multivariable Combined Model showed the best classification

performance. We considered the quantitative MRI parameters

may not have obvious influence on the classification results of the

Multivariable Combined Model, and the difference between the

model of Radiomic features and the model of quantitative MRI

parameters was not significant (p > 0.05). The AUC of the

Multivariable Combined Model in testing cohort was 0.915 and

the accuracy was 0.862, which deserved people’s concern while

comparing with previous researches. Wang et al. found the

Radiomics model based on DCE-MRI and DWI had a

considerable effect on the evaluation of IDH1 mutation (50), and

the AUC and accuracy of the combined model in testing cohort was

0.909,0.833 separately. Hitherto, there are no studies focusing on

the estimation of IDH1 mutation using the Radiomics analysis of

DCE-MRI and quantitative MRI parameters of DCE. In addition,

3D-ROI was also used in this study to automatically segment the

entire lesion and extract DCE quantitative parameters, which was

not been tried in previous studies. Our study demonstrated that the

LR model based on multivariable combined parameters showed

good diagnostic performance in estimating IDH1 mutation

in gliomas.

The present study has several limitations. First, the study was

retrospective, limited radiomic features restricted further

improvement of the model performance. Second, the radiomic

model may not perform well in multi-centered and future

applications because to the sensitivity of radiomic characteristics

to parameters and systems. Our next research topic is multicenter

radiomic, whose harmonization can improve the generalizability of

the model. Third, the time-consuming, multi-staged workflow

discourages the application of the Multivariable Combined Model

in clinical practice. In conclusion, we developed and validated a

multiparametric prognostic model to predict IDH mutation status

in glioma using MR Radiomics features combined with clinical

factor and MRI quantitative parameters, which showed improved

performance over the model using only conventional MRI or

Radiomic features.
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