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Immunotherapy is recognized as an effective and promising treatment modality

that offers a new approach to cancer treatment. However, identifying responsive

patients remains challenging. Anoikis, a distinct form of programmed cell death,

plays a crucial role in cancer progression and metastasis. Thus, we aimed to

investigate prognostic biomarkers based on anoikis and their role in guiding

immunotherapy decisions for esophageal squamous cell carcinoma (ESCC). By

consensus clustering, the GSE53624 cohort of ESCC patients was divided into

two subgroups based on prognostic anoikis-related genes (ARGs), with

significant differences in survival outcomes between the two subgroups.

Subsequently, we constructed an ARGs signature with four genes, and its

reliability and accuracy were validated both internally and externally. Additional,

different risk groups showed notable variances in terms of immunotherapy

response, tumor infiltration, functional enrichment, immune function, and

tumor mutation burden. Notably, the effectiveness of the signature in

predicting immunotherapy response was confirmed across multiple cohorts,

including GSE53624, GSE53625, TCGA-ESCC, and IMvigor210, highlighting its

potential utility in predicting immunotherapy response. In conclusion, the ARGs

signature has the potential to serve as an innovative and dependable prognostic

biomarker for ESCC, facilitating personalized treatment strategies in this field,

and may represent a valuable new tool for guiding ESCC immunotherapy

decision-making.
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1 Introduction

Esophageal cancer (EC) is an upper gastrointestinal tract

malignancy, with more than 470,000 new cases diagnosed each

year, which accounts for over 3% of global cancer incidence (1–4).

Esophageal squamous cell carcinoma (ESCC) is the most common

form of EC, making up approximately 90% of cases (5, 6). Since

ESCC is typically diagnosed at an advanced stage or metastatic,

there are few treatment options available and the 5-year mortality

rate is high (4, 7–10). Recently, immunotherapy has advanced

rapidly (11–14), demonstrating promising immunotherapy

outcomes in patients with ESCC (15–19). However, owing to the

substantial heterogeneity of ESCC arising from variations in both

tumor cells and the tumor environment, the clinical response rate

remains low, and only a small portion of cases benefit from

treatment (20, 21). Therefore, identifying ESCC patients who

probably benefit from immunotherapy is critical to improving

clinical outcomes.

The tumor immune microenvironment (TME) plays a critical

role in the development, progression, metastasis, and response

to therapies of tumors (22–27). The TME is a dynamic and

complex multicellular context that emerges from the interaction

between tumor cells and the stroma (25, 28, 29). Recently,

Zheng et al. (30) observed that the TME in ESCC is abundant in

immune-suppressive cell populations, encompassing regulatory

T cells (Tregs), exhausted CD4 T, CD8 T, and NK cells, M2

macrophages, and tolerogenic dendritic cells. Among them,

Tregs, which are characterized by the expression of Foxp3 and

CD25, exert influences on various aspects of the anti-tumor

immune response via their immunosuppressive properties (25,

31). Additionally, several studies have described that cancer-

associated fibroblasts play a pivotal role in the in the formation of

an immunosuppressive TME in ESCC (32–34). The increasing

comprehension of the TME in ESCC patients will facilitate

the understanding of the immune status of ESCC, which holds

crucial practical implications for evaluating whether patients

are responding to immunotherapy and for developing novel

immunotherapy strategies (30, 35, 36).

Anoikis, a distinct form of programmed cell death, is triggered

when cells detach from the extracellular matrix or surrounding

cells, which effectively removes displaced cells and prevents

detached cells from attaching incorrectly (37–39). In order for

cancer cells to metastasize and invade, various pathways must be

developed for cancer cells to develop inactivation resistance, evade

cell death, and establish metastatic lesions (39, 40). In recent

research, it has been found that prognostic signatures utilizing

anoikis-related genes (ARGs) have significant value in predicting

the prognosis of cancer patients and their response to

immunotherapy (41–46). For example, Lei Yang and Feng Xu

built an ARGs signature and found it to be a dependable

indicator of prognosis and treatment response in patients with

colorectal cancer (45). In glioblastoma, Sun et al. (46) constructed

an ARGs signature and evaluated its value in survival prediction,

tumor microenvironment (TME), and immunotherapy responses.

Although the study by zhang et al. (47) provided insights into the
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role of ARGs in ESCC, there are still certain limitations that need to

be addressed. Specifically, the potential of ARGs signature in

predicting the prognosis in ESCC has been exclusively examined

within the TCGA-ESCC cohort, lacking validation in other external

cohorts. Furthermore, the capacity of ARG signature alone to

predict immunotherapy response remains unexplored. Therefore,

further investigation is necessary to elucidate the impact of ARGs

signature on ESCC.

In this study, we utilized multiple cohorts from RNA

transcriptome (including GSE53624, GSE53625, TCGA-ESCC,

and IMvigor210 cohorts) and single-cell RNA sequence database

(GSE188900) for analysis. Subsequently, a range of algorithms were

utilized to construct an ARGs prognostic signature. This signature

was used in multiple cohorts to predict ESCC prognosis and assess

the efficacy of immunotherapy response. These analyses elucidate

the role of the ARGs signature in ESCC and offer novel information

for personalized cancer immunotherapy.
2 Materials and methods

2.1 Data processing

The general study process is detailed in Figure 1. From the

Gene Expression Omnibus (GEO) database, we obtained the

transcriptome data and clinical characteristics. The GSE53624

cohort encompassed 119 tumor samples and 119 normal adjacent

samples. The tumor samples from the GSE53624 cohort was

split into training (60 samples) and testing cohorts (59 samples)

using the R package "caret" in a random manner. For external

validation of prognostic signature, transcriptome data and

associated clinical characteristics were extracted from GEO

(GSE53625 cohort, n = 179) and TCGA (TCGA-ESCC cohort,

n = 93) cohorts. In addition, we obtained IMvigor210 database

through R package IMvigor210CoreBiologies (28) and selected

samples with complete treatment response information (n = 298).

A list of ARGs was obtained from previously published literature

(48), and 779 ARGs were included for analysis after excluding genes

absent in the GSE53624 cohort.

ESCC single-cell data were obtained from the GSE188900

dataset (sample size: n = 4). The Seurat v4.1 package was used to

perform a standard pre-processing workflow for single-cell

sequencing. Low-quality cells (mitochondrial genes > 20 %, gene

numbers < 200, and gene numbers > 6000) were excluded from the

subsequent analysis. Harmony (version 1.0) was employed to

correct batch effects in the dataset comprising four samples and

to integrate the merged objects. The t-distributed stochastic

neighbor embedding (t-SNE) was utilized to visualize cell clusters.
2.2 Development and validation of
the signature

In the GSE53624 cohort, we initially conducted a comparison

of the expression levels of 779 ARGs between tumor and normal
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adjacent esophageal tissues. Subsequently, we conducted

univariate cox analysis of differentially expressed ARGs to

identify those associated with prognosis. Based on these

prognostic ARGs, consensus clustering was conducted by

employing the "ConsensusCluster Plus" R package with 1000

repetitions, 80% re-sampling, clusterAlg = "km", and distance =

"euclidean". Then, a combination of the consensus score matrix,

the CDF curve, and the PAC score was employed to determine the

optimal number of clusters. The differentially expressed genes

(DEGs) between subgroups were detected using the "limma"

package, with criteria of |logFC| > 1 and FDR < 0.05. An ARGs

signature was established using the GSE53624 training cohort and

validated across multiple cohorts including the GSE53624 testing

cohort, the GSE53624 entire cohort, the GSE53625 cohort, and

TCGA-ESCC cohort. Prognostic DEGs were identified through

univariate Cox regression in the GSE53624 training cohort

followed by LASSO regression. The most effective prognostic

signature was constructed using stepwise regression methods via

multiple cox regression analyses. Risk score = ∑i=EXP (i) × Coef

(i). Based on the medium risk score, each ESCC patient was

classified as high- or low-risk accordingly. We utilized Kaplan-

Meier analysis to assess the overall survival (OS) differences

between subgroups in order to validate and evaluate

performance. We used the ROC curve to assess their predictive

ability (49). In addition, principal component analysis (PCA) was

used to evaluate the grouping effect of ARGs signature (50).

Taking into account various ESCC patients' clinical feature, Cox

regression analyses were performed to investigate the potential of

the ARGs signature as an independent risk factor.
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2.3 Functional enrichment analysis

Utilizing the "limma" package, DEGs between risk groups were

identified (|logFC| > 0.585 and FDR < 0.05) (51). Relevant analyses

were implemented through "clusterProfiler" R package (52) to

examine the potential function of DEGs, including GO and

KEGG analyses. Additionally, to evaluate potential pathways for

signaling and biological functional alterations between groups,

Gene Set Enrichment Analysis (GSEA) were applied by utilizing

KEGG and Hallmark gene sets (p < 0.05).
2.4 Analysis of immune cell infiltration,
tumor mutational burden, exclusion, and
drug sensitivity analysis

In this study, we utilized the ESTIMATE method to calculate the

stromal, estimate, and immune scores for each ESCC sample, as well

as the tumor purity score. Additionally, we evaluated the abundance of

22 immune cells infiltration between different risk groups was assessed

through CIBERSORT algorithm (53). Furthermore, we utilized single

sample gene set enrichment analysis (ssGSEA) algorithms to measure

the infiltration of 22 immune cells and overall immune function.

Correlations between risk score and 22 immune cells infiltration were

assessed using Pearson correlation coefficient.

Utilizing the "maftools" package, we conducted an analysis of

TMB data obtained from TCGA database (54). Furthermore, TIDE

scores for each patient were acquired through the online website

(55). Additionally, we used the R package "oncoPredict" to predict
FIGURE 1

The flow chart of research design. ESCC, esophageal squamous cell carcinoma; PCA, principal component analysis; ROC, receiver operating
characteristic; TMB, tumor mutational burden; IHC, Immunohistochemistry.
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the IC50 value of potential therapeutic drugs for ESCC between risk

groups (p < 0.05) (56).
2.5 Immunohistochemistry

We obtained a tissue microarray containing 80 pairs of ESCC

tissues and their corresponding adjacent normal esophageal tissues

from Changsha Xiangya Biotechnology Co., Ltd. After dewaxing,

antigen repair, and blocking endogenous peroxidase, the microarray

was left to incubate overnight at 4°C with anti-F2RL2 primary

antibody (bs-9510P, Bioss, China). Subsequently, secondary

antibody incubation and visualization of immunoreactivity with

DAB (G1211, Servicebio, China) were performed. In order to

ensure an impartial evaluation, two pathologists who were unaware

of the clinical information independently assessed the IHC results

and resolved any discrepancies through discussion. The H-score

method was used to evaluate staining intensity and extent by

taking into account both intensity (ranging from 0 to 3+) and the

percentage of tumor cells that were positively stained (ranging from

0% to 100%). The level of F2RL2 expression was equal to the product

of these two estimates.
2.6 Statistical analysis

To conduct the statistical analyses, GraphPad and R 4.3.1 were

used. According to the specific circumstances, we employed either

the student t-test or Wilcoxon rank sum test for intergroup

comparisons. Pearson correlation coefficient was utilized to assess

correlation between variables. Chi-square test was implemented to

evaluate whether there are differences in clinical characteristics. All

statistical tests were considered significant at p < 0.05.
3 Results

3.1 Identification and construction of
ARGs signature

After conducting differential analysis between tumor and

normal adjacent samples, 631 differentially expressed ARGs were

identified (Supplementary Table S1). Through univariate Cox

regression analyses, 66 prognostic ARGs were identified

(Figure 2A). Subsequently, we conducted a consensus cluster

analysis (k = 2-6) and found that the optimal number was

obtained when k = 2 (Figure 2B). KM analysis showed significant

differences in prognosis between two clusters (Figure 2C). Next, we

conducted differential analysis between two clusters and identified

319 DEGs (Figure 2D; Supplementary Table S2). Subsequently, 119

ESCC patients were divided into two cohorts: training (n = 60) and

testing (n = 59), maintaining an approximate 1:1 ratio. Table 1

displays the baseline characteristics of both the training and testing

cohorts, showing no significant disparities. Through univariate Cox

regression analysis, 36 prognostic DEGs were selected (p < 0.05) in
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the training cohort (Figure 2E). Subsequent LASSO regression

analysis identified a minimum lambda value of 11 (Figures 2F,

G). After multivariate Cox regression screening, an ARGs signature

was developed based on four DEGs (Figure 2H) (RAMP1, F2RL2,

FOXL1, and SLCO1B3). Following formula: Risk score = RAMP1 *

0.29303 + F2RL2 * 0.25188 + FOXL1 * 0.20157 + SLCO1B3 *

(-0.14595), each ESCC patient's risk score was computed.
3.2 Prognosis prediction of ESCC patients
utilizing the ARGs signature

In accordance with the median score of training cohort, each

ESCC patient was classified as either the high-risk or low-risk

within their respective cohorts for GSE53624 training, GSE53624

testing, and GSE53624 entire. The heatmap of four modeling genes

expression and the distribution of OS status and risk score were

presented in Figures 3B–D. After conducting KM analysis, it was

noted that the low-risk ESCC group exhibited better OS in

comparison to the high-risk ESCC group across all cohorts (p <

0.05) (Figure 3A). Following internal validation, GSE53625 and

TCAG-ESCC were selected as external cohorts to reconfirm the

predictive effects of the signature. According to the results, both

external validation and internal validation cohorts exhibit good

cross-validation effects (Figures 3E, F). ROC analysis revealed that

risk scores exhibited high levels of specificity and sensitivity in both

the internal and external cohorts (Figures 3G–I).
3.3 Independent prognosis of
ARGs signature

The PCA results indicate that the ARGs signature has good

grouping effect (Figures 4A–C). In addition, to explore the influence

of the ARGs signature on patient prognosis in different clinical

subgroups, we assessed the prognostic signature within various

clinical features of ESCC. As shown in Figures 4D–I, in Age,

Gender, and N subgroups, the low-risk ESCC group exhibited a

higher survival rate than the high-risk ESCC group. Furthermore, to

further validate the prognostic performance of the ARGs signature,

we incorporated 32 published prognostic signatures and compared

the C-index in the GSE53624, GSE53625, and TCGA-ESCC cohorts

(Figures 4J–L). Our ARGs signature outperformed the majority of

other published signatures in the GSE53624 and GSE53625 cohorts,

and showed an intermediate performance in the TCGA-

ESCC cohort.

We initiated univariate and multivariate Cox analyses on the

GSE53624 and GSE53625 cohorts to analyze the prognostic

importance of ARGs signature in relation to various clinical

features. In GSE53624 cohort, as depicted in Figures 5A, N, stage,

and risk score were identified as prognostic risk factors for ESCC

patients through univariate regression Cox analysis. Subsequently,

multivariate Cox regression analysis revealed risk score (p < 0.001)

as an independent prognostic risk factor for ESCC patients.

Furthermore, in the GSE53625 cohort (Figure 5B), we observed
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that risk score continued to be an independent prognostic risk

factor, indicating its robust prognostic ability in ESCC patients.

We developed a nomogram utilizing risk score and various

clinical features (Figure 5C). ROC analysis revealed that nomogram

exhibited a high level of specificity and sensitivity (Figure 5D). The

calibration curve showed high consistency between the findings of

the nomogram and the observed probability of OS in practical

application (Figure 5E). The results from the C index and DCA

indicated that the nomogram has a more robust and strong

predictive capability as well as net clinical benefit than other

clinical features (Figures 5F, G), indicating that this nomogram

has the potential to be utilized as a precise prognostic tool for

ESCC patients.
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3.4 Different tumor-associated pathways
between groups

Figure 6A and Supplementary Table S3 presents the DEGs

between risk groups. KEGG pathway analysis indicated that DEGs

were predominantly associated with “Cell adhesion molecules”, “Wnt

signaling pathway”, and “Cytokine-cytokine receptor interaction”

(Figure 6B). GO analysis, especially in the field of biological process

(BP), indicated that there was a notable enrichment in terms of

“immune system process”, “cell death”, “programmed cell death”, and

“immune response” (Figure 6C). Furthermore, the GSEA analysis

indicated a notable difference between subgroups (Figures 6D, E).

According to “c2.cp.kegg_legacy.v2024.1.Hs.symbols.gmt” and
FIGURE 2

Identification and construction of the ARGs signature. (A) Univariate Cox analysis to determine potential prognostic ARGs (p < 0.05). (B) The consensus
score matrix of GSE53624 cohort (n = 119) when k= 2. (C) The Kaplan-Meier survival curve showing different overall survival between the two clusters
(p < 0.001), with Cluster 1 showing better outcomes. (D) The volcano plot showing DEGs between the two clusters with criteria of |logFC| > 1 and FDR <
0.05. (E) Univariate Cox analysis to determine potential prognostic DEGs (p < 0.05). (F, G) The coefficient profile of prognostic DEGs by Lasso regression
analysis. The optimal l was obtained when the partial likelihood deviance reached the minimum value. (H) Multivariate Cox coefficients for 4 DEGs
(RAMP1, F2RL2, FOXL1, and SLCO1B3) in the ARGs signature. ARGs, anoikis-related genes; DEGs, different expression genes.
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“H.all.v2024.1.Hs.symbols.gmt”, we found that the high-risk group

primarily showed activation of various cancer-related and immune-

related signaling pathways, such as

“HALLMARK_WNT_BETA_CATENIN_SIGNALING“ ,

"HALLMARK_KRAS_SIGNALING_UP",

"KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION",

“KEGG_TGF_BETA_SIGNALING_PATHWAY “ , and

“KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_

PRODUCTION“, and the low-risk group mainly exhibits activation

of the following signaling pathways, such as “KEGG LINOLEIC

ACID METABOLISM“, “KEGG RETINOL METABOLISM“, and

“HALLMARK_KRAS_SIGNALING_DN“.
3.5 Comparison of tumor
microenvironment between groups

According to the Wilcoxon test, high-risk ESCC patients showed

significantly higher immune, estimate, and stromal scores, as well as

lower tumor purity scores (Figures 7A–D). According to the findings

in the cibersort (Figures 7E, F), macrophages M0, macrophages M2,

mast cell resting, and T cell gamma delta were more abundant in

high-risk ESCC patients, while in the low-risk group, plasma cells,

monocytes, and mast cell activated were more abundant. By applying
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the ssGSEA algorithm, we found significant differences between the

two risk groups (Figure 7G). Among them, macrophages M0,

macrophages M2, and T cell gamma delta were more abundant in

high-risk ESCC patients, which is consistent with previous results.

Besides, we employed Pearson correlation analysis to identify 6

immune cell types that are significantly correlated with risk scores

(p < 0.05, Figure 7H). Ultimately, we identified two intersecting tumor

microenvironment cell types (macrophages M0 and T cells gamma

delta, Figure 7I). Next, we obtained immune function scores using the

ssGSEA algorithm. Compared with low-risk ESCC patients, high-risk

ESCC samples exhibited greater enrichment in co stimulation of

antigen-presenting cells (APCs), check point, cytolytic activity, HLA,

MHC class I, and T cell co-inhibition (Figure 7J). Finally, we

compared the immune checkpoints (ICs) between the high and low

groups, and found that 24 ICs had significant differences between the

two groups (Wilcox test, p < 0.05, Figure 7K).
3.6 Comparison of TMB and
immunotherapy response between groups

In order to investigate the TMB between different risk groups,

we conducted a mutation landscape within TCGA-ESCC patients

(Figures 8A, B). Our investigation identified different mutation
TABLE 1 Comparisons of patient characteristics between training and testing cohorts.

Characteristics Total cohort (n = 119) Training cohort (n = 60) Testing cohort (n = 59) P-value

Age

≤60 69 (57.98%) 39 (65%) 30 (50.85%) 0.118

> 60 50 (42.02%) 21 (35%) 29 (49.15%)

Gender

Male 98 (82.35%) 48 (80%) 50 (84.75%) 0.497

Female 21 (17.65%) 12 (20%) 9 (15.25%)

T stage

T1 8 (6.72%) 3 (5%) 5 (8.48%) 0.214

T2 20 (16.81%) 8 (13.33%) 12 (20.34%)

T3 62 (52.1%) 37 (61.37%) 25 (42.37%)

T4 29 (24.37%) 12 (20%) 17 (28.81%)

N stage

N0 54 (45.38%) 29 (48.34%) 25 (42.37%) 0.806

N1 42 (35.29%) 21 (35%) 21 (35.59%)

N2 13 (10.92%) 5 (8.33%) 8 (13.56%)

N3 10 (8.41%) 5 (8.33%) 5 (8.48%)

TNM stage

I 6 (5.04%) 3 (5%) 3 (5.08%) 0.808

II 47 (39.5%) 22 (36.67%) 25 (42.37%)

III 66 (55.46%) 35 (58.33%) 31 (52.55%)
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FIGURE 3

The validation of the ARGs signature in both internal and external cohorts. (A) OS of patients in different risk groups in the GSE53624 training (n =
60, p = 0.001), testing (n = 59, p = 0.049), and entire (n = 119, p < 0.001) cohorts, with low ARGs group showing better outcomes. (B, C) The
distribution of risk scores and OS status for each patients in the GSE53624 training, testing, and entire cohorts. (D) Heatmap showing the expression
of the four modeling genes in the GSE53624 training, testing, and entire cohorts. (E) OS of patients in different risk groups in the GSE53625 cohort
(n = 179, p = 0.003), with low ARGs group showing better outcomes. (F) OS of patients in different risk groups in the TCGA-ESCC cohort (n = 93, p
= 0.020), with low ARGs group showing better outcomes. (G-I) ROC curves for predicting 1-, 3-, and 5-year OS in the GSE53624, GSE53625, and
TCGA-ESCC cohorts. ARGs, anoikis-related genes; OS, overall survival; ROC, Receiver operating characteristic; ESCC, esophageal squamous
cell carcinoma.
Frontiers in Oncology frontiersin.org07

https://doi.org/10.3389/fonc.2025.1530035
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yi et al. 10.3389/fonc.2025.1530035
lineages in the high- and low-risk groups. For example, tumor

suppressor genes NFE2L2 and NOTCH1 exhibited a higher

frequency of mutations in the high-risk group at 22% and 18%,

respectively, compared to 13% and 11% in the low-risk group.
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Moreover, an exploration into the association between risk scores

and TMB revealed that individuals classified in the low-risk

category exhibited elevated levels of TMB (Figure 8C, p = 0.041).

When combining TMB with risk scores, it was observed that
FIGURE 4

Evaluation of ARGs signature performance. (A-C) PCA analyses for the ARGs signature in the GSE53624 training (n = 60), testing (n = 59), and entire
(n = 119) cohorts. (D-I) Kaplan–Meier curves of OS according to the ARGs score in the GSE53624 subgroup (D) patients with Age ≤ 60 years, p =
0.004; (E) patients with Age > 60 years, p < 0.001; (F) patients with Female, p = 0.008; (G) patients with Male, p = 0.001; (H) patients with N0, p =
0.006; (I) patients with N1-3, p = 0.005, with low ARGs group showing better outcomes. (J-L) C-index analysis ARGs and 32 published signatures in
GSE53624 (n = 119), GSE53625 (n = 179), and TCGA-ESCC (n = 93) cohorts. ESCC, esophageal squamous cell carcinoma; ARGs, anoikis-related
genes; PCA, principal component analysis; OS, overall survival.
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patients in the "high risk + high TMB" category experienced poorer

outcomes (Figure 8D, p = 0.019).

To assess the potential of immunotherapy responses based on

ARGs signature, we utilized the TIDE. Analysis of GSE53624,

GSE53625, and TCGA-ESCC cohorts revealed higher TIDE

scores in high-risk ESCC patients (p = 0.0031, Figure 8E; p <

0.001, Figure 8I; p = 0.0024, Figure 8L), with the mean risk score

being significantly elevated in the non-response group compared to

the response group (p = 0.035, Figure 8F; p < 0.001, Figure 8J; p =

0.02, Figure 8M). In the GSE53624 cohort, Pearson correlation

analysis demonstrated a positive association between risk score and

TIDE (Figure 8G, R = 0.23, p = 0.011), with a higher proportion of

low-risk ESCC patients responding to immunotherapy (36%) than

high-risk ESCC patients (25%) as shown in Figure 8H.
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Furthermore, compared to individuals in the high-risk group

identified by risk score, analysis of both GSE53625 and TCGA-

ESCC cohorts indicated a greater percentage of immunotherapy

recipients in the low-risk group (Figures 8K, N). We further

validated the predictive capability of ARGs signature for ICI

responses using IMvigor210 cohort by calculating a risk score for

each patient based on the coefficients and expression of the four

modeling genes. Patients were then categorized into high-risk or

low-risk groups according to their median risk score. Reassuringly,

we observed that the average risk score was higher in patients

belonging to the SD/PD group compared to those in the CR/PR

group (Figure 8O, p = 0.016), and a lower proportion of high-risk

patients achieved CR/PR compared to low-risk patients (Figure 8P,

p = 0.011).
FIGURE 5

Independent prognostic analysis and construction of a nomogram. (A, B) Based on univariate and multivariate Cox analysis, ARGs was an
independent prognostic risk factor in the GSE53624 [(A), n = 119] and GSE53625 [(B), n = 179] cohorts. (C) The ARGs-based nomogram considering
patients’ other clinical features. (D) ROC curves showing the prediction performance of the nomogram in 1, 3, and 5-year OS. (E) Calibration curve
of the nomogram for 1, 3, and 5-year OS. (F) The comparison of the C index between the nomogram and other clinical features. (G) Decision curve
analysis showing the net benefit by applying the nomogram and other clinical features. OS, overall survival; ARGs, anoikis-related genes; ROC,
Receiver operating characteristic. ***p < 0.001.
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3.7 Drug sensitivity analysis

This involved correlating IC50 values with risk score of various

drugs and comparing drug sensitivity scores between risk groups.

Figures 9A–I displayed the nine compounds with the most

significant correlation between IC50 values and risk score, as

determined by Pearson correlation and Wilcox tests (p < 0.05).
3.8 Single-cell sequencing data analysis

To mitigate batch effects, we used the Harmony package to

effectively integrate the four patients with ESCC (Figure 10A).

Subsequently, the top 2000 variant genes underwent dimensionality

reduction using principal component analysis and t-SNE. The cells

were grouped into 26 clusters using a resolution of 1 during the

clustering process. We categorized the cells into nine major clusters

using marker genes for different cell types: myeloid cells, fibroblasts

cells, T cells, endothelial cells, epithelial cells, B cells, and mast cells

(Figure 10B). The heatmap shows the three most significant marker
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genes for every cell population (Figure 10D). Additionally, we

calculated the proportions of cell clusters in each sample and

presented the results as histograms (Figure 10C). Furthermore, we

analyzed the expression patterns of the four modeling genes in

various cell types (Figures 10E–I). The results indicated the

RAMP1 and F2RL2 were predominantly expressed in fibroblasts

cells, while SLCO1B3 and FOXL1 had lower expression levels in

various cells.
3.9 F2RL2 is an anoikis-related biomarker
of ESCC

The findings indicated that F2RL2 exhibited superior accuracy

in predicting tumor status (tumor versus normal) compared to

other variables (Figure 11D). Consequently, we proceeded with

further validation of F2RL2 in ESCC. We collected 80 pairs of ESCC

tissues and adjacent normal esophageal tissues for IHC staining.

The protein level of F2RL2 in ESCC tissues was significantly higher

than that in adjacent non-tumor tissues (Figures 11A–C). Paired t-
FIGURE 6

Functional enrichment analyses. (A) The volcano plot showing the DEGs between the high- and low-risk groups in the GSE53624 cohort (n = 119)
with criteria of |logFC| > 0.585 and FDR < 0.05. (B, C) KEGG and GO enrichment analyses revealing the potential pathways enriched by the DEGs
between the high- and low-risk groups. (D, E) GSEA enrichment analysis demonstrating the enrichment of differential genes to KEGG and Hallmark
pathways between high- and low-risk groups. DEGs, different expression genes. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene
Ontology; GSEA, Gene Set Enrichment Analysis.
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test results indicated that the average expression of F2RL2 in ESCC

tissues was higher compared to adjacent normal tissues (Figure 11E,

p = 0.035). Based on the median expression of F2RL2, the 80

samples were stratified into high- and low-F2RL2 expression

groups. KM survival analysis revealed that the high-F2RL2

expression groups exhibited a significantly poorer prognosis (p =

0.036, Figure 11F). These findings suggested that F2RL2 could serve

as a valuable prognostic biomarker related to anoikis in ESCC.
4 Discussion

The treatment options for patients with ESCC, particularly

those with advanced ESCC, have been significantly broadened by

the emergence of immunotherapy. However, the prognosis for

ESCC patients remains unfavorable due to the intricate and

highly heterogeneous nature of ESCC tumors, as well as the
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absence of reliable prognostic biomarkers to indicate disease

severity or predict response to immunotherapy (8, 9, 35, 57, 58).

Anoikis, a distinct form of programmed cell death, plays a crucial

role in cancer progression and metastasis (37–39), which may offer

potential novel therapeutic strategies for anti-tumor treatment.

Recently, a plethora of studies have demonstrated the significant

value of ARGs prognostic signature in predicting the prognosis and

immunotherapy response among cancer patients, including those

with bladder cancer (48, 59), osteosarcoma (60), glioblastoma (46),

colorectal cancer (61), clear cell renal cell carcinoma (62), liver

hepatocellular carcinoma (63), and other malignancies. In this

study, we employed multiple cohorts for comprehensive analysis,

thoroughly investigated the expression patterns of ARGs in ESCC,

and developed an ARGs prognostic signature. In comparison with

32 previously published prognostic features, the ARG signature

surpassed most other published signatures in the GSE53624 and

GSE53625 cohorts, and was at an intermediate level in the TCGA-
FIGURE 7

The immune landscape associated with the ARGs signature in ESCC. In the GSE53624 cohort (n = 119), (A–D) the immune score, stromal score,
estimate score, and tumor purity were applied to quantify the different immune statuses between the high- and low-risk groups. (E, F) The
CIBERSORT algorithm was used to evaluate differences in the abundances of 22 types of immune cells between the high- and low-risk groups.
(G) The ssGSEA algorithm was used to analyze differences in 22 types of immune cells between the high- and low-risk groups. (H) Pearson
correlation analysis was performed to assess the correlations between TME-infltrated cells and risk scores. (I) Venn plot showing the intersecting
TME-infltrated cell types of CIBERSORT algorithm, ssGSEA algorithm, and correlation analysis. (J) The ssGSEA algorithm was used to analyze
differences in immune functions between the high- and low-risk groups. (K) Box plot of expression difference of 24 immune checkpoints between
the high- and low-risk groups. ESCC, esophageal squamous cell carcinoma; ARGs, anoikis-related genes; ssGSEA, single sample gene set
enrichment analysis; TME, the tumor immune microenvironment. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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ESCC cohorts. This feature was subsequently applied across various

cohorts to forecast the prognosis of ESCC and assess the

effectiveness of immunotherapy response, ultimately aiming to

enhance the OS of patients with ESCC.

In this study, the ARGs signature consisted of four genes

(RAMP1, FOXL1, SLCO1B3, and F2RL2) that have previously

been documented to be closely linked with cancer. Receptor

activity modifying protein 1 (RAMP1) serves as a co-receptor for

specific G protein-coupled receptors, such as calcitonin gene-related

peptide receptors, and the plasma membrane (64–66). In prostate

cancer, a recent finding indicates that RAMP1 is a direct target gene

of NKX3.1 and serves as a new biomarker (64). Additionally, in a

study by Balood M. et al. (67), single-cell RNA sequencing analysis

indicated that elevated RAMP1 expression associated with

unfavorable clinical outcomes in melanoma patients. Moreover,

Dallmayer M. et al. (68) demonstrated that the ablation of RAMP1
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results in a reduction in clonal growth rate and tumorigenic

potential of Ewing sarcoma cell lines. Furthermore, through

bioinformatics analysis, Xie, L et al. (65) discovered RAMP1

could potentially be used as a biomarker for diagnosing and

predicting the prognosis of osteosarcoma, and also as a molecular

target for treating osteosarcoma. Forkhead box L1 (FOXL1), a

member of the FOX superfamily (69, 70), is involved in cancer

invasion and metastasis and shows abnormal expression in various

tumors such as glioma (71), gallbladder cancer (70), pancreatic

cancer (69), gastric cancer (72), and renal cancer (73). Similarly, the

solute carrier organic anion transporter family member 1B3

(SLCO1B3) (74, 75), a functional transporter, plays a crucial role

in the occurrence and development of tumors and has been found

to be abnormally expressed in various tumors (75–80). Recent

studies have also linked SLCO1B3 with resistance to anti-cancer

treatments (75). Regulation factor II zombie receptor like 2 (F2RL2)
FIGURE 8

Evaluation of TMB and immunotherapy response. (A, B) The waterfall plot of the somatic mutation landscape in high- and low-risk patients in the
TCGA-ESCC cohort (n = 93). (C) Boxplots of the difference in TMB between high- and low-risk groups (p = 0.041). (D) The Kaplan-Meier survival
curve showing different overall survival (p = 0.019) among four subgroups (high-risk and high-TMB, high-risk and low-TMB, low-risk and high-TMB,
low-risk and low-TMB). (E, I, L) Boxplots of the difference in TIDE between the high- and low-risk groups across GSE53624 (n = 119, p = 0.0031),
GSE53625 (n = 179, p = 0.000075), and TCGA-ESCC (p = 0.024) cohorts. (F, J, M) Boxplots of the difference in risk score between non-response
and response groups across GSE53624 (p = 0.035), GSE53625 (p = 0.000026), and TCGA-ESCC (p = 0.02) cohorts. (G) In GSE53624 cohort, the
scatter plot of correlation between risk score and TIDE. (H) In GSE53624 cohort, percentages of immunotherapy responders in the high-risk group
compared to the low-risk group. (K, N) Bar plots showing the proportion of immunotherapy response in the high- and low-risk groups across
GSE53625 (p = 0.002) and TCGA-ESCC (p = 0.095) cohorts. (O) Boxplots of the difference in risk score between CR/PR and SD/PD groups in the
IMvigor210 cohort (n = 298, p = 0.016). (P) Bar plots showing the proportion of immunotherapy response in the high- and low-risk groups in the
IMvigor210 cohort (p = 0.011). Pearson correlation analysis was performed to assess the correlations between risk score and TIDE. Differences in
immunotherapy response between high- and low-risk groups were compared using the chi-square test. Differences in TIDE and risk score between
the two groups were analyzed using a student t-test. TMB, tumor mutational burden; ESCC, esophageal squamous cell carcinoma; TIDE, tumor
immune dysfunction and exclusion.
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is a G protein coupled receptor encoding PAR3 (81). Zhenhua Wu

et al. (82) discovered that downregulation of F2RL2 expression can

mitigate the damage caused by myocardial infarction. Furthermore,

Mengnan Zhao et al. (83) identified heightened levels of F2RL2

expression in ESCC through immunofluorescence assay.

Consistently, our IHC results revealed significantly elevated

protein levels of F2RL2 in ESCC tissues compared to adjacent

non-tumor tissues, and elevated F2RL2 expression was correlated

with unfavorable prognosis. Our research findings indicated that

F2RL2 serves as a valuable prognostic biomarker for ESCC.

TME plays a significant role in the development and evolution

of tumors such as ESCC (84, 85). A thorough investigation of tumor

infiltrating immune cells can clarify the potential mechanisms of

cancer immune evasion and offer chances for the development of

novel treatment strategies (25, 86). Our findings showed that the

high-risk group exhibited a higher degree of immune infiltration

compared with the low-risk group. Additional, substantial

differences in immune checkpoint genes expression existed

between the high- and low-risk groups. Considering the

correlation between the expression levels of immune checkpoint
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genes and the efficacy of immunotherapy (25, 87), it can be inferred

that this might be one of the reasons for the disparities in the

immunotherapy response between the high- and low-risk groups.

Furthermore, our findings revealed a significant elevation of M0

macrophages, M2 macrophages, and T cell gamma delta in the

high-risk group. It is noteworthy that M0 macrophages have the

capacity to differentiate into either M1 or M2 cells (88–90). M2

macrophages are recognized for their ability to suppress

inflammatory responses in solid tumors, such as ESCC, and have

various pro-tumor effects (91), and the accumulation of M2

macrophages is linked to a poor clinical prognosis (92–95).

Furthermore, it has been documented that M2 macrophages exert

a crucial role in ESCC by promoting the depletion of anti-tumor

effector T cells in TME (30, 85, 96). Our study also confirmed that

the high-risk group had a poorer response to immunotherapy than

low-risk group, which we infer might be attributed to T cell

exhaustion and immune escape mechanisms within the

immunosuppressive TME. T cell gamma delta, which have

alternative T cell receptor structures composed of gamma and

delta chains, play a critical role in innate immunity by expanding
FIGURE 9

Exploration of drug compounds targeting the ARGs. In the GSE53624 cohort (n = 119), (A-I) correlation scatter plot of IC50 of the top 9 candidate
drugs and risk score, and boxplots of the difference in IC50 of candidate drugs between high- and low-risk groups, with statistical significance
assessed via the Wilcoxon rank sum test. Pearson correlation analysis was performed to assess the correlations between risk score and candidate
drugs. ARGs, anoikis-related genes; IC50, the half-maximal inhibitory concentration.
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their range of antigen recognition independently of MHC (97, 98).

In the context of most cancer types, with only a few exceptions, T

cell gamma delta is linked to a favorable prognosis (98–103).

However, there is still uncertainty regarding the changes in

subpopulations and functions of T cell gamma delta in ESCC, as

well as their prognostic and diagnostic significance (97),

necessitating further investigation in the future.

Immunotherapy is recognized as an effective and promising

treatment modality, offering a novel approach to cancer therapy

(8, 104). Nevertheless, only a specific proportion of patients benefit

from immunotherapy, with an even smaller proportion
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experiencing sustained response (8, 105). Hence, precise

prediction is essential for identifying the patients who will derive

benefits from immunotherapy. Our research findings indicated that

low-risk ESCC patients may exhibit a higher likelihood of positive

response to immunotherapy, while high-risk patients are more

inclined towards immune evasion. Furthermore, our analysis of

the IMvigor210 cohort revealed that ARGs signature can effectively

distinguish whether patients have immunotherapy responses.

Moreover, considering the pivotal role of TMB in determining

tumor response to immunotherapy, elevating TMB levels has the

potential to augment the efficacy of immune checkpoint inhibitors
FIGURE 10

Gene expression distribution of ARGs on distinct cell types on single cell level. In the GSE188900 dataset (n=4), (A) tSNE plot of cell distribution
in 4 patients with ESCC. (B) tSNE plot of 7 cell populations after dimension reduction. (C) Proportion of each cell population in different samples.
(D) Heatmap showing the top 3 unique marker genes in each cellular subpopulation. (E-I) The four modeling genes levels in each cellular
subpopulation. ESCC, esophageal squamous cell carcinoma; ARGs, anoikis-related genes; t-SNE, t-distributed stochastic neighbor embedding.
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(106–109). The findings of the study suggested that individuals at

low risk show higher levels of TMB in comparison to those at high

risk. It is important to note that individuals at low risk may

demonstrate a stronger response to immunotherapy, which aligns

with the aforementioned results. In conclusion, the validity of the

constructed ARGs signature has been confirmed across multiple

cohorts, including the IMvigor210, TCGA-ESCC, GSE53625, and

GSE53624, underscoring the effectiveness of ARGs signature in

predicting Immunotherapy response. However, the aforementioned

conclusions are drawn from the analysis of RNA expression data

acquired in public datasets. The scarcity of immunotherapy-related

data in the ESCC cohort impedes a comprehensive evaluation of the

influence of ARGs signature in predicting ESCC immunotherapy

outcomes. In the future, it will be requisite to validate the efficacy of

immunotherapy responses more extensively in genuine

ESCC cohorts.

Although this study yields innovative and promising findings,

certain limitations exist. Firstly, it is a retrospective study relying on
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public databases, featuring a limited sample size within the datasets.

Validation in more diverse patient cohorts, multicenter studies, and

real-world data is necessary in the future. Secondly, no additional

experimental verification was carried out. In future research, further

in vitro and in vivo investigations are necessary to validate this

prognostic signature and explore the potential mechanisms

underlying this signature. These issues warrant attention and

need to be tackled in future research.
5 Conclusions

In conclusion, our research offers valuable insights into the

expression patterns and roles of ARGs signature in ESCC. The

ARGs signature serves as a robust predictor of prognosis and holds

potential guiding significance in personalized clinical decision-

making, particularly in the formulation of immunotherapy

strategies for ESCC. Moving forward, there is a necessity for more
FIGURE 11

F2RL2 is an anoikis-related prognostic biomarker of ESCC. (A-C) Typical images of IHC staining with anti-F2RL2 antibody in paired ESCC tissues and
adjacent normal tissues. (D) The four modeling genes were analyzed with the pROC package and visualized with the ggplot2 package. (E) Box plot
of F2RL2 expression in 80 pairs of paired ESCC tissues and adjacent normal tissues (Paired t-test, p = 0.035). (F) The Kaplan-Meier survival curve
showing different OS between the high- and low-F2RL2 groups. ESCC, esophageal squamous cell carcinoma; IHC, Immunohistochemistry; OS,
overall survival.
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extensive validation of the prognostic value and efficacy of

immunotherapy response in real ESCC cohorts.
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