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Cancer is a complex and highly lethal disease marked by unchecked cell

proliferation, aggressive behavior, and a strong tendency to metastasize.

Despite significant advancements in cancer diagnosis and treatment,

challenges such as early detection difficulties, drug resistance, and adverse

effects of radiotherapy or chemotherapy continue to threaten patient survival.

MicroRNAs (miRNAs) have emerged as critical regulators in cancer biology, with

miR-506 being extensively studied and recognized for its tumor-suppressive

effects across multiple cancer types. This review examines the regulatory

mechanisms of miR-506 in common cancers, focusing on its role in the

competing endogenous RNA (ceRNA) network and its effects on cancer cell

proliferation, apoptosis, and migration. We also discuss the potential of miR-506

as a therapeutic target and its role in overcoming drug resistance in cancer

treatment. Overall, these insights underscore the therapeutic potential of miR-

506 and its promise in developing novel cancer therapies.
KEYWORDS
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1 Introduction

Cancer is a terrible disease, and cancer cells usually proliferate in an uncontrolled

manner. Cancer cells demonstrate invasiveness and metastasis during proliferation, leading

to serious consequences (1, 2). As the second leading cause of death globally, cancer

treatment has always posed an enormous challenge. Current approaches to cancer

management include surgery, chemotherapy, radiation therapy, targeted therapies, and

their combinations of these. However, despite advancements in traditional treatment

approaches and the emergence of new treatments, the cancer-related mortality rate
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continues to increase (3, 4). The main challenges currently faced in

cancer treatment include difficulties in detecting and diagnosing

early-stage cancer, susceptibility to metastasis, increased drug

resistance, and individual variations during treatment. Therefore,

actively exploring new approaches to the diagnosis and

management of cancer is of great importance.

MicroRNAs (miRNAs) are a class of endogenous, highly

conserved, non-coding single-stranded RNA molecules, typically

consisting of 18 to 25 nucleotides in length (5, 6). They primarily

function to regulate the stability of mRNA for protein-coding genes

negatively. In most cases, miRNAs promote the degradation of

target mRNA or reduce its proper translation initiation by binding

to complementary sequences within the 3′ untranslated region

(UTR) (4). The discovery of the first miRNA, lin-4, in 1993

unveiled a novel mechanism of gene regulation (7). An increasing

body of research has demonstrated that dysregulation of miRNAs is

closely associated with the onset and progression of various human

diseases (8, 9), especially in cancer (10). miRNAs have now been

widely recognized as tumor suppressors or oncogenes in numerous

human malignancies, playing pivotal roles in cancer development

and progression by regulating multiple signaling pathways and

cellular functions (10, 11).

MicroRNA-506 (miR-506) is located on the q27.3 locus of the X

chromosome (chrXq27.3) (12). This locus houses a key miRNA

cluster containing 30 mature miRNAs, which are further

categorized into two groups according to their genomic location:

miR-506-514 and miR-888-892, with miR-506 being the most well-

known member of this cluster (13). According to the source, miR-

506 is classified as 5p or 3p, with miR-506-3p holding a prominent

place in miR-506 (14). Recent preclinical studies have highlighted

the tumor-suppressive potential of miR-506 across multiple cancer

types, positioning it as a promising candidate for clinical translation

but occasionally displaying oncogenic properties depending on the

cancer type and molecular targets. miR-506 inhibits hepatocellular

carcinoma (HCC) cell proliferation and tumorigenicity by targeting

Rho-associated protein kinase 1 (ROCK1), which is upregulated in

HCC tissues and inversely correlated with miR-506 levels,

supporting miR-506 mimics as a therapeutic strategy (15). miR-

506 suppresses Non-Small Cell Lung Cancer (NSCLC) progression

by regulating Tubby-like protein 3 (TULP3), inducing

mitochondrial apoptosis, and in vivo studies confirm its ability to

reduce tumor growth, highlighting its role in NSCLC therapy (16).

miR-506-3p targets MTMR6, inhibiting cell proliferation and

promoting apoptosis. Its downregulation in ovarian tumors

underscores its potential as a therapeutic target (17). Conversely,

in colorectal cancer (CRC), miR-506 inhibits NR4A1, an orphan

nuclear receptor driving oncogenic signaling (18). In breast cancer

(BC), miR-506 modulates the specificity protein (SP)1/SP3 to

demethylate the tumor-suppressive lncRNA MEG3, thereby

inhibiting metastasis (19). These distinct targets underscore the

need for cancer-specific mechanistic studies. While miR-506 is

often recognized for its tumor-suppressive functions, limited

evidence suggests it can also exhibit pro-cancer effects in specific

tumor types. In melanoma, miR-506 has been identified as part of

the miRNA-506-514 cluster, critical in initiating melanocyte
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transformation and promoting tumor growth. The overexpression

of miR-506 in melanoma models has been linked to enhanced

tumorigenicity, suggesting its potential as an oncogenic driver in

this context (14). miRNA-506 expression is elevated in the plasma

of esophageal squamous cell carcinoma (ESCC) patients compared

to healthy individuals. It correlates with disease severity indicators,

which exhibit diagnostic significance for ESCC and are associated

with patient prognosis, suggesting its potential as a molecular

marker for both diagnosis and outcome prediction in ESCC (20).

Compared to miR-506-3p, miR-506-5p has been investigated in

only a limited number of cancer types, including gastric cancer

(GC) and glioma (21–24).

Despite the increasing research on miR-506 due to its recognized

importance in cancer regulation, several unmet needs remain in its

therapeutic application. The expression pattern and function of miR-

506 are complex and, at times, contradictory, highlighting its distinct

role across different cancer types. Growing evidence suggests that

miR-506 primarily functions as a tumor suppressor. However, miR-

506 exhibits oncogenic properties in specific contexts, depending on

the cancer type and cellular environment. For instance, miR-506

promotes tumorigenesis in uveal melanoma (UM) (25) and

contributes to chemoresistance in CC (26). Furthermore, tumor

heterogeneity and microenvironmental factors, such as metabolic

reprogramming, immune modulation, and its interactions with other

non-coding RNAs, such as those involved in competing endogenous

RNA (ceRNA) network, further modulate miR-506’s role in cancer

progression (17). This functional paradox complicates the

development of miR-506-based therapies, as their therapeutic

efficacy varies across cancer types and microenvironments. miR-

506 simultaneously targets multiple mRNAs, exerting broad

regulatory effects across multiple genes (27). This characteristic

makes miR-506 a promising candidate for treating multifactorial

diseases such as cancer. However, its extensive regulatory activity also

increases the risk of off-target effects, potentially disrupting normal

cellular function (28). Due to its inherent instability and poor tissue

specificity, effective delivery remains a significant challenge. Naked

miR-506 molecules undergo rapid degradation in circulation,

reducing their bioavailability and limiting their therapeutic

potential (29). Exosome- and nanoparticle-based miRNA delivery

systems have shown potential in enhancing miRNA stability and

targeting specificity (30, 31). Despite these advancements, optimized

delivery strategies are still needed to ensure safe and effective tumor-

specific uptake while minimizing toxicity. The clinical validation of

miR-506-based therapies remains limited, necessitating further large-

scale, multicenter clinical studies to assess their safety, efficacy, and

potential integration into standard cancer treatments (32).

This review distinguishes itself from previous studies by

providing a comprehensive and up-to-date perspective on the role

miR-506 in cancer therapy. Unlike previous reviews that primarily

focused on its tumor-suppressive function, this review

systematically examines the oncogenic and tumor-suppressive

roles of miR-506, offering insights into the underlying

mechanisms contributing to this paradox. Furthermore, this

review highlights the influence of the ceRNA network on miR-

506 function, an aspect that has not been extensively explored in
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previous studies. This review provides a detailed analysis of the

molecular mechanisms through which miR-506 modulates drug

resistance. Additionally, it discusses the challenges associated with

the development of miRNA-based therapies. It aims to elucidate the

potential of the miR-506 family as a therapeutic target in cancer,

thereby advancing the development of more effective and safer

cancer treatment strategies.
2 ceRNA network regulated by miR-
506 in cancer

The ceRNA network is a relatively novel concept in molecular

biology that describes how different RNA species—primarily

messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs),

and circular RNAs (circRNAs)—interact with miRNAs in a manner

that influences gene expression (33). ceRNAs are endogenous

transcripts that harbor shared miRNA response elements (MREs)

and regulate one another by competing for binding to shared

miRNAs, thereby reducing the availability of miRNAs for their

target mRNAs (33, 34). Since miRNAs typically function as post-

transcriptional repressors by targeting mRNAs for degradation or

translational inhibition, ceRNA competition can modulate mRNA

stability and translation, ultimately affecting key cellular processes

such as proliferation, differentiation, and apoptosis (35).

The interplay between ceRNAs is orchestrated by shared miRNAs,

forming a finely balanced regulatory network (33). Dysregulation of

ceRNA networks in cancer is often driven by genetic mutations,

epigenetic alterations, or aberrant RNA expression, disrupting critical

oncogenes and tumor suppressors (36). Increasing evidence suggests

that ceRNAs play a crucial role in tumorigenesis by modulating the

expression of oncogenes and tumor suppressors through miRNA-

mediated interactions (37). Functionally, ceRNAs in cancer can be

categorized into the following roles (34) (1): regulation of cancer cell

proliferation, migration, and invasion. For instance, TINCR functions

as a ceRNA by sequestering miR-544a from its target gene FBXW7,

thereby suppressing lung cancer cell proliferation and invasion (38).

Conversely, circ-TLK1 and lncRNA HOSD-AS1 enhance HCC

progression by sponging miR-138-5p and miR-130a-3p, respectively,

leading to upregulation of SOX4, a key oncogene that promotes

proliferation, invasion, and metastasis (39) (2). modulation of

epithelial-mesenchymal transition (EMT). lncRNA CCAT1 functions

as a ceRNA to promote EMT in gliomas and retinoblastomas, thereby

facilitating tumor progression (40, 41). In contrast, lncRNA CASC2

acts as a tumor suppressor by inhibiting HCC cell migration, invasion,

and EMT progression through miRNA-mediated regulation (42) (3).

promotion or suppression of tumor initiation. RSU1P2, for example,

promotes cervical cancer development by competitively binding to the

shared microRNA let-7a, thereby enhancing oncogene expression (43).

In contrast, circRNA Cir-ITCH exerts tumor-suppressive effects by

functioning as a ceRNA to inhibit bladder cancer progression (44). (4)

regulation of chemotherapeutic sensitivity and resistance. lncRNA

CCAT1 enhances HCC cell proliferation and reduces oxaliplatin-

induced apoptosis, thereby contributing to chemoresistance (45).

Conversely, lncRNA CASC2 increases the sensitivity of prostate
Frontiers in Oncology 03
cancer cells to docetaxel, highlighting its potential as a therapeutic

target for overcoming drug resistance (46).

Emerging research has revealed that miR-506 not only directly

targets mRNAs to regulate cancer progression but also participates

in ceRNA networks by interacting with circRNAs and lncRNAs.

These interactions create a multifaceted regulatory framework that

amplifies miR-506's role in cancer biology (47). Below, we discuss

the involvement of circRNAs and lncRNAs in miR-506-mediated

ceRNA networks and their implications in cancer.

circRNAs are non-coding RNA molecules distinguished by

their strong stability and have recently gained recognition as

critical components of gene expression networks (48, 49).

circRNAs possess multiple conserved miRNA binding sites and

can function as efficient miRNA sponges that specifically adsorb

miRNAs, thereby modulating their inhibitory effects on target genes

(50). A growing body of evidence supports the notion that

circRNAs, functioning as ceRNAs, dominate the regulation of the

circRNA-miRNA-mRNA signaling axis (51). For instance, in

NSCLC, circRNAFOXO3 (52) and circRNA100565 (53) can

inhibit miR-506 by exerting a sponge effect, thereby up-regulating

high mobility group box B3 (HMGB3) and high mobility group box

A2 (HMGA2) and promoting disease progression. Additionally,

has-circRNA0016788 can enhance HCC progression by modulating

miR-506-3p and increasing Poly ADP-ribose Polymerase family 14

(PARP14) expression (54). Snail family transcriptional repressor 2

(Snail2) and yes-associated protein 1 (YAP1) are known oncogenes

that are up-regulated in cancer (55, 56), circRNAPCNX serves as a

sponge for miR-506 and inhibits the anti-cancer activity of miR-506

via the circRNAPCNX-miR-506-Snail2/YAP axis in HCC (57).

Another study shows that circRNASYPL1 can down-regulate

miR-506 and up-regulate zeste homolog 2 (EZH2) enhancer,

facilitating cancer cell metastasis in HCC and exacerbating disease

progression (58). As mentioned earlier, studies have shown that

miR-506 can also act synergistically with other miRNAs as a target

for ceRNA. For example, in CRC, circRNAPACRGL stimulates the

growth, invasion, and migration of cancer cells through the miR-

142-3p/miR-506-3p-TGF-b1 axis while also influencing neutrophil

differentiation from N1 to N2, thereby affecting apoptosis (59).

lncRNAs, similar to circRNAs, have been recognized for their

capacity to modulate miR-506 function in cancer through a ceRNA

mechanism. lncRNAs, a class of non-coding transcripts exceeding

200 nucleotides in length, account for approximately 60% of the

total human transcripts (60). The ongoing advancement of

biotechnology in recent years has underscored that lncRNAs play

a significant role in regulating cancer-related processes, including

tumor cell proliferation, apoptosis, autophagy, EMT, and drug

resistance (61). For instance, LINC01433, by targeting miR-506-

3p, has been shown to enhance the proliferative, migratory, and

invasive properties of nasopharyngeal carcinoma cells (62). In

gliomas, lincRNA00963 reduces the expression level of miR-506,

thereby affecting the downstream target protein branched-chain

Amino Acid Transaminase 1 (BCAT1) and weakening the

inhibitory effect of miR-506 on tumors (63). Huang et al.

demonstrated through clinical samples and cell experiments that

lncRNANEAT1 can exacerbate cancer progression by acting as a
frontiersin.org
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sponge for miR-506-3p (64). In summary, within the ceRNA

network, circRNAs and lncRNAs typically serve as effective

“sponges” for miRNAs, sequestering them from target mRNAs to

indirectly regulate gene expression and influence tumor

progression, including EMT and drug resistance (65). The

relationships among circRNAs, lncRNAs, and miR-506 in

different types of cancer are as follows (Tables 1, 2); Figure 1

shows the ceRNA network of lncRNA or circRNA with miR-506

and corresponding targets in cancer, as well as the direct target of

miR-506.
3 Functions of miR-506 in cancer

3.1 miR-506 and lung caner

Lung cancer remains the predominant cause of cancer-related

mortality globally, with NSCLC accounting for over 85% of cases, and

patients with NSCLC are usually diagnosed at advanced stages (66,

67). Decreased levels of miR-506-3p result in enhanced expression of

coactosin-like protein 1 (COTL1), thereby promoting the progression

of NSCLC (68). Yin et al. demonstrated that miR-506 can promote

cancer cell apoptosis, reduce their activity, and achieve anti-cancer

effects by participating in oxidative stress and targeting Nuclear

factor kappa b (NF-kB) and p65 together (69). The tumor

microenvironment affects the disease progression, including the

changes in peripheral blood vessels. Vascular endothelial growth

factor A (VEGF-A) is a critical cytokine in angiogenesis and is

regulated by signal transducer and activator of transcription 3

(STAT3); alginic acid can lower miR-506 levels to inhibit

angiogenesis, which is consistent with the results of xenograft

experiments (70). Research also indicates that miR-506 can work

synergistically with other miRNAs to impede cancer progression.

Specifically, combination therapy of miR-143 and miR-506

downregulates the levels of cyclin-dependent kinases (CDK) 1,

CDK4, and CDK6 and induces apoptosis in cancer cells, but it

does not affect normal lung fibroblasts. This combination therapy

can usually inhibit the transition of the cancer cell cycle, equivalent to

the effect of clinical cell cycle inhibitors (71); Hossian et al.'s research

also confirms this viewpoint (72). In conclusion, these findings

demonstrate that miR-506 may function as a tumor suppressor in

lung cancer.
3.2 miR-506 and liver cancer

Liver cancer (LC) ranks as the fourth most common cause of

mortality attributed to cancer, with its incidence showing an

upward trend (73). Typically, LC can be broadly categorized into

two types: primary liver cancer and metastatic liver cancer. The

former encompasses various types, including HCC, intrahepatic

cholangiocarcinoma, and mixed liver cancer, with HCC being the

most prevalent (74). Research highlights that miR-506-3p can

inhibit the growth of LC cells and serve as a biomarker for the
Frontiers in Oncology 04
diagnosis and prognosis of LC (75). The Hippo signaling pathway is

significantly linked to the onset of LC, with YAP critically involved

in modulating the response genes within this pathway (76, 77).

Researchers found that miR-506-3p can specifically target the 3'

UTR of YAP, leading to the downregulation of YAP along with its

associated target genes, including cellular myelocytomatosis (c-

Myc) and connective tissue growth factor (CTGF), thereby

inhibiting proliferation in LC cells (78). MiR-506 has been shown

to trigger apoptosis in HCC cells. Deng et al. demonstrated through

experiments that miR-506 restrains HCC cell proliferation in vitro

and tumor growth in vivo. Rho-associated protein kinase 1

(ROCK1), a target that miR-506 may directly target in HCC cells,

has been shown to have an inverse relationship with miR-506-3p

expression levels in HCC tissue. Furthermore, miR-506 is capable of

causing cell cycle arrest and promoting apoptosis in cancer cells

(15). miR-506 also affects the microenvironment around HCC

cells; rapid cancer growth requires an adequate blood supply, and

tumor vascular growth is essential for cancer development (79).

HCC is generally considered a hypervascular tumor because it

exhibits arterial enhancement compared with normal liver

tissue (74). Sphingosine kinase 1 (SPHK1) facilitates cell survival,

proliferation, transformation, and angiogenesis, while miR-506

targets SPHK1 to reduce its expression at the cellular, mRNA,

and protein levels, inhibiting liver cancer angiogenesis (80).

Previous studies show that miR-506 can directly target specific

proteins to inhibit the growth of HCC cells, such as interleukin-8

(IL-8) (81) and STAT3 (82). Moreover, prior research has

demonstrated that the functions of Ras homolog A (RhoA) in

cancer cell migration, apoptosis, and proliferation are critical (83).

The ROCK family contributes to cancer advancement by

modulating cell growth and migration processes (84). miR-506

can modulate LC cell proliferation and apoptosis by influencing

the RhoA/ROCK signaling cascade (85). Additional research

demonstrates that down-regulating the expression of sirtuin1

(SIRT1) may prevent cancer cells from invasively growing and

metastasizing with the combined treatment of miR-124-3p and

miR-506-3p, thereby delaying the development of LC (86).

Summarizing the evidence, there is extensive linkage between LC

and miR-506, suggesting t that miR-506 may serve as a promising

therapeutic target for managing LC.
3.3 miR-506 and osteosarcoma

Osteosarcoma (OS) is a highly malignant bone tumor

predominantly affecting adolescents, with approximately 75% of

patients aged 15 to 25 years (87). Characterized by a tendency for

early metastasis and poor prognosis, OS poses a significant threat to

adolescent health, and searching for new and effective therapeutic

targets is an urgent priority. A growing body of research indicates that

miR-506 functions as an inhibitor of OS initiation and progression

through the modulation of various target genes, and elevated levels of

its expression generally correlate with improved patient survival rates

(55, 88, 89). miR-506 typically exerts inhibitory effects onOS. Yu et al.
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TABLE 1 lncRNA-mediated crosstalk of miR-506.

Cancer
type

lncRNA Expression
of miR-506

Target mRNA
and its expression

Pathway or axis Results References

Nasopharyngeal
carcinoma

LINC01433 ↓ LINC01433/miR-506-3p axis promote cancer cell
proliferation, migration
and invasion

(62)

Non-small
lung cancer

LAMTOR5-
AS1AS1

↓ E2F6, ↑ LAMTOR5-AS1/miR-506-3p/
E2F6 pathway

promote cancer cell
proliferation, migration
and metastasis
suppress cancer cell
apoptosis

(188)

UCA1 ↓ COTL1, ↑ UCA1/miR−506−3p/COTL axis promote cancer cell
proliferation, cloning
and metastasis
suppress cancer cell
apoptosis

(68)

Hepatocellular
carcinoma

HOXA11-AS ↓ Slug, ↑ HOXA11-AS/miR−506−3p/
Slug axis

promote cancer cell
proliferation, invasion
and EMT

(144)

KCNQ1OT1 ↓ FOXQ1, ↑ KCNQ1OT1/miR-506-3p/
FOXQ1 axis

promote cancer cell
migration, invasion
and EMT

(189)

MIR4435-2HG ↓ TGFB1, ↑ CXCL1/MIR4435-2HG/miR-
506-3p/TGFB1 axis

promote tumorigenesis
promote cancer cell
migration and invasion

(190)

Osteosarcoma FGD5-AS1 ↓ RAB3D, ↑ FGD5-AS1/ miR-506-3p/
RAB3D axis

promote cancer cell
proliferation
and migration

(191)

Ovarian cancer XIST ↓ FOXP1, ↑ XIST/miR-506-3p/FOXP1 axis promote cancer cell
proliferation and
autophagy suppress
cancer cell
apoptosis

(192)

MALAT1 ↓ iASPP, ↑ MALAT1/miR-506/IASPP axis promote cancer cell
growth and
DNA synthesis

(193)

DQ786243 ↓ CREB1, ↑ DQ786243/miR-506-3p/
CREB1 axis

promote cancer cell
proliferation, migration,
invasion colony
formation and wound
healing suppress cancer
cell
apoptosis

(194)

NEAT1 ↓ LIN28B/NEAT1/ miR-506 axis promote cancer cell
proliferation, migration
and invasion

(195)

LINC01308 ↓ LINC01308/miR-506 axis promote cancer cell
migration and invasion

(196)

Prostate cancer PCGEM1 ↓ TRIAP1, ↑ PCGEM1/miR-506-3p/
TRIAP1 axis

promote cancer cell
proliferation, migration
and invasion

(197)

Neuroblastoma DLX6-AS1 ↓ STAT2, ↑ DLX6-AS1/miR-506-3p/
STAT2 axis

promote cancer cell
growth, proliferation,
cell cycle and glycolysis

(198)

Glioma LINC01410 ↓ NOTCH2, ↑ MYC/LINC01410 miR-506-3p/
NOTCH2 axis

promote cancer cell
proliferation
suppress cancer cell
apoptosis

(199)

(Continued)
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demonstrated through clinical sample studies and cell experiments

that an increase in miR-506 levels can reduce the expression of Snail2

(55). This transcriptional repressor can promote EMT and,

consequently, accelerate the metastasis of cancer cells (90).

Additionally, astrocyte elevated gene-1 (AGE-1) has been

confirmed as a downstream effector of miR-506; this microRNA

can suppress AGE-1 expression via the wingless-type MMTV

integration site family/beta-catenin (Wnt/b-catenin) signaling

pathway to exert its inhibitory effect on OS cells, which was

validated in an OS mouse model (89). Further studies have also

pointed out that miR-506 impedes the aggressive behavior of OS by
Frontiers in Oncology 06
targeting Ras-related protein Rab-3D (RAB3D) (91), S-phase kinase-

associated protein 2 (Skp2) (92), or SPHK1 (88). Similarly, the NF-kB
signaling pathway is significant in various diseases, including cancer;

IL-1b can reduce the expression of miR-506 through this pathway,

leading to increased Jagged 1 (JAG1) expression and exacerbating the

progression of OS (93). However, most clinical samples related to OS

research have not been conducted in specific experiments based on

different tumor stages. Moreover, many studies onmiR-506 are still at

the experimental stage and lack extensive clinical validation. These

limitations challenge the clinical application of miR-506 in diagnosis

and treatment.
TABLE 1 Continued

Cancer
type

lncRNA Expression
of miR-506

Target mRNA
and its expression

Pathway or axis Results References

SNHG17 ↓ CTNNB1, ↑ YY1/SNHG17/ miR-506-3p/
CTNNB1/Wnt/b-catenin
signaling pathway

promote cancer cell
growth suppress cancer
cell
apoptosis

(200)

LINC00963 ↓ BCAT1, ↑ LINC00963/miR-506/
BCAT1 axis

promote tumorigenesis
promote cancer cell
proliferation, cell cycle
progression, migration,
and invasion

(63)

FOXD2-AS1 ↓ CDK2, cyclinE1, ↑
P21, MMP7, MMP9, ↓

FOXD2-AS1/miR-506-5p axis promote cancer cell
proliferation, migration,
metastasis and EMT

(21)

Esophageal
squamous
cell carcinoma

BBOX1-AS1 ↓ EIF5A, ↑ BBOX1-AS1/miR-506-5p/
EIF5A/PTCH1/Hedgehog
signaling pathway

promote cancer cell
proliferation
and stemness

(22)

Pancreatic
cancer

NEAT1 ↓ NEAT1/miR-506-3p axis promote cancer cell
proliferation and cell
cycle progression
suppress cancer cell
apoptosis

(64)

Gastric cancer SNHG15 ↓ SNHG15/miR-506-5p axis promote cancer cell
proliferation, migration,
invasion
suppress cancer cell
apoptosis

(24)

LINC01232 ↓ PAK1, ↑ LINC01232/miR-506-5p/
PAK1 axis

promote cancer cell
migration, invasion
and EMT

(23)

Oral squamous
cell carcinoma

Kcnq1ot1 ↓ SYPL1, ↑ YY1/Kcnq1ot1/miR-5063p/
SYPL1 axis

promote cancer cell
viability, colony-
forming ability,
migration and invasion
suppress cancer cell
apoptosis

(201)

Retinoblastoma HOXA11-AS ↓ NEK6, ↑ HOXA11-AS/miR-506-3p/
NEK6 axis

promote cancer cell
proliferation and cell
cycle progression
suppress cancer cell
apoptosis

(202)
↓, Decrease or downregulation; ↑, Increase or upregulation.
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3.4 miR-506 and colorectal cancer

Globally, CRC is categorized as the third most frequently

occurring malignant neoplasm and accounts for the second-

highest number of cancer-related fatalities (94). Researchers have
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identified that several genes targeted by miR-506 impact the

biological behavior of CRC, including EZH2, which is implicated

in carcinogenesis as an oncogene (95). Research by Zhang et al.

confirmed that miR-506 is significantly downregulated in CRC

tissues and cells through both in vivo and in vitro studies. By
TABLE 2 circRNA-mediated crosstalk of miR-506.

Cancer
type

circRNA Expression
of miR-506

Target mRNA and
its expression

Pathway
or axis

Results References

Non-small
lung cancer

circFOXO3 ↓ HMGB3, ↑ circFOXO3/miR-
506-3p/
HMGB3 axis

promote cancer cell
proliferation, migration, and invasion
promote tumor growth

(52)

circ_100565 ↓ HMGA2, ↑ circ_100565/miR-
506-3p/
HMGA2 axis

promote cancer cell
proliferation, migration, invasion
promotes tumor growth

(53)

Hepatocellular
carcinoma

hsa_circ_0016788 ↓ PARP14, ↑ hsa_circ_0016788/
miR-506-3p/
PARP14 axis

promote tumor growth promote
cancer cell glycolysis metabolism, cell
vitality, proliferation, colony
formation, and invasion suppress
cancer cell
apoptosis

(54)

circPCNX ↓ PCNX, ↑ circPCNX /miR-
506/ PCNX axis

promote cancer cell vitality (57)

circSYPL1 ↓ EZH2, ↑ CircRNASYPL1/
miR-506-3p/
EZH2 axis

promote cancer initiation,
development progression and invasion

(58)

circHIPK3 ↓ PDK2, ↑ circHIPK3/miR-
124 or miR-506/
PDK2 axis

promote tumorigenesis promote
cancer cell
proliferation and invasion

(180)

Colorectal
cancer

circPACRGL ↓ TGF-b1, ↑ miR-142-3p or
miR-506-3p/TGF-
b1 axis

promote cancer cell
proliferation, migration, and invasion

(59)

circPTK2 ↓ AKT2, ↑ circPTK2/miR-
506-3p/AKT2 axis

promote cancer cell
proliferation, migration, and invasion

(203)

circ-MALAT1 ↓ KAT6B, ↑ miR-506-3p/
KAT6B axis

promote cancer cell
proliferation, migration, and EMT

(204)

Ovarian cancer circATL2 ↓ NFIB, ↑ circATL2/miR-
506-3p/NFIB axis

promote the resistance of OC to PTX
promote cancer cell colony formation
suppress cancer cell
apoptosis

(145)

Prostate cancer circMID1 ↓ MID1, ↑ S100A9/
circRNAMID1/
miR-506-3p/
MID1 axis

promote cancer cell
proliferation, migration, and invasion

(205)

Cervical
cancer

circRNA-000284 ↓ Snail2, ↑ circRNA-000284/
MiR-506/
Snail2 axis

promote cancer cell
proliferation and invasion

(206)

Osteosarcoma circUBAP2 ↓ SEMA6D, ↑ circUBAP2/miR-
506-3p/
SEMA6D axis

promote cancer cell
proliferation and invasion promote the
resistance of OC to cisplatin suppress
cancer cell
apoptosis

(207)

Triple-negative
breast cancer

circ_0008784 ↓ CTNNB1, ↑ circ_0008784/Wnt/
b-catenin pathway
circ_0008784/miR-
506-3p/
CTNNB1 axis

promote cancer cell proliferation
suppress cancer cell
apoptosis

(208)
↓, Decrease or downregulation; ↑, Increase or upregulation.
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directly targeting the 3' UTR of EZH2, miR-506 reduces its level and

subsequently exerts an anti-tumor response mediated by the Wnt/

b-catenin signaling pathway (96). Ten-eleven translocation (TET) is

highly expressed in CRC; miRNA-506 targets TETs and regulates

the levels of TET1, TET2, and TET3, ultimately inhibiting the

proliferation and invasion of CRC cells in vivo and in vitro (97).

Furthermore, overexpression of miR-506 has been shown to inhibit

cancer cell viability, invasion, and colony formation ability of CRC

cells; moreover, miR-506 also targets laminin subunit gamma-1

(LAMC1), which is an important extracellular matrix (ECM)

regulator to slow down cell migration and then reduce the

metastasis of cancer cells (98). Other studies have similarly

suggested a suppressive role of miR-506-3p in CRC, such as its

targeting of cystatin-p1 (CSTP1) (30) and EZH2 (99). Combination

therapy is also an effective treatment; miR-124 and miR-506 jointly

target DNA (cytosine-5)-methyltransferase 3B (DNMT3B) and

dynamin-1 (DNM1) and reduce global DNA methylation to

reduce the effect of CRC (100). The sensitivity of radiotherapy

and chemotherapy also reflects the inhibitory effect of miR-506 on

CRC. Studies have shown that, based on the novel network-based

method, radiosensitive patients exhibit significantly higher

expression levels of hsa-miR-506-3p than radioresistant patients,

offering a new foundation for future CRC treatment (101). Early

cancer diagnosis, timely surgical intervention, and effective disease

control are crucial. It has been found that miR-506 is helpful for

early diagnosis of CRC (102). Although miR-506 shows significant

anti-cancer effects, numerous genetic factors and signaling

cascades contribute to CRC onset and progression, so the

single-target action of miR-506 may not fully control cancer
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progression. Further research is essential to uncover the precise

mechanisms and specific gene targets through which miR-506

influences CRC.
3.5 miR-506 and ovarian cancer

The incidence of OC is notably high among women. A

significant proportion of patients are diagnosed at an advanced

stage of the disease, leading to high mortality (103). In the past few

years, several miR-506 target genes affecting the biological behavior

of OC have been identified. Sun et al. observed a relationship

between miR-506 expression and increased levels of E-cadherin

(E-cad), along with the downregulation of vimentin (VIM), N-

cadherin (N-cad), and snail homolog 2 (SNAI2). miR-506 can bind

to the specific binding site of VIM, affecting the migration and drug

resistance of epithelial ovarian cancer (EOC). These findings were

confirmed by studies on clinical samples and animal experiments

(104). Another study shows that miR-506-3p can target

myotubularin-related protein 6 (MTMR6) to prevent cancer cells

from proliferating in OC tissues, arresting the cells in the G0/G1

phase and thereby inducing apoptosis (17). A similar study

indicates that miR-506 can target EZH2, reducing its expression

and inhibiting OC (95). Other studies have also confirmed this

conclusion (105). The CDK4/6-forkhead box m1 (FOXM1)

pathway is a crucial signal network frequently activated in high-

grade serous OC cases (106). Liu et al. demonstrated that miR-506

might suppress this pathway through in vivo and in vitro studies

and clinical sample investigations, induce cancer cell apoptosis, and
FIGURE 1

The ceRNA network of miR-506 family members and their target genes. ( ) = miR-506 family members; ( ) = circRNAs; ( ) =

lncRNAs; ( ) = target genes.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1524763
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mao et al. 10.3389/fonc.2025.1524763
inhibit tumor progression in OC (107). Sirtuin1 (SIRT1), a

deacetylation-regulating intracellular protein, activates tumor

suppressor protein p53 to control tumor growth (108). In OC,

miR-506-3p has been observed to interact with the 3'UTR of SIRT1

and reduce its expression, while studies confirm that elevated

expression of SIRT1 promotes the proliferation of OC cells and

inhibits apoptosis (109). Through integrated analyses, Yang et al.

observed that miR-506 may be regulated in serous OC. Further,

they confirmed at the cellular level that miR-506 can target SNAI2,

a transcriptional repressor of E-cadherin, blocking EMT induced by

transforming growth factor b (TGF-b). miR-506 enhances the

expression of E-cadherin, reduces the expression of SNAI2 and

VIM, and inhibits cancer cell migration and invasion (110).

Research has also reported that miR-506 can directly target

RAD51, reduce the expression of RAD51, regulate PARP-induced

DNA damage repair, and improve chemosensitivity to cisplatin

(111). Ultimately, the beneficial effects miR-506 on OC are

extensive, encompassing inhibition of cancer cell migration,

promotion of apoptosis, and enhancement of chemosensitivity,

providing a solid foundation for future OC treatments.
3.6 miR-506 and other types of cancer

he impact of miR-506 on various cancer types has become

increasingly recognized in the scientific community. The

mechanisms of action and associated target genes of the miR-506

family in common cancers are illustrated in Figure 2. In particular,

miR-506-3p has been shown to suppress the proliferation of

papillary thyroid cancer (PTC) cells by targeting YAP1 (56).

YAP1 is a known promoter of tumor progression (112) and acts

as a carcinogen (113). YAP1 is the direct target gene of miR-506-3p,

which targets YAP1 3’UTRs to down-regulate YAP1, allowing

exposure of the CDK2/Cyclin E1 complex. Consequently, miR-

506-3p is believed to inhibit the proliferation of PTC by suppressing

YAP1 and modulating the YAP1-CDK2/Cyclin protein complex,

which is involved in cell cycle control (56). YAP1 is an important

target gene for many malignant cancers, such as HCC (78),

papillary thyroid cancer (56), GC (114), and esophageal

squamous cell carcinoma (ESCC) (115). In ESCC, YAP activates

its downstream target SOX9 through TEA domain transcription

factor 1 (TEAD1)-mediated binding transcription, targeting YAP’s

miRNA, including miR-506-3p. This results in SOX9 inducing

miR-506-3p, inhibiting YAP expression post-transcriptionally,

creating a negative feedback mechanism (115). Other studies

show that miR-506 functions as an oncosuppressive microRNA in

nasopharyngeal carcinoma, exerting its tumor-suppressing activity

primarily by suppressing Forkhead box protein Q1 (FOXQ1)

expression (116). Similarly, in cervical cancer tissues, a reduction

in miR-506 levels has been observed (117), which is negatively

correlated with FOXQ1 expression. High expression of FOXQ1

enhances the migration and metastatic abilities of cervical cancer

cells, promotes epithelial-mesenchymal transition (EMT), and

decreases chemosensitivity. Based on these findings, there may be

implications for developing treatment strategies for cervical cancer
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(118). Gli3 is a hedgehog pathway transcription factor. Wen et al.

found that in cervical cancer, miR-506 can target Gil3, arrest cell

cycle progression at the G1/S phase, curb proliferation, and induce

apoptosis (119). Studies have shown that in prostate cancer cell lines

(DU145 and PC-3), miR-506-3p expression is decreased, and its

high expression inhibits tumor progression in vitro. At the same

time, increased levels of N-acetylgalactosaminyltransferase 4

(GALNT4) negate the inhibitory effect of miR-506-3p on tumors

(120). In addition, miR-506 targets ROCK1 and downregulates its

expression, inhibiting neuroblastoma tumor growth (121). The

association between BC survival and EMT has been widely

confirmed in numerous studies, where miR-506 is shown to

attenuate BC progression by regulating the EMT process (122, 123).

In cancer, the miR-506 family usually plays an inhibitory role;

however, some research indicates that miR-506 may facilitate the

progression of certain cancers. The miR-506-514 cluster is a

collection of microRNAs on chromosome chrXq27.3, with miR-

506-3p as its most prominent member (13). UM is the most

prevalent primary intraocular malignancy in adults (124). It

originates from melanocytes in the uveal tract, specifically in the

choroid, iris, or ciliary body (125). Research suggests that the miR-

506-514 cluster functions as a tumor suppressor in UM. Falzone

et al. conducted a clinical sample study and divided the patients into

T3-T4 vs. T1-T2, categorizing them as high-grade and low-grade

groups. Compared with low-grade or surviving UM patients, the

expression of mRNAs within the miRNA-506-514 cluster was

significantly reduced in high-grade or deceased individuals (126).

Nevertheless, findings from other relevant research studies indicate

otherwise. Streicher et al. observed overexpression of the miR-506-

514 cluster in melanoma patient tissues and cell lines, including

SKMEL-2, SKMEL-5, A375, MALME-3M, and RPMI-7951.

Inhibition of this cluster was shown to induce apoptosis in

melanoma cells. Moreover, the sub-cluster effect was more

evident than the whole cluster's (14). In addition, the role of miR-

506 seems to be different between primary UM and metastatic

melanoma. Specifically, miR-506 levels were elevated in patients

with metastatic UM compared to those with primary UM,

suggesting its potential as an early biomarker in disease

progression (127). Melanoma is a biologically distinct malignancy

that exhibits a strong response to immunotherapy, unlike most

other solid tumors (128). Additionally, the anterior segment of the

eye, particularly the iris, is more exposed to ultraviolet (UV)

radiation, leading to DNA damage, distinguishing UM from other

cancers (129). Tong et al. (26) reported that miR-506 is associated

with chemoresistance in CRC. In the SW1161 CRC cell line, miR-

506 induces resistance to hydroxy camptothecin by suppressing the

expression of peroxisome proliferator-activated receptor alpha

(PPARa), thereby reducing the drug’s efficacy. miR-506 can

function as both a tumor suppressor and an oncogene in different

cancer types, with several key factors contributing to this dual role.

miR-506 exhibits tissue-specific expression patterns, which may

determine whether it acts as a tumor suppressor or an oncogene.

miR-506 is regulated by ceRNA networks, including lncRNAs and

circRNAs, which act as "sponges" to modulate its availability (47).

Its functional accessibility may vary significantly across different
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cancer types. Additionally, the tumor microenvironment, including

immune infiltration, hypoxia, and stromal interactions, further

regulates miR-506 activity, altering its downstream effects (28).

Genetic variation is another major factor contributing to this

paradox, encompassing structural genetic alterations such as

chromosomal deletions/amplifications and mutations (130),

defects in miRNA biogenesis mechanisms, and epigenetic

changes, such as altered DNA methylation (131), which vary

across different cancer types. Furthermore, no universally

accepted protocol for miRNA sample collection, processing,

detection, quantification, or therapeutic application leads to

inconsistencies in research findings across different laboratories.

As mentioned above, the role of the miR-506 family across various

cancer types should be considered more comprehensively.

Including more clinical samples and conducting more detailed

cell and animal experiments would make experimental results

more reliable. More specific studies should be performed

according to different cancer types. Although the roles miR-506

in cancer have been partially identified, its exact across various

cancer types remains incompletely understood.
4 miR-506 and drug resistance

Chemotherapy is a primary therapeutic method for the

treatment of cancer, typically used as a monotherapy or in

combination with surgery or radiation therapy to treat cancer

patients (132). Chemotherapy mainly includes classic cytotoxic

and molecular-targeted drugs (133), but drug resistance

constantly challenges their efficacy. miRNAs play a significant

role not only in cancer progression but also in modulating

resistance to anticancer drugs. Since 2013, Blower et al. have

elucidated the role of miRNAs in modulating chemotherapeutic

responsiveness and resistance (134). Subsequent investigations have

revealed that miRNAs can counteract chemoresistance by

modulating genes implicated in drug resistance, optimizing drug

targets, inhibiting cell migration, inducing cell apoptosis, and

regulating the tumor microenvironment (135–137). As a

microRNA with intricate regulatory functions, miR-506 is a key

modulator in counteracting resistance to anticancer therapies. miR-

506 is generally downregulated in drug-resistant tumors, whereas its

upregulation has been shown to enhance tumor cell sensitivity to

chemotherapeutic agents (138). The ability of miR-506 to sensitize

drug-resistant cancer cells to chemotherapy is multifaceted,

involving the regulation of cell cycle progression, apoptosis, drug

transport, DNA repair, and EMT (139). Notably, the interaction

between ceRNAs and miR-506 is pivotal in this process.

EMT is a critical biological process in which epithelial cells

undergo phenotypic transition, characterized by the loss of cell-cell

adhesion and the acquisition of mesenchymal traits, resulting in

increased motility and invasiveness of cancer cells (140). In addition

to its role in tumor progression, EMT is also implicated in

chemoresistance (136, 141). In OC, miR-506 suppresses SNAI2-

mediated EMT, thereby restricting the acquisition of stem-like

properties in cancer cells and enhancing their response to
Frontiers in Oncology 10
chemotherapy and radiotherapy (111). Other studies have shown

that the Wnt/b-catenin pathway, crucial in EMT and associated with

cisplatin resistance, is targeted by miR-506 to suppress EMT and

improve OC's susceptibility to PARP inhibitors and cisplatin (142).

Overexpression of miR-506-3p in erlotinib-resistant (ER) cells has

been demonstrated to downregulate sonic hedgehog (SHH) signaling,

thereby reversing EMT-mediated erlotinib resistance (143). However,

ceRNAs function as competitive endogenous RNAs that sequester

miR-506, attenuating its EMT-inhibitory effects in cancer cells. For

instance, FOXD2-AS1 promotes glioma cell proliferation and EMT

by sequestering miR-506-5p, thereby modulating the expression of

EMT-related genes such as CDH1, CDH2, and VIM (21). Similarly,

HOXA11-AS facilitates HCC progression and EMT by regulating the

miR-506-3p/Slug axis (144). Additionally, NEAT1 drives

chemoresistance to gemcitabine in pancreatic cancer (PC) cells by

regulating ZEB2 expression through the miR-506-3p/ZEB2/EMT axis

(137). Chemoresistant cancer cells often evade apoptosis, a critical

mechanism for treatment efficacy. Silencing of circRNAATL2

diminishes the ceRNA effect on miR-506-3p, curbing paclitaxel

(PTX)-resistant OC cell drug resistance and up-regulated miR-506

can also induce cancer cell apoptosis by targeting NFIB, thus delaying

disease progression (145). In CRC, overexpression of miR-506 in

HCT116-OxR cells inhibits the expression of multidrug resistance

protein 1 (MDR1)/P-glycoprotein 1 (P-gp) by down-regulating the

Wnt/b-catenin pathway, promoting apoptosis in drug-resistant cells

and enhancing sensitivity to oxaliplatin (146). Moreover, miR-506

can increase the sensitivity of drug-resistant cells to drugs by

interfering with DNA damage repair. Homologous recombination

(HR) is a critical pathway for the repair of DNA double-strand breaks

(DSBs), and its dysfunction has been closely associated with increased

sensitivity to DNA-damaging agents. RAD51 and RAD17 are two key

components of the HR machinery. Previous studies have

demonstrated that miR-506 directly targets RAD51, thereby

sensitizing cancer cells to DNA damage and significantly enhancing

the sensitivity of serous ovarian cancer (SOC) cells to cisplatin and

PARP inhibitors (111). Recent evidence suggests that the miR-506-

3p/RAD17 axis impairs DNA damage sensing in epithelial ovarian

cancer (EOC) cells, leading to G2/M cell cycle arrest. This disruption

may force severely damaged mitotic cells to enter mitosis, ultimately

triggering mitotic catastrophe, thereby restoring miR-506-3p-

induced platinum chemosensitivity (147). Moreover, in certain

cancers, miR-506 enhances the sensitivity of cancer cells to

anticancer agents by modulating metabolic pathways. miR-506 can

restore chemosensitivity to 5-fluorouracil (5-FU) in drug-resistant

cancer cells by downregulating polypyrimidine tract-binding protein

1 (PTBP1) expression and suppressing glycolytic activity. However,

lncRNA SNHG16 acts as a molecular sponge for miR-506, thereby

attenuating its inhibitory effects on PTBP1 and glycolysis (148).

Notably, combining miR-506 with other miRNAs may serve as a

promising strategy to overcome drug resistance. For example, miR-

124-3P and miR-506-3p together can target EZH2, enhancing the

sensitivity of sorafenib-resistant thyroid cancer cells to drugs (138).

Radiotherapy remains a cornerstone of cancer treatment and,

together with surgery and chemotherapy, constitutes one of the three

fundamental pillars of oncologic therapy. Increasing evidence
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underscores the critical role of microRNA dysregulation in

modulating tumor radiosensitivity (101). Studies have demonstrated

that DGCR5 knockdown enhances the radiosensitivity of human

laryngeal squamous cell carcinoma by upregulating miR-506 and

suppressing Wnt signaling (149). In OC, miR-506 suppresses

SNAI2-mediated EMT, thereby restricting the acquisition of stem-

like properties in cancer cells and enhancing their response to

chemotherapy and radiotherapy (111). Fei et al. observed that

plasma levels of hsa-miR-506-3p and hsa-miR-140-5p were

significantly higher in radiosensitive CRC patients than in

radioresistant patients. Subsequent experiments confirmed that

overexpression of hsa-miR-506-3p and hsa-miR-140-5p significantly

reduced cell proliferation, survival, and clonogenic potential in CRC

cells following radiation exposure (101). Overall, research on mir-506

in improving tumor radioresistance remains limited, and further

studies are needed to explore its role. Nevertheless, it is undeniable

that mir-506 holds great potential as a promising radiosensitizer to

enhance the efficacy of radiotherapy.

Although miR-506 holds promise in reversing drug resistance

in certain cancers, its efficacy may vary depending on the cancer

type and individual patient. Additionally, tumor cells may develop

mechanisms to counteract miR-506-mediated reversal of resistance.

Further research is needed to gain a deeper understanding of these

processes. Table 3 presents an overview of the interplay between

miR-506 and chemoresistance in cancer treatment.
5 Clinical translation of miR-506

Although the miR-506 family exhibits oncogenic or ambiguous

roles in a few cancer types, miR-506 is among the most significantly

downregulated miRNAs in various malignancies (68, 78, 99, 119).

Both in vitro and in vivo studies have consistently demonstrated its

potent tumor-suppressive effects, highlighting its potential as a

promising candidate for clinical translation. We reviewed the

literature to analyze the challenges and strategies in translational

medicine for miRNA-506. miR-506 has shown the ability to enhance

chemotherapy sensitivity, supporting its use with conventional

therapies. Preclinical models of NSCLC have suggested that

combining miR-506 with cisplatin or immune checkpoint

inhibitors may improve therapeutic efficacy (16). Furthermore,

liquid biopsy techniques detecting miR-506 in blood or exosomes

could facilitate patient stratification for targeted clinical trials. Phase

I/II trial design similar to NCT04285476, which analyzed miRNA

profiles in thyroid carcinoma, could be employed to validate miR-506

as a predictive biomarker (150). Although no dedicated clinical trials

for miR-506 have been completed, implementing other miRNAs in

clinical settings offers valuable insights and potential precedents for

future applications. For instance, MRG-106 (Cobomarsen) is

currently in Phase I and II clinical trials for treating lymphoma

and leukemia (151). MesomiR-1 has been tested in a Phase I clinical

trial for mesothelioma patients (152). Miravirsen (miR-122 inhibitor)

successfully reduced HCV replication in Phase II trials, highlighting

TS-miRNAs' potential in oncology. By integrating innovative drug

delivery methods, biomarker stratification, and lessons learned from
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existing miRNA therapeutics, miR-506 could transition from

preclinical research to clinical application. Nevertheless, current

studies are limited to some common cancers; even for target genes

in these cancers, research on target proteins remains insufficient.

Despite evidence of its involvement in regulating gene expression and

cell function, a detailed understanding of the precise molecular

mechanisms by which miR-506 operates remains limited. This

hampers the development of targeted therapeutic strategies

involving miR-506, underscoring the need for further research.

However, a significant gap remains in understanding the role of

miR-506 in drug resistance. Some studies have clarified that the gene

can counteract drug resistance through particular target proteins.

Still, the precise pathway of influence is inaccurate, which is what

future research should focus on. Since EMT is an essential cancer cell

phenotype contributing to drug resistance, EMT inhibitors like miR-

506 could be employed as crucial components of chemotherapy or

targeted treatment medications, enhancing the clinical outcomes of

existing cancer therapies. Even though studies on the connection

between miR-506, EMT, and cancer cell drug resistance have

increased recently, much hasn't been done to date on using miR-

506 as a target to reduce drug resistance. Thus, future studies should

focus more on this issue. Moreover, several studies use animal or cell

models without clinical samples, or the number of clinical samples is

not large enough. Some studies neglect to conduct in-depth disease

stage and grade analyses, leading to outcome discrepancies. These

issues need to be considered in further studies in this area. Notably,

the biological function and expression pattern miR-506 exhibit

variability across distinct disease states, adding complexity to its

potential therapeutic applications. The inconsistency effects observed

in specific diseases may be attributed to various factors, including

individual differences, disease subtypes, and tissue specificity.

Effective delivery remains a critical barrier due to miR-506’s

instability and poor tissue specificity. Lipid nanoparticles successfully

delivered miR-34a in clinical trials (NCT01829971), providing a

template for miR-506 encapsulation (153). The gelatin nanosphere

(GN) delivery system enables the sustained and controlled release of

exogenous miR-506, effectively targeting PENK and inactivating the

ERK/FOS signaling pathway, thereby suppressing the growth and

metastasis of triple-negative breast cancer (TNBC) (31). The delivery

of miR-506-3p encapsulated in DOPC nanoliposomes effectively

inhibited tumor growth and significantly enhanced the therapeutic

effects of olaparib and cisplatin in orthotopic ovarian cancer mouse

models (111). Additionally, exosome-mediated delivery of miR-506-

3p enhances tumor-targeting efficiency, reducing proliferation and

increasing apoptosis in CRC cells through the downregulation of

GSTP1 (30). As shown in preclinical breast cancer models,

pH-sensitive polymeric nanoparticles could release miR-506

mimics selectively in acidic TME (154). Applying in situ-forming

hydrogels in intratumoral drug delivery, including their advantages in

reducing systemic toxicity, provides insights into developing clinical

application pathways for miRNA-506 (155).

Future research should focus on several key areas to establish miR-

506 as a viable therapeutic agent. First, large-scale clinical trials are

needed to determine its safety and efficacy. Next, delivery methods

must be optimized to ensure tumor-specific targeting. Additionally,
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TABLE 3 miR-506 and drug resistance.

Cancer type ceRNA miR-506 Targets Drugs Influence Results References

Ovarian cancer circATL2, ↑ miR-506-3p, ↓ NFIB, ↑ PTX inhibit cancer cell
apoptosis
inhibit cell
cycle progression

Promote (145)

miR-506-3p, ↑ EZH2,↓
b-catenin, ↓

Cisplatin
Olaparib

inhibit cancer cell
EMT

Improve (142)

miR-506, ↑ RAD51, ↓ Cisplatin
Olaparib

inhibit DNA repair Improve (111)

XIST, ↑ miR-506-3p, ↓ FOXP1, ↑ Carboplatin inhibit cancer cell
apoptosis
promote cancer cell
proliferation
and autophagy

Promote (192)

Osteosarcoma miR-506-3p, ↑ STAT3, ↓ Doxorubicin inhibit cancer cell
proliferation
promote cancer
cell apoptosis

Improve (163)

Epithelial ovarian
cancer

miR-506-3p, ↑ RAD17, ↓ Platinum inhibit DNA repair
inhibit cell
cycle progression

Improve (147)

Colon cancer miR-506, ↑ PPARa, ↓ Hydroxycamptothecin inhibit cancer
cell apoptosis

Promote (26)

Non−small cell
lung cancer

miR-506-3p, ↑ YAP1, ↓ Gefitinib promote cancer
cell apoptosis

Improve (209)

miR-506, ↑ SHH, ↓ Erlotinib inhibit cancer cell
EMT, stemness and
proliferation
promote cancer
cell apoptosis

Improve (143)

Colorectal cancer miR-506, ↑ DNMT1, ↓ Cisplatin
5-Fluorouracil

promote cancer cell
apoptosis
inhibit cancer cell
proliferation and
DNA repair

Improve (100)

miR-506, ↑ MDR1/P-gp, ↓ Oxaliplatin promote cancer cell
apoptosis
inhibit cancer cell growth

Improve (146)

miR-506-3p, ↑ Radiotherapy inhibit cancer cell
proliferation, survival
rate and
colonality

Improve (101)

Gastric cancer SNHG16, ↑ miR-506-3p, ↓ PTBP1, ↑ 5-Fluorouracil inhibit cancer
cell glycolysis

Promote (148)

Pancreatic cancer miR-506, ↑ Palbociclib promote cancer
cell apoptosis

Improve (210)

NEAT1, ↑ miR-506-3p, ↓ ZEB2, ↑ Gemcitabine promote cancer cell
EMT

Promote (137)

Esophageal
squamous
cell carcinoma

miR-506-3p, ↓ YAP, ↑ Cisplatin promote cancer stem
cell- like properties
and EMT

Improve (137)

Lung
adenocarcinoma

miR-506, ↑ ATAD2, ↓ Cisplatin -
based hyperthermia

promote cancer cell
apoptosis
inhibit cancer cell
proliferation, migration,
and invasion

Improve (211)

(Continued)
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biomarker-based screening strategies should be developed for patient

selection. Finally, exploring combination therapy approaches will be

essential to maximize its clinical utility.

6 Discussion

Evidence has demonstrated that miRNAs play dual roles in

various human malignancies, functioning as tumor suppressors
Frontiers in Oncology 13
(TS-miRNAs) or oncogenic miRNAs (oncomiRs). These small

regulatory RNAs are involved in cancer initiation and progression

by modulating multiple signaling pathways and cellular functions

(156). Due to this multifunctionality, miRNAs have emerged as

promising therapeutic targets with immense clinical potential. Two

principal miRNA-based therapeutic strategies have been developed

for cancer treatment: inhibition of overexpressed oncomiRs and

restoration of downregulated TS-miRNAs (29). Specifically, three
TABLE 3 Continued

Cancer type ceRNA miR-506 Targets Drugs Influence Results References

Glioblastoma miR-506, ↑ ETS1, ↓ Temozolomide promote cancer cell
apoptosis
inhibit cancer cell
proliferation, migration,
invasion and autophagy

Improve (212)

Thyroid
carcinoma

miR-506, ↑ EZH2, ↓ Sorafenib inhibit cancer cell
proliferation

Improve (138)

Hepatocellular
carcinoma

KCNQ1OT1,
↑

miR-506, ↓ PD-L1, ↑ Sorafenib inhibit cancer cell
apoptosis
impair T-cell immune
surveillance
promote cancer cell
migration and invasion

Improve (213)

Laryngeal cancer DGCR5, ↑ miR-506, ↓ Wnt pathway, ↑ Radiotherapy promote cancer stem cell
- like properties

Improve (149)
FIGURE 2

Schematic representation of the potential biological mechanisms through which miR-506 regulates various types of cancer.
Image created with BioRender.com, with permission.
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major approaches can be employed to silence oncomiRs, including

miRNA sponges, antagomiRs/antimiRs, and CRISPR/Cas9 gene-

editing technology (28). They sequester or destroy endogenous

intracellular miRNAs, thereby preventing their binding

availability to target mRNA. For restoring the function of tumor

suppressor miRNAs that are downregulated or lost in cancer cells,

miRNA replacement therapy using synthetic miRNA mimics is a

viable strategy (157).

Despite the growing enthusiasm for miRNA-based therapeutics,

several key challenges must be addressed before miRNA therapies

can become routine clinical treatments. First, miRNA therapy faces

the pharmacokinetic challenges of poor stability, short half-life, and

uneven distribution in vivo. Naked miRNAs are highly susceptible

to nuclease degradation, making it difficult to maintain therapeutic

concentrations. Additionally, miRNAs are rapidly cleared from

circulation and may accumulate in non-target tissues such as the

liver and kidneys, reducing therapeutic efficacy (158). Improvement

strategies include chemical modifications (2' -O-methylation,

nucleic acid modification) and carrier encapsulation (lipid

nanoparticles, polymer nanoparticles) to improve stability and

targeting (28). The second is the challenge of off-target effects and

targeted delivery. While offering therapeutic potential, miRNAs'

extensive gene regulatory network also increases the risk of off-

target effects that can disrupt normal cellular processes and induce

unexpected biological effects. It has been shown that both single -

and double-stranded oligonucleotides activate innate immune

system responses (159) and can also be neurotoxic (160). Efficient

and targeted delivery remains a significant hurdle. Viral vectors

(e.g., AAV, lentivirus) offer high efficiency but raise concerns

regarding immunogenicity and insertional mutagenesis. Non-viral

delivery systems (e.g., lipid nanoparticles, exosomes) provide safer

alternatives, but delivery efficiency, potential toxicity, and tissue

specificity still need to be further optimized (28). Localized delivery

strategies may offer an alternative approach. For example, Inoue

et al. (161) demonstrated that a topical formulation containing

miR-634 effectively suppressed tumor growth in two skin cancer

models without systemic toxicity—however, only a limited number

of cancers, such as primary and localized tumors. The third is the

complexity of individualized therapy. miRNA expression varies

significantly across cancer types, patient genetics, and tumor

microenvironments, resulting in inter-patient variability in

therapeutic response. Accurate identification of patients' miRNA

expression profiles and the development of personalized miRNA

therapy are key to future growth. In addition, combination

treatment strategies (such as miRNA combined with targeted

drugs or immunotherapy) may improve efficacy but still need to

be validated in many clinical studies. Finally, there is no universally

accepted protocol for miRNA detection, quantification, or

therapeutic use, and an incomplete mass production and

regulatory framework limits their clinical translation.

The current findings can further explore the molecular

mechanisms by which miR-506 affects cancer cell growth. The

infinite proliferation of cancer cells is driven by dysregulation of the

cell cycle, and miR-506 plays a critical role in suppressing
Frontiers in Oncology 14
this process by targeting multiple cell cycle-related genes.

Previous studies have demonstrated that miR-506 exerts its

tumor-suppressive effects by directly targeting the 3′-UTR of

CDK4/6, key regulators of the G1/S transition, thereby inducing

G1 phase arrest and inhibiting cancer cell proliferation (72, 107).

Furthermore, the combined application of miR-506 and miR-143 in

the treatment of lung cancer LC and PC synergistically

downregulates CDK1, CDK4, and CDK6, blocking both the G1/S

and G2/M transitions and inducing robust apoptotic activity (71).

One of the key mechanisms by which cancer cells evade immune

surveillance is the suppression of apoptosis. miR-506 plays a crucial

role in this process by regulating key apoptosis-related proteins.

Apoptosis is tightly controlled by various genes and cytokines, with

the Bcl-2 family serving as a central regulator. This family

comprises two functionally opposing groups: anti-apoptotic

proteins (e.g., Bcl-2, Bcl-xL) and pro-apoptotic proteins (e.g., Bax,

Bak). These proteins govern mitochondrial membrane permeability

and the subsequent release of cytochrome, ultimately determining

whether a cell undergoes apoptosis (162). miR-506 influences the

apoptotic process of cancer cells by regulating the expression of Bcl-

2 family proteins in various cancer types. For instance, in NSCLC

cell lines (16) and osteosarcoma cells (163), the overexpression of

miR-506 significantly increases the sensitivity of cancer cells to

apoptosis, which is closely associated with the upregulation of Bax

and the downregulation of Bcl-2 at both the mRNA and protein

levels. Additionally, studies have demonstrated that miR-506 can

regulate NF-kB p65, specifically elevating reactive oxygen species

(ROS) levels in tumor cells and activating the p53 pathway, thereby

selectively inducing apoptosis in lung cancer cells (164). Moreover,

miR-506 influences cancer cell fate by regulating other apoptosis-

related genes. For instance, in Jurkat cells, a T-cell acute

lymphoblastic leukemia (T-ALL) cell line, overexpression of miR-

506 leads to decreased expression of pro-apoptotic genes such as

p53 and p21 while increasing the expression of the anti-apoptotic

gene Bcl-2 (165). This suggests that miR-506 may exhibit oncogenic

properties in specific cancer types.

Cancer cells rely on DNA repair mechanisms to maintain

genomic stability and survival. HR is a critical pathway for the

repair of DNA double-strand breaks and is also associated with

tumor chemoresistance. Studies have shown that miR-506

specifically targets the 3'-UTR of RAD51, thereby suppressing

RAD51 gene expression, impairing the DNA damage response

pathway, and enhancing chemosensitivity both in vitro and in

vivo, ultimately reducing cancer cell growth (111, 166, 167).

Furthermore, miR-506-3p has been identified to target RAD17, a

key component of the HR pathway, thereby diminishing cancer

cells' ability to sense DNA damage in OC. This leads to disrupting

the G2/M cell cycle checkpoint, delaying G2/M cell cycle arrest, and

potentially allowing severely DNA-damaged cells to enter mitosis,

ultimately resulting in mitotic catastrophe (147). Aberrant human

epidermal growth factor receptor-2 (HER2) signaling is implicated

in various solid tumors, including BC, GC, biliary tract cancer,

CRC, OC, and PC, where HER2 overexpression or amplification

promotes tumor growth, invasion, and is associated with poor
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prognosis (168). Consequently, HER2 has been recognized as a key

therapeutic target across multiple cancer types (169, 170). To date,

no direct studies have demonstrated that miR-506 regulates HER2

expression or function. However, other miRNAs have been shown

to modulate HER2. For instance, miR-101-5p (171), miR-489

(172), and miR-1226-3p (173) have been investigated for their

roles in HER2-positive breast cancer. Given the significance of

HER2 in tumor progression and treatment resistance, further

research is warranted to explore the potential regulatory

interactions between miR-506 and HER2, addressing this gap in

the field.

Recent studies have highlighted the role of miR-506 in

modulating tumor immune evasion and checkpoint regulation,

suggesting its potential therapeutic significance. B7-H4, an

immune checkpoint protein that negatively regulates T-cell

activation, is overexpressed in BC and is associated with a poor

immune response. It has been demonstrated that miR-506-3p

downregulates the disease-associated rs10754339 "G" allele in B7-

H4, thereby suppressing tumor progression (122). In addition,

studies have shown that miR-506 promotes tumor immune

escape by affecting programmed cell death-1 receptor (PD-1)/

programmed cell death-ligand 1 (PD-L1) (174–176). As a

potential regulator of immune checkpoint molecules, miR-506 has

emerged as a promising candidate for combination therapies with

immune checkpoint inhibitors (ICIs). Additionally, miR-506

reprograms tumor-associated macrophages (TAMs) from an

immunosuppressive M2 phenotype to a pro-inflammatory M1

phenotype. This shift promotes cytotoxic T lymphocyte (CTL)

infiltration, thereby reducing immune evasion in pancreatic

ductal adenocarcinoma (PDAC) and strengthening immune-

mediated tumor suppression (174).

Metabolic reprogramming, including increased glucose

metabolism, fatty acid synthesis, and glutamine metabolism, is a

major driver of cancer drug resistance. Among these, the

enhancement of glycolysis is particularly critical (177). Tumor

cells preferentially rely on glycolysis for energy production, even

in the presence of sufficient oxygen, a phenomenon known as the

“Warburg effect” (178). Studies have shown that enhanced

glycolysis is closely associated with chemoresistance (179). For

instance, PTBP1 promotes glycolysis by regulating the expression

of pyruvate kinase M2 (PKM2), a key glycolytic enzyme, while miR-

506-3p directly targets PTBP1, downregulating its expression and

thereby reducing glycolysis, which restores 5-FU sensitivity in GC

cells (148). Additionally, circHIPK3 binds to miR-506, suppressing

its expression and subsequently upregulating pyruvate

dehydrogenase kinase 2 (PDK2), leading to further activation of

glycolysis and enhancing the proliferation and metastasis of HCC

cells (180). Enolase 1 (ENO1), a key enzyme in glucose metabolism,

is frequently overexpressed in various cancers and plays a crucial

role in tumor progression (181). Beyond its role in glycolysis, ENO1

also interacts with choline kinase alpha (CHKa), a key enzyme in

choline metabolism, stabilizing it and thereby promoting choline

phospholipid metabolism and tumor cell proliferation (182).
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Dysregulated choline metabolism has been proposed as a novel

cancer hallmark, with high CHKa expression being strongly

associated with tumor progression and poor patient prognosis

(182, 183). Furthermore, key glycolytic enzymes and substrates,

including hexokinase 2 (HK2) (184), phosphoglycerate mutase 1

(PGAM1) (185), glucose transporters (GLUTs) (186), and lactate

dehydrogenase (LDH) (187), are upregulated in various drug-

resistant cancer cells, further supporting the critical role of

glycolysis in chemoresistance. To date, limited studies have

explored how miR-506 modulates metabolic pathways to

overcome drug resistance, highlighting a promising avenue for

future research

Continued research on miR-506 could provide essential insights

into its complex mechanisms in different cancer types, providing

significant clinical implications. miR-506 is down-regulated in a

variety of cancers, including HCC (57), NSCLC (52), CC (59), and

BC (123), and its expression is associated with tumor progression,

drug resistance, and prognosis. Therefore, miR-506 can be a

biomarker for cancer diagnosis and prognosis assessment (12).

For example, in ovarian cancer, patients with low expression of

miR-506 had poorer chemotherapy response (104), suggesting that

miR-506 could be used to predict chemotherapy sensitivity and

guide personalized treatment strategies. miR-506 regulates

chemoresistance by modulating EMT, cell cycle progression,

apoptosis, DNA damage repair pathways (e.g., RAD17), and key

oncogenic signaling pathways (e.g., SHH, WNT/b-catenin) (139).
Upregulating miR-506 expression through miRNA mimics or

targeted therapeutic strategies may help reverse drug resistance

and enhance chemotherapy efficacy, particularly for platinum-

based compounds, doxorubicin, and EGFR-TKIs, ultimately

improving patient outcomes (111, 142). Given its ability to

suppress cancer cell proliferation and promote apoptosis, miR-

506 represents a promising therapeutic target for miRNA-based

gene therapy. Furthermore, lipid nanoparticles and viral vectors

offer potential strategies for targeted miR-506 delivery to tumor

tissues, presenting a novel and promising anticancer approach (12,

30, 139). miRNA has unique versatility and unique advantages in

cancer treatment. Among them, miR-506 has become a key

regulatory molecule in cancer biology and shows good therapeutic

potential. Although its clinical application is still early, we are

confident in its vast application potential. Future research should

promote the advancement of miR therapy, including miR-506, by

conducting comprehensive molecular studies, optimizing targeted

drug delivery strategies, and launching large-scale randomized

clinical trials.
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