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Introduction: Identification of effective therapies for colorectal cancer (CRC)

remains an urgent medical need, especially for the microsatellite stable (MSS)

phenotype. In our previous study, potassium oxonate (PO), a uricase inhibitor

commonly used for elevating uric acid in mice, unexpectedly showed remarkable

inhibition of tumor growthwhen combinedwith anti-programmed death-1 (PD-1).

Further research demonstrated that the combination of potassium oxonate and

anti-PD-1 could reprogram the immune microenvironment. This study aimed to

explore the anti-tumor effect of PO combined with anti-PD-1, and investigate the

impact on the immunosuppressive tumor microenvironment (TME).

Methods: We established a syngeneic mouse model of CRC and divided into

groups of control group, single drugs group of PO and anti-PD-1, and the

combination group. Use the HE staining, immunohistochemistry (IHC) and

TUNEL staining of tumor issues to verify the anti-neoplasm of each group. We

also tested the changes of TME through flow cytometry of spleen of mice in each

group, as well as the IHC of cytokines.

Results: The co-therapy of PO and anti-PD-1 showed admirable anti-tumor

effect compared with the control group and the single drug groups. The TME

were tended to an environment beneficial for killing tumors by enhancing

chemotactic factor release, increasing CD8+ T cell infiltration and activation,

and decreasing the amount of regulatory T cells. Moreover, IFN-g and IL-2

secretion were found to be enriched in the tumor TME.

Conclusion: Our study indicated that combination of PO and anti-PD-1 could

synergist ical ly suppress CRC progression and altered the tumor

microenvironment in favor of antitumor immune responses.
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Introduction

Colorectal cancer (CRC) is the third most prevalent cancer

worldwide and the leading cause of death in both men and women

(1). Current statistics show that the 5-year relative survival rate for

localized and distant-stage CRC is 90% and 14% (2), respectively.

For patients with metastatic CRC (mCRC), treatments based on

cytotoxic agents, including irinotecan, oxaliplatin, and fluorouracil,

remain the first- or second-line therapy. Additionally, drugs

targeting vascular endothelial growth factor (VEGF) or its

receptor (VEGFR) and epidermal growth factor receptor (EGFR),

such as bevacizumab, regorafenib (3), cetuximab (4), and

fruquintinib (5, 6) have been approved; however, alternative

therapeutic options for advanced diseases remain scarce.

In recent years, novel immunotherapy research has shown

promising results for various types of cancer, including mCRC

(7). Programmed death-ligand 1 (PD-L1), which is present on

tumor cells (8) and/or tumor-infiltrating immune cells (IC) (9), is

a classic immune checkpoint blocker (ICB); its ligation by

programmed death-1 (PD-1), present on T cells, results in the

inhibition of the proliferation and effector function of T cells.

However, options are limited to specific molecular subtypes of

mCRC because of its heterogeneous immune landscape. Therapy

with anti-PD-1 or PD-L1 has resulted in remarkable success in

mCRC with microsatellite instability–high phenotype (MSI-H),

which has a higher tumor mutation burden (TMB), more

immune infiltration (10, 11), and accounts for 3%~5% of mCRC.

The microsatellite stability (MSS) type, which accounts for the

remaining CRC types, has long been considered a biomarker of

resistance to checkpoint inhibitors (12). The development of anti-

PD-1/PD-L1 applications in mCRC is urgently needed.

Potassium oxonate (PO), an uricase inhibitor in mice, has been

applied to establish a model of acute or chronic hyperuricemia with

different dosages and administration methods. Research on

hyperuricemia has mainly focused on gout and heart disease (13).

Serum uric acid is also associated with prognosis and survival of

cancers. However, few studies have investigated the effect of PO in

tumors, except for determining that it is an important component

of S-1, an oral fluoropyrimidine that serves to inhibit the

phosphorylation of 5-FU in the gastrointestinal tract and decrease

serious gastrointestinal toxicities without disrupting the antitumor

effect (14, 15). S-1 is now widely used as an adjuvant and palliative

chemotherapy for gastric cancer, pancreatic cancer, and CRC

(16–18). In the previous study, by investigating the effect of

soluble uric acid on anti-PD-1, we accidentally discovered that

PO could enhance the curative effect of anti-PD-1 in CRC but not

the uric acid level.

In this study, we established a syngeneic model of CRC and

found that the combination of PO and anti-PD-1 synergistically

promoted the antineoplastic effect of the treatment and

reprogrammed the immunosuppressive TME to tumor-lethal.
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Materials and methods

Cell culture

CT26 mouse colon carcinoma cell lines were obtained from

Type Culture Collection of the Chinese Academy of Sciences

(Shanghai, China). Cells were cultivated in RPMI 1640 culture

medium supplemented with 10% FBS, 100 U/mL penicillin, and 100

mg/mL streptomycin and were cultured in a humidified 5% CO2

atmosphere at 37˚C in incubator.
Animals

Six to eight weeks old, BALB/c mice were purchased from

Wuhan Bestcell Model Bio-Tech Co., Ltd. They were housed with

free access to pellet food and water in plastic cages at 21 ± 2˚C and

kept on a 12-h light/dark cycle. Animal welfare and experimental

procedures were carried out in accordance with the Guide for the

Care and Use of Laboratory Animals (National Institutes of Health)

and the related ethical regulations of Bestcell Model Biological

Center. All experimental protocols were approved by the

Laboratory Animal Welfare & Ethics Committee of Bestcell

Model Biological Center. All efforts were made to reduce the

number of animals used and to minimize animals’ suffering.
Syngeneic model

CT26cells (6×105)were inoculated at the rightflankofBALB/cmice

(Figure 1), After the tumor reached 50 mm3, mice were randomized to

four groups (n = 6 per group), and treatments were initiated as follows:

group 1, mice were administered a daily oral gavage with 5% CMC.Na

(vehicle); group 2, mice were administered a daily oral gavage with

potassium oxonate at 250mg/kg; group 3, mice were administered with

antimouse PD-1 at 5mg/kg by i.p. injection every 3 d; and group 4,mice

were administered with potassium oxonate plus anti-mouse PD-1 Ab.

Tomor volume (TV)was determined bymeasuring the largest diameter

(a) and its perpendicular (b) according to the formula (a *b2)/2.TheTGI

(%TGI =100 * [1 - (TV final -TV initial for drug treated group)/(TV final -

TV initial for control group)]) was used for evaluation of antineoplastic

effect. On the 15th day,micewere euthanized, and tumorswere removed

by scissors. The weight was measured by electronic balance in wet, and

tumor sections were fixed in formalin. The rest of the sections were

frozen in liquid nitrogen and stored at -80˚C.
Immunochemistry

Immunohistochemistry was performed as previously described

(19). Sections were incubated with primary antibodies overnight at
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4°C, including PCNA (Boster, BM0104), IFNg (Affinity, DF6045).
Then, the sections were incubated with the secondary horseradish

peroxidase conjugated antibody (Absin, Shanghai, China) for 30

minutes at room temperature. Targeted proteins were visualized

with diami-nobenzidine (Zhongshan Golden Bridge, Beijing,

China). The results of IHC were determined by staining intensity

and the number of positive cells.
TUNEL assay

Paraffin-embedded tumor sections were stained with TUNEL

Detection Kit (G1504, Servicebio, Wuhan) and then counter-

stained with DAPI for 20~30min. Images were acquired using

Eclipse Ci-L (Nikon).
Flow cytometry assay

Spleen tissues from CRC model were harvested on the days

indicated. To obtain single-cell suspensions, the spleen was first

scraped with scissors, and the homogenate was then passed through

a 0.45 mm nylon mesh and and washed twice with PBS/0.5% BSA.

Single-cell suspensions were stained with surface mAb: FITC-

conjugated anti-CD4 (Invitrogen, 11-0041-81), FITC-conjugated

CD8 (Invitrogen, 11-0081-81), and PE-conjugated CD25

(Invitrogen, 12-0251-81) for 30 minutes at 4°C. For the

intracellular markers, cells were incubated in 24-well, flat-bottom

plates with cell stimulation mixture (eBioscience/Thermo Fisher

Scientific, Waltham, MA) for 4 h under a humidified 5% CO2

atmosphere at 37˚C in incubator and fixed and permeabilized with

the FoxP3/Transcription Factor Staining Buffer Set (eBioscience/

Thermo Fisher Scientific) according to the manufacturers’

protocols, then stained with intracellular markers: APC-

conjugated Foxp3 (Invitrogen, 17-5773-80). Samples were

collected on a CytoFLEX Flow Cytometer (Beckman), and data

were analyzed with FlowJo.
Frontiers in Oncology 03
Statistical analysis

GraphPad Prism 5.0 (La Jolla, CA, USA) was used to analyze the

data, which are expressed as mean ± SEM. Statistical significance

(*p < 0.05, **p < 0.01, ***p, 0.001) was assessed using two-tailed

unpaired Student’s t-tests for comparisons between two groups.
Results

Combined PO and anti-PD-1 significantly
inhibited tumor growth in a syngeneic
model of CRC

To investigate whether PO plus anti-PD-1 exerts synergistic

antineoplastic effect in vivo, CT26 mouse colon carcinoma cells

were s.c. transplanted to establish syngeneic murine models. As a

result, we observed little inhibition of tumor growth in mice treated

with anti-PD-1 (TV: 1118.62 ± 127.33 mm3) or PO (TV: 1218.77 ±

169.35 mm3) alone compared to that in mice treated with vehicle

(0.5% CMC.Na; TV: 1854.25 ± 150.20 mm3), with tumor growth

inhibitions of 40% and 35.3%, respectively. In contrast, the

combination therapy group showed remarkable inhibition of

tumor growth. On the day of sacrifice, the TV was 445.2 ± 23.2

mm3, while the TGI was 76% (Figures 1A, B). Thus, this finding

inferred that PO plus anti-PD-1 inhibit the tumor growth.
PO plus anti-PD-1 antibody inhibited
proliferation and induced tumor cell
apoptosis in vivo

We further observed the effects of PO plus anti-PD-1 on the

proliferation of tumor cells in vivo. Histological analyses by H&E

staining showed that PO with anti-PD-1 strongly induced massive

amounts of cell damage, with nuclear shrinkage, sparse arrangement,

and fragmentation of tumor cells (Figure 2A). Next, the proliferation
FIGURE 1

PO and anti–PD-1 cotreatment significantly inhibited tumor growth in vivo. CT26 cells (6×105) were transplanted s.c. into the armpit of BALB/c mice.
Three days after transplantation, the mice were randomly allocated to either the control or treatment groups. Drugs were given as described in
Materials and Methods. (A) TV was measured every 2 days to the 11th day. (B) Solid tumors were separated after the mice were sacrificed and
photographed. The data represent the mean 6 SEM of six mice per group in (A) to (B). *p<0.05, **p<0.01, versus as indicated. ns, not significant.
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and apoptosis of tumor tissues in each group were examined to

confirm the inhibitory effect of the combination of PO and anti-PD-

1. Consistent with the results of H&E staining, immunohistochemistry

of PCNA showed a sharp decrease in the expression of PCNA protein

in the tumor tissues of the combined treatment group compared to that

in the single-drug treated group (Figure 2B). TUNEL staining

confirmed that PO combined with anti-PD-1 triggered extensive

tumor cell apoptosis (Figure 2C). These results demonstrated that

co-treatment with PO and anti-PD-1 led to elevated inhibition of

proliferation and induction of tumor cell apoptosis in vivo.

PO plus anti-PD-1 reduced regulatory T cells
and elevated CD8+ T cells in the spleen

The efficacy of anti-PD-1 is intimately associated with immune cell

infiltration and function in the TME. To test whether changes in Treg
Frontiers in Oncology 04
cells occur in the periphery, we detected immune cells in the spleen

using flow cytometry. The results showed that monotherapy reduced

the differentiation of Treg cells (by 12.9%), and this effect was further

enhanced by co-therapy (by a further 11.0%) (Figure 3C). We

subsequently analyzed the activation of antitumor lymphocytes.

Compared to the control, PO plus anti-PD-1 increased both the

proportion of CD4+ (Figure 3A) and CD8+ T cells (Figure 3B).

These results suggest that the combination of PO and anti-PD-1

augmented the antitumor immune response by reducing Treg cells

and enhancing the infiltration of CD8+ T lymphocytes.

PO plus anti-PD-1 antibody promoted
T cell infiltration and function

Successful anti-PD-1 cancer immunotherapy requires T

cell-dendritic cell crosstalk involving the cytokines IFN-g and
FIGURE 2

Combination of PO and PD-1 blockade inhibited proliferation and induced apoptosis of tumor in vivo. (A) Paraffin sections of CT26 tumor tissues
were analyzed by H&E staining (n = 3). (B) Expression and quantification of PCNA-positive staining in CT26 tumor tissues was examined by IHC using
Image-Pro Plus 6.0 and in three random fields (n = 3). Scale bar, 50 mm. (C) TUNEL staining and the quantification of TUNEL-positive cells in CT26
tumor tissues (n = 3). Scale bar, 20 mm *p < 0.05, **p < 0.01, versus as indicated. ns, not significant.
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IL-12 (20). Further study indicated that IL-2 delivery by engineered

mesenchymal stem cells re-invigorate CD8+ T cells to overcome

immunotherapy resistance in cancer (21). In our study, PO combined

with anti-PD-1 greatly enhanced the secretion of IFN-g (Figure 4A)
and IL-12 (Figure 4B) compared to the control group and the anti-

PD-1 or PO single drug. These results indicated that PO plus anti-

PD-1 elevated antitumor immune activity in tumors, thus resulting in

a promising antitumor immune microenvironment.
PO caused no damage to normal organs

The applications of PO usually cause hyperuricemia, which is

an overlooked cardiovascular and renal risk factor. Epidemiological

and genetic studies have shown an independent role of uric acid in

the risk of coronary artery disease, heart failure, chronic kidney

disease, and cardiovascular mortality (22). In our study, we excised

the main organs, including the heart, lung, kidney, and liver at the

sacrifice of mice (Figures 5A–D). Histological analyses by H&E

staining revealed that all of the organs maintained a normal cell
Frontiers in Oncology 05
morphology and skeletal structure in both the control and

treatment groups, for example, the structure of alveolus in lung

were well-formed and cell morphology in heart, kidney and liver

showed pretty good shape, which indicating no damage. Thereby,

the reliable safety of short-term and low-dose PO gavage.
Discussion

Single agent treatment with anti-PD-1 monoclonal antibody

significantly prolongs median PFS in patients with advanced MSI-

H/dMMR phenotype of colorectal cancer. In the KEYNOTE-177

study, pembrolizumab monotherapy extended the median PFS

compared to chemotherapy and/or targeted therapy (16.5 months

vs 8.2 months). But the vast majority of colorectal tumors are MSS/

pMMR phenotype, a typical “cold tumor” (23), which is not

sensitive to single anti-PD-1/PD-L1 monoclonal antibody

therapy. Thus, identifying optimal combinatorial strategies to

enhance the efficacy of anti-PD-1/PD-L1–based immunotherapy

is important research to undertake to combat MSS CRC.
FIGURE 3

Combination of PO with anti-PD-1 blockade substantially reduced regulatory T (Treg) cells but activated CD4+ and CD8+ cells. Splenic T cells from
CT26-bearing mice were collected and subjected for intracellular staining for Treg cells. (A) Representative images of the gating strategy to define
CD45+CD4+Foxp3+ Treg cells in each group. (B, C) Percentages of CD4+ (B) and CD8+ (C) T cells. The data represent the mean ± SEM of three
mice per group, *p < 0.05, **p < 0.01 versus as indicated. ns, not significant.
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Factors of invalid anti-PD-1/PD-L1 therapy in “cold cancers”

include low tumor mutational burden, poor intrinsic antigenicity of

tumor cells, defective antigen presentation, exhausted T cell functions,

and tumor suppression-associated macrophage accumulation (24).

Immunosuppressive metabolic pathways have become research

hotspots in recent years. For example, the ratio of adenosine and

indoleamine-2,3-dioxygenase accounts for the curative effect of anti-

PD-1/PD-L1 therapy (25). To overcome the antitumor effect, many

clinical trials have sought to establish combinations of anti-PD-1 and

other therapies, such as chemotherapy (26), targeted therapy (27),

radiotherapy (28), or other immunotherapies (12). The latest research

indicated that the combination of a PD-1 antibody, a histone

deacetylase inhibitor (HDACi), and a VEGF antibody could be a

promising treatment regimen for patients with MSS/pMMR advanced

CRC (29). Nevertheless, some patients still cannot tolerate the side

effects of chemotherapy or other treatments in combination therapy,

leading to treatment interruption. In this study, we originally attempted

to discover the impact of soluble uric acid in peripheral blood on the

effects of anti-PD-1/PD-L1 therapy in CRC by constructing a high uric

acid tumor-bearing mouse model. Although no correlation was found,
Frontiers in Oncology 06
following careful analysis of the experimental data, we surprisingly

discovered that PO (250 mg/kg) plus anti-PD-1 effectively inhibited

tumor growth. The mechanism of the curative effect of such

combination treatment may involve the elimination of drug

resistance to anti-PD-1 by PO or a synergistic improvement of the

efficacy of the two drugs. Indeed, it was reported that PO had a limited

antitumor effect.

PO, with amolecular formula of C4H2KN3O4, was first found as an

inhibitor of uricase to induce hyperuricemia in mice and rats because

they synthesize the uricase enzyme to metabolize uric acid to allantoin,

which is different in humans and great apes. In hyperuricemia animal

models, PO tends to be given through oral gavage or intraperitoneally

injected at 250mg to 1000mg/kg for 5 days to 8 weeks (30). Uric acid is

related to the occurrence, development, and treatment of many

diseases, including renal dysfunction, gout, leukemia, coronary heart

disease, and so on; therefore, mice with hyperuricemia often experience

corresponding tissue damage, which is either short term or long term.

Another application of PO is as a gastrointestinal protective agent to

reduce the injury of GI tissues or severe diarrhea caused by 5-FU

treatment, without a decline in antitumor effect. Whether oral gavage
FIGURE 4

PO plus anti–PD-1 promoted antitumor cytokines in tumor tissue (A, B) IFN-g (A) and IL-2 (B) expression in CT26 tumor tissue were examined by
IHC and quatilized by integral optical density (IDO). Scale bar, 50 mm. The data represent the mean ± SEM of three mice per group. *p < 0.05,
**p < 0.01, versus as indicated. ns, not significant.
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of S-1 or intravenous injection of PO and its metabolites in mice, PO is

mainly converted to melamine in the gastrointestinal tract (31).

Even though PO is metabolized in the gastrointestinal tract, its

concentration in intestinal cells is much higher than that of 5-FU.

One possible mechanism of this is that PO (10~50 mg/kg)

competitively inhibits orotate phosphoribosyltransferase and

decreases the levels of 5-fluorouridine-5’-monophosphate (FUMP)

and 5-FU incorporated into RNA by approximately 70% in the

small intestine, as compared to only 0%~20% in bone marrow and

tumors (31). Tetsuro Yamashita et al. found that PO could inhibit

the anticancer-drug-induced decrease in NK activity andmaintain IL-2

production by lymphocytes stimulated by tumor antigens in cancer-

bearing rats (14). Moreover, the maintenance of IL-2 production by PO

may act to preserve antitumor immunity, without disturbing the

induction of cytotoxic T cells in vivo. However, this study compared

the S-1 group with the tegafur (FT) + 5-chloro-2, 4-dihydroxypyridine

(CDHP) group, while the PO group was absent. Moreover, as the

changes in immune cells and cytokines were only analyzed in the

spleen and mesenteric lymph nodes, but not in tumor tissues, no direct

antitumor research of PO was conducted (32). In our study, we set up a
Frontiers in Oncology 07
PO single drug group with 250 mg/kg through oral gavage daily for 15

days. The results showed a limited anti-tumor effect compared to that

observed in the control group and no obvious impact on antitumor

immunity. Moreover, no obvious damage was observed from the H&E

staining of major organs, which seemed to confirm the safety of PO at

250 mg/kg. Surprisingly, PO combined with anti-PD-1 greatly

inhibited the growth of CRC, potentially indicating a unique role in

anti-tumor therapy. Anti-PD-1 has been widely used in various cancers

(33), while PO seems to serve as a sensitizer for anti-PD-1 in CRC

curation. Thus, more low doses of PO should be verified. However,

we could not rule out the impact of elevated uric acid on the efficacy

of anti-PD-1. PO may, through high level of uric acid to enhance the

anti-plastic potency when combined with anti-PD-1.

The TME generates an immunosuppressive niche that limits

the expansion and function of tumor-infiltrating lymphocytes (TILs)

and eventually fails to respond to immunotherapy in the late stage,

while cytokines that have no anti-tumor effect can fill this

immunosuppressive niche (34). Clinical studies consistently support

the view that MSS-type mCRCs are nonpermissive to T effector cell

accumulation and are usually infiltrated with abundant immune
FIGURE 5

PO and/or anti–PD-1 had no damage to normal organs. Paraffin sections of normal organs in CT26 tissues were analyzed by H&E staining. Scale bar,
50 mm. (A-D). H&E staining of heart (A), lung (B), kidney (C), liver (D) tissues in four groups ( n =3).
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suppressors, such as tumor-associated macrophages, myeloid-derived

suppressor cells, and Treg cells (35). Thus, only overcoming these

obstacles can break ICB resistance and elicit anti-tumor immunity. In

our study, PO played a critical role in regulating key antitumor immune

responses through mechanisms such as suppression of Treg cell

proliferation and enhancement of antitumor lymphocyte infiltration

and function, both of which were further enhanced by anti-PD-1. We

also observed that the expression of specific chemokines, such as IFN-g
and IL2, was significantly increased in the combination treatment CRC

group and identified potential biomarkers. Several studies have

suggested that exogenous IL-2 in the TME activates and expands

pre-existing CD8+ TILs (21), while the immune cytokine L19-IL2

combined with single-dose RT resulted in 75% tumor remission and

a 20% curative abscopal effect in the T cell-inflamed C51 CRC model

(36). However, IFN-g could drive PD-L1 immunosuppression (37) and

sustained type I interferon signaling is amechanism of resistance to PD-

1 blockade (24). Further, in solid cancers, the surface expression of

chemokine receptors on activated T lymphocytes does not always

match the cognate ligand expression at the tumor site.

In conclusion, the current study is a proof of concept that PO, in

combination with anti-PD-1, shows an enhanced therapeutic effect in

CRC models by optimizing the antitumor microenvironment that

promoted an immunopermissive microenvironment. Our results also

indicate that the combination of PO and anti-PD-1, which has rarely

been tested in preclinical or clinical studies, may be sufficient to

appropriately reprogram the immune microenvironment and

enhance immunotherapy efficacy. These findings prompt future

studies of this combination therapy in CRC or other cancers,

which may represent a potential strategy to broaden the benefit of

anti-PD-1/PD-L1 treatment, especially for those who inability to

tolerate chemotherapy or targeted therapy. Future studies should

establish the extent of the sustained beneficial and adverse effects of

long-term administration of PO plus anti-PD-1, especially in

humanised or clinical models. The direct mechanism by which PO

serves to increase the efficacy of PD-1 monoclonal antibody remains

to be elucidated. Potential target drugs should avoid hyperuricemia or

other harmful effects of PO. Our findings should be validated using

patient-derived tumor xenograft models and biological markers with

promising efficacy in the future.
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