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Liver cancer, characterized by its insidious nature, aggressive invasiveness, and

propensity for metastasis, has witnessed a sustained increase in both incidence

and mortality rates in recent years, underscoring the urgent need for innovative

diagnostic and therapeutic approaches. Emerging research indicates that

CircRNAs (circular RNAs) are abundantly and stably present within cells, with

their expression levels closely associated with the progression of various

malignancies, including hepatocellular carcinoma. In the context of liver

cancer progression, circRNAs exhibit promising potential as highly sensitive

diagnostic biomarkers, offering novel avenues for early detection, and also

function as pivotal regulatory factors within the carcinogenic process. This

study endeavors to elucidate the biogenesis, functional roles, and underlying

mechanisms of circRNAs in hepatocellular carcinoma, thereby providing a fresh

perspective on the pathogenesis of liver cancer and laying a robust foundation

for the development of more precise and effective early diagnostic tools and

therapeutic strategies.
KEYWORDS
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1 Introduction

Liver cancer ranks among the most commonmalignant tumors worldwide (1–4). Although

various treatment methods exist, their therapeutic effects differ, and they each have specific side

effects and limitations (5, 6). Despite therapeutic interventions, the rates of recurrence and

metastasis remain elevated, resulting in a poor five-year survival rate (7–9). Additionally,liver

cancer exhibits significant tumor heterogeneity and lacks early diagnostic methods, resulting in

poor overall survival rates for patients with liver cancer (10–14). Consequently, it is imperative

to identify novel therapeutic targets and biomarkers for effective early detection and

personalized treatment strategies aimed at enhancing both survival outcomes and quality of

life for individuals diagnosed with liver cancer.
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Non-coding RNAs (ncRNAs) are integral to cell biology and

physiological processes, playing pivotal roles in the pathogenesis of

various diseases (15). Among these, circular RNAs (circRNAs), a

distinct subclass of ncRNAs found in eukaryotes, have garnered

significant attention due to their strong association with the

progression of numerous diseases, particularly tumors (16–20). In

recent years, a growing body of research has revealed that the

abnormal expression of circRNA is intimately associated with the

onset and progression of liver cancer. This alteration in expression

patterns could have profound implications for the advancement of

liver cancer and present novel, promising targets for its diagnosis

and prognostic assessment.

This class of endogenous ncRNAs regulates gene expression

in various biological organisms; circRNAs are covalently closed-

loop RNA transcripts without polyadenylated tails or 5′–3′
polari ty (21, 22) . This configurat ion makes circRNA

endogenous, abundant in cells (23), presenting higher stability

than its linear counterpart and preventing nucleic acid

exonuclease-mediated degradation (24). CircRNA exhibits

spec ific expre s s ion pa t t e rns in t i s sues and organs ,

demonstrating significant potential as diagnostic, prognostic,

and predic t ive b iomarkers (25–29) . With the rap id

advancement of high-throughput sequencing technology,

scientists have observed that the abundance of certain

circRNAs exceeds that of their corresponding linear RNAs by

more than tenfold, based on studies of thousands of circRNAs

(30). This finding further affirms the crucial role of circRNAs in

organisms and provides new insights for studying the

mechanisms of circRNAs in liver cancer. Additionally, an

extensive sequencing study of more than 2,000 clinical tissue

samples and cell lines from over ten types of cancers has shown

that circRNAs with stable structures can serve as cancer

biomarkers in blood or urine (31).

This manuscript begins with a concise overview of the

fundamental characteristics and biological roots of circRNAs.

Next, it examines the roles of circRNAs in liver cancer. Lastly, it

investigates the potential of circRNAs in diagnosing and treating

liver cancer. By systematically studying circRNAs, we aim to offer

innovative strategies and approaches for liver cancer diagnosis and

treatment, ultimately enhancing patient prognosis and quality

of life.
2 Historical review of circRNAs

2.1 Discovery and early research
of circRNAs

The investigation of CircRNAs commenced in 1976 when

German researchers, led by Heinz L. Sanger, published findings in

the journal PNAS. They confirmed the existence of viroids, which

are organisms constituted of single-stranded, covalently closed

circular RNA. This pivotal revelation represented humanity’s

inaugural approach to understanding circRNA molecules (32). In

1979, Hsu and colleagues utilized electron microscopy to unveil
Frontiers in Oncology 02
circRNAs in eukaryotic cells (33). By 1993, the identification of

circRNAs within human cells became a notable advancement in the

field (34).

In the ensuing decades, most circRNAs were regarded as

products of mis-splicing or by-products of pre-mRNA processing

due to technological limitations and a research focus favoring

protein-coding mRNAs (35). The study of circRNAs did not

garner much attention. However, with the rapid advancement of

high-throughput sequencing (Next-Generation Sequencing, NGS)

and bioinformatics in the early 21st century, scientists gradually

unveiled the prevalence of circRNAs in eukaryotes and their

potential biological functions. After 2010, circRNA research

entered a new phase. Researchers began to investigate the

functions of circRNAs in depth and discovered their significant

roles in gene expression regulation, disease development, and other

areas, including serving as protein scaffolds or miR sponges and

being translated into peptides (36–38). A circRNA can function as

both a miR sponge and a protein template (39–41). In 2012,

scientists identified numerous circRNAs in the human body,

which prompted increased attention and rapid progress in

circRNA research. As research advanced, circRNAs demonstrated

close relationships with various biological processes, including

development, physiological conditions, and many diseases, such

as cancer (Table 1).

Thus, the utilization of circRNA in the realms of disease

diagnosis , treatment, and prognosis evaluation holds

significant value.
3 Biological origin of circular RNAs

3.1 Biosynthesis of circular RNAs

The biosynthesis of circRNAs is a complex and intricate

mechanism centered on the reverse splicing of precursor mRNAs

(pre-mRNAs). In this mechanism, the 5’ splice site located

downstream of the intron connects with the 3’ splice site

positioned upstream in reverse order. This results in the

formation of a circular RNA structure, linked by a 3’,5′-
phosphodiester bond between the reverse spliced exons (42).

CircRNAs are typically derived from 1-5 exons and localize

predominantly in the cytoplasm; however, nuclear-localized

intron-containing circRNAs (which originate from distinct

genomic loci) exhibit unique regulatory functions (43, 44). Based

on their sequence types, circRNAs classify into three distinct

categories: exonic circRNAs (EcRNAs), intronic circRNAs

(CiRNAs), and exon-intronic circRNAs (EIcRNAs) (45–47).

The biosynthesis of circRNAs is a complex and intricate

mechanism centered on the reverse splicing of precursor mRNAs

(pre-mRNAs). Four primary mechanisms have been elucidated,

each invo lv ing d i s t inc t molecu lar in te rac t ions and

regulatory factors:

Mechanism I: “RNA-binding protein (RBPs)-driven cyclization.”

RBPs facilitate the interaction between upstream and

downstream introns, promoting circRNA formation. For example,
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the RBP hnRNPA1 binds to flanking introns of SAMD4 and HIPK3

pre-mRNAs, facilitating Step 1: RBP binding → Step 2: Reverse

splicing→ Step 3: circRNA maturation (42, 48). This mechanism is

particularly relevant in epithelial-mesenchymal transition

(EMT) processes.

Mechanism II: “Intron pairing-driven cyclization.”

Reverse complementary sequences in flanking introns form

secondary structures, enabling cyclization. The CDR1as locus

exemplifies this mechanism, where 70 conserved Alu elements

mediate circularization and miR-7 sequestration (49). Introns

may subsequently be removed or retained, leading to the

formation of ecircRNAs or EIciRNAs (50).

Mechanism III: “Lariat-driven cyclization.”
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During canonical splicing, exon skipping generates a lariat

intermediate containing exons and introns. This process can

generate a lasso structure containing an exon and an intron. If

the introns are subsequently removed, ecircRNA or EIciRNA forms

(51).For instance, the SAMD4 gene produces circRNAs via this

mechanism, with the lariat structure stabilized by U2AF65 and SF1

splicing factors (50).

Mechanism IV: “lasso intron-driven cyclization.”

CiRNAs (circular intronic RNAs) evade debranching enzyme

degradation through specific motifs. The ci-ankrd52 locus retains a

7-nt GU-rich element near the 5′ splice site and an 11-nt C-rich

element at the branchpoint, forming a stable lariat structure (44).

This binding enables circRNAs to evade degradation by

debranching enzymes, thereby forming stable ciRNAs (52).

Together, these mechanisms highlight the complexity and

diversity of circRNA biological origins.

Overall, circRNA biosynthesis constitutes a complex and

delicate process involving multiple steps and regulatory factors.

With ongoing research, we anticipate gaining a more

comprehensive understanding of circRNA biosynthesis

mechanisms and uncovering its significant functions in biology

and medicine.
3.2 Functions of circular RNA

3.2.1 Regulation of gene expression
Circular RNAs exert multifaceted roles in modulating gene

expression through diverse mechanisms:

3.2.1.1 miRNA sponge activity

CircRNAs act as ceRNAs or miR sponges and are one of their

most notable functions (53, 54). miRNAs are a class of short non-

coding RNAmolecules that inhibit the transcription and translation

process of target genes by binding to their mRNAs (55), whereas

circRNAs have multiple miRNA-binding sites that compete for

binding to miRNAs, thereby regulating miRNA activity and

affecting miRNA-regulated target gene expression (56, 57). CDR

1as, for example, carries 63 conserved miR-7 binding sites, which

significantly affect the expression of tumor-associated genes by

enhancing the stability of miR-7 target mRNAs, which in turn are

tightly linked to the process of tumor progression (49, 58, 59). In

triple-negative breast cancer research, circCD 44 has been identified

as a sponge for miR-502-5p, effectively sequestering and inhibiting

its activity, thereby contributing to the initiation and progression of

tumorigenesis (60). Similarly, the overexpression of circLRP 6 has

also been empirically validated to accelerate the pathological

progression of atherosclerosis by absorbing miR-145, further

emphasizing the regulatory role of circRNAs in modulating

disease processes (61).

3.2.1.2 Interaction with RNA-binding proteins

RNA-binding proteins (RBPs) serve as critical regulators of RNA

metabolism and play significant roles in various RNA processes (62).

Recent investigations have revealed that circRNAs can bind to RBPs,
TABLE 1 Expression of circRNA in various human diseases.

Specific organs Upregulation Downregulation

NS

ciRS-7
circBXW7
circHIPK3
circHomer1

circDYM
circDLGAP4

BRC

circPLK1
circSKA3
circDENND4C
circCDYL

circITCH
circCcnb1
circFoxo3

CVD

circLrp6
ciRS-7
circHIPK3
circFoxo3
circNfix
circCACNA1D
circALPK2
circSPHKAP

circAmotl1
circCDYL1
circANRIL
circFndc3b

SC
circPVT1
ciRS-7

circITCH
circHIPK3

LC/LF
circTP63
circHIPK3

circFoxo3

DM

circHIPK3
circZNF532
circCIRPB
circCAMSAp1

/

HCC
circCDYL
circZKSCAN1
ciRS-7

circITCH
circMTO1

SMD

circHIPK3
circCDYL
circZNF609
circ4099

circGRB10
circAmotl1

CRC
circPVT1
cirRS-7

circITCH
circHIPK3

OVC
circHIPK3
circITCH
circLARP4

/

BC/PC
circFoxo3
circCDYL

circITCH

KD
circZNF609
circAKT3
circNRIP

/
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thereby co-regulating gene expression (42, 63–65). For instance, both

two circRNAs—circBACH1 and circZKSCAN1—have been

implicated in liver cancer progression; they modulate the expression

of oncogenic genes and associated signaling pathways through

interactions with distinct RBPs (66–70). Additionally, specific

circRNAs can modify the cellular localization of RBPs, enabling

these proteins to execute specialized functions in non-canonical

contexts, which provides novel mechanistic insights into their

regulatory mechanisms (66).

CircRNAs interact with RBPs to modulate RNA transcription

and translation processes. These circular RNAs possess unique

structures that allow them to specifically bind RBPs and forming

stable protein-RNA complexes. Such interactions can modulate key

aspects of RBP function, stability, and activity of these proteins,

further impacting RNA transcription and translation.

Consequently, circRNAs serve as critical regulators of RNA

metabolism and global gene expression.

3.2.1.3 Direct transcriptional regulation

Circular RNAs, specifically circSEP3 and circSMARCA5, act as

transcriptional regulators. They induce pauses and termination in

transcription at specific exons by binding directly to DNA, which

alters gene expression patterns (71, 72). In contrast, EIciRNA

enhances gene expression through its interaction with U1 small

nuclear ribonucleoprotein (46). Additionally, cyclic intronic RNAs

(ciRNAs) accumulate at their production sites, boosting gene

expression by regulating the activity of RNA polymerase II (73).

CircRNAs function as crucial transcriptional regulators, engaging

with transcription factors and regulatory elements. This interaction

influences the formation and activity of transcription complexes,

thereby impacting the transcription levels of targeted genes.

Moreover, circRNAs can directly modulate gene expression via

chromatin interactions. These multifaceted roles position circRNAs

as vital players in cell fate determination, tissue development, and

the initiation of diseases.

3.2.2 Protein-related functions
Circular RNAs directly influence protein activity, localization,

and trans la t iona l dynamics through s t ruc tura l and

scaffolding mechanisms:

3.2.2.1 Regulation of protein translation

Researchers have identified translatable circRNAs (74, 75), and

recent investigations have confirmed their widespread existence (76,

77). Although circRNAs do not directly encode proteins, they play a

role in protein translation by interacting with proteins. They

function as “molecular adsorbents,” binding proteins to form

complexes. This interaction can modify the stability, subcellular

localization, and activity of proteins. Such associations may

influence protein synthesis, folding, transport, and degradation,

thereby regulating the intracellular protein balance and

functionality.
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3.2.2.2 Scaffolding function for protein complexes

CircRNAs function as scaffolds for protein complexes by

interacting with a range of proteins. This scaffolding role

enhances protein interactions and signal transduction, thereby

modulating intracellular signaling pathways and biological

processes. By forming these protein assemblies, circRNAs

coordinate the actions of multiple proteins, facilitating intricate

cellular regulation. Moreover, circRNAs are instrumental in

fostering interactions between two or more proteins. Notable

examples include circ-Amotl1 and circ-Foxo3, which act as

protein scaffolds to help align enzymes with their substrates. For

instance, circ-Amotl1 has been recognized as a scaffold that

promotes interactions with PDK1 and AKT1 (78), facilitating

their movement into the nucleus, a vital process for cell growth

and survival. Furthermore, a study by Du et al. underscored the role

of circ-Foxo3 as a scaffold for a variety of proteins, demonstrating

its ability to bind with p53 and the E3 ubiquitin-protein ligase

Mdm2 (79). This interact ion enhances Mdm2-driven

ubiquitination and the subsequent degradation of p53.

In conclusion, circRNAs are vital in functions such as miRNA

sponging, RNA-binding protein interactions, gene transcription

regulation, protein translation, and acting as binding protein

scaffolds (Figure 1). These roles position circRNAs as key players

in managing intracellular gene expression and protein functionality,

crucial for insights into cell biology and disease mechanisms. As

research progresses, we anticipate uncovering additional functions

and regulatory pathways of circRNAs, offering novel perspectives

and approaches for disease diagnosis and treatment
4 Relationship between circular RNA
and liver diseases

4.1 CircRNA in non-
alcoholic steatohepatitis

Non-alcoholic fatty liver disease (NAFLD) is characterized by

the abnormal buildup of fat in the liver. If left untreated, NAFLD

can advance to nonalcoholic steatohepatitis (NASH), which

represents a more severe state (80). The frequency of both

NAFLD and NASH has notably increased due to shifts in lifestyle

and contemporary dietary practices. These liver conditions are

closely associated with cirrhosis and liver cancer (81). Day and

James hypothesized that steatosis serves as a possible second insult

leading to NASH (82). Recent research has unveiled abnormal

miRNA expression, excessive triglyceride build-up, and lipid

peroxidation dysregulation as key contributors to hepatic

steatosis. Importantly, miR-34a is crucial in this context;

circRNA_0046367 finely tunes its function (83). The expression

of circRNA_0046367 declines significantly in the context of hepatic

steatosis. Restoring its levels can effectively diminish lipid

peroxidation, reduce apoptosis, and ameliorate mitochondrial
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dysfunction. This recovery lifts the inhibitory action of miR-34a on

peroxisome proliferator-activated receptor a (PPARa),
subsequently enhancing the expression of genes involved in lipid

metabolism (84). Additionally, studies indicate that circ_0046366 is

another circRNA linked to NAFLD pathogenesis, functioning as an

antagonist of miR-34a. The absence of this circRNA prominently

contributes to hepatocellular steatosis induced by a high-fat diet.

Fortunately, reinstating circ_0046366 expression effectively

hampers the steatosis progression, deactivates miR-34a, and spurs

the transcriptional activation of lipid metabolism-related genes.

This process restores compromised PPARa activity, representing

a novel strategic approach for NAFLD treatment. While a direct

link between circRNAs and liver disease metabolism has yet to be

established, the miRNAs discovered in this study, which interact

with differentially expressed circRNAs, undeniably present valuable

insights for future investigations into these non-coding RNAs

within the NAFLD/NASH pathology.
4.2 CircRNA in liver cirrhosis

Liver fibrosis is an end-stage liver disease that develops from

chronic liver injury and can lead to cirrhosis with a poor prognosis.

Studies have shown that one of the key mechanisms of liver fibrosis
Frontiers in Oncology 05
is the activation of hepatic stellate cells (HSCs), which transform

from a resting state to myofibroblasts and promote fiber formation

(85). It was shown that 179 circRNAs were found to be up-regulated

and 630 down-regulated in radiation-induced activation of HSCs,

indicating significant changes in circRNA expression, and in

particular, silencing of hsa_circ_0071410 increased miR-9-5p

expression and inhibited HSCs activation (86). These data suggest

that circRNAs may play an important role in NAFLD/NASH-

associated hepatic fibrosis, but the specific mechanisms need to be

thoroughly investigated.
4.3 CircRNA in liver cancer

4.3.1 Expression characteristics and changing law
of circular RNA in liver cancer

CircRNA is a closed ring RNA molecule that exhibits greater

stability and resistance to RNase degradation compared to linear

RNA. In liver cancer tissues and cells, circRNA expression patterns

often show tissue specificity and tumor relevance. Studies reveal

that the expression levels of numerous circRNAs in liver cancer

differ significantly from those in normal liver tissues, closely linking

them to the clinicopathologic features of liver cancer. While the

specific functions and mechanisms of circRNAs in liver cancer
FIGURE 1

CircRNA biogenesis and function: Typical reverse splicing produces three types of circRNAs: ciRNAs, EIciRNAs, and ecircRNAs. function (a) RBP-induced
cyclization: the RBP facilitates a reverse splicing event in which introns are removed to form circRNAs. (b) Intron-pairing-driven cyclization; reverse
complementary sequences (Alu sequences) direct the insertion and by removing or retaining the introns generates EIciRNA or ecircRNA. (c) Linear mRNAs
were obtained by conventional splicing methods (d) Intron pairing model of circRNA biogenesis: a 3’ splice donor site in an exon binds to a 5’ splice
acceptor site in an upstream intron to form circRNAs or ecircRNAs by removing introns between exons. ecircRNA is formed by removing the intron between
the exons. (e) ciRNA formation; ciRNA is derived from the lactinuclear intron. (f) circRNAs can act as miRNA sponges. (g) circRNAs can interact with cRBP
and alter protein function. (h) circRNAs can encode peptides and proteins. This image was made using Microsoft PowerPoint.
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require further exploration, many reports confirm their pivotal roles

in this disease (87–97).

In terms of cell proliferation and carcinogenesis, CircRNAs

affect cell proliferation and tumorigenesis in liver cancer

progression. Some CircRNAs express highly at the early stage of

liver cancer and accelerate the malignant proliferation of tumor

cells by regulating specific genes and signaling pathways. One study

summarized the following signaling pathways through which

CircRNAs regulate tumor proliferation and metastasis (98).

The specifics are as follows:
Fron
1. The Wnt/b-catenin pathway is a signaling pathway closely

related to tumor progression. In liver cancer, circMTO1

activates the Wnt/b-catenin signaling pathway by

regulating the miR-541-5p/ZIC1 axis, which in turn

i n h i b i t s t umo r p r o l i f e r a t i o n . I n c o n t r a s t ,

hsa_circRNA_104348 activated the pathway through the

miR-187-3p/RTKN2 axis and promoted cell proliferation.

CircRNA-SORE acted as a sponge for miR-103a-2-5p and

miR-660-3p, and similarly competed to activate the Wnt/b-
catenin signaling pathway. In contrast, circZFR further

enhances the activation of the Wnt/b-catenin signaling

pathway and promotes proliferation by regulating miR-

3619-5p/CTNNB1 (99–102).

2. The nuclear factor-kB (NF-kB) signaling pathway is also

closely related to proliferation. circZFR promotes liver

cancer development by inhibiting the STAT3/NF-kB
pathway (103). CircLIFR, on the other hand, promotes

cell proliferation by interacting with TBK1, a serine/

threonine kinase that regulates the NF-kB pathway (104);

In contrast, circCORO1C further promotes liver cancer

proliferation and metastasis by upregulating NF-kB
pathway-induced PD-L1 expression (105).

3. The PI3K/AKT signaling pathway plays a critical role in

regulating multiple cellular functions. In liver cancer,

circCDYL, circCDK13, and circEPHB4 regulate the

proliferative capacity of liver cancer cells through the

PI3K/AKT signaling pathway (89, 106, 107).

4. In the context of liver cancer, the mitogen-activated protein

kinase (MAPK) signaling pathway, as a series of highly

conserved enzymatic cascades, plays a crucial role in

physiological activities such as cell proliferation,

differentiation, and apoptosis. CircDHPR targets the

RASGEF1B/RAS/MAPK signaling pathway by interacting

with miR-3194-5p, which in turn promotes tumor growth

and metastasis (108). In addition, circASAP1 acts as a

sponge for miR-326 and miR-532-5p and regulates

MAPK1 expression, thereby enhancing cell proliferation

and invasion (88). In contrast, circSETD3 exerts an

inhibitory effect on tumor growth by targeting the miR-

421/MAPK14 signaling pathway (109).
Many circRNAs also regulate pathways that impact liver cancer

progression. By influencing tumor-related signaling pathways,

circRNAs ultimately affect tumor progression, making this a
tiers in Oncology 06
promising research direction. circIPO11, for instance, is a

conserved circRNA that shows high expression in liver cancer

tumors and hepatic CSCs, and plays a role in maintaining hepatic

CSC self-renewal. It promotes liver CSC self-renewal and advances

liver cancer proliferation through the activation of the Hedgehog

signaling pathway. Antisense oligonucleotides (ASOs) that target

circIPO11 exhibit synergistic antitumor effects when combined with

the TOP1 inhibitor camptothecin (CPT) (110). The nuclear

circRNA circASH2 is absent in liver cancer tissues and suppresses

liver cancer metastasis by modifying the structure of the tumor

cytoskeleton. Proto-myosin 4 (TPM4), the primary target of

circASH2, is repressed post-transcriptionally. CircASH2 enhances

the liquid-liquid phase separation of nuclear Y box binding protein

1 (YBX1), thus promoting the decay of TPM4 transcripts,

highlighting the role of tumor suppressor circRNAs and their

intricate regulatory mechanisms in liver cancer progression (111).

Second, circRNAs play a key role in cell movement and

infi l t rat ion during l iver cancer progress ion. Cel lular

transformation is a complex process that enables cancer cells to

gain enhanced movement and infiltration capabilities. Certain

circRNAs promote cancer cell migration and invasion by

regulating associated genes and signaling pathways. For example,

circARFGEF2 significantly accelerates the metastasis of liver cancer

in the liver and lung by regulating specific signaling pathways (96).

In addition, circRNAs contribute to the regulation of immune

system function and influence liver cancer development. Immune

dysfunction closely relates to liver cancer progression, and

circRNAs can regulate the activity and function of immune cells,

affecting the immune evasion of cancer cells. For example,

circUHRF1 inhibits the immune function of NK cells by

upregulating TIM-3 expression in NK cells, thus promoting

immune evasion by cancer cells (112).

Finally, circRNAs may play an important role in drug response.

Although researchers have not fully understood the specific

mechanisms of circRNAs in drug response, evidence shows that

certain circRNAs may regulate drug effects and contribute to drug

resistance. Studies in this area will deepen our understanding of the

mechanisms of drug response in liver cancer and provide new

insights for future therapeutic strategies.In summary, the

pathogenesis of liver cancer is closely related to the function of

circRNAs (Figure 2).
4.3.2 Diagnostic value and prognostic
significance of circular RNA in liver cancer

Due to the tissue specificity and stability of circRNA expression,

many studies now explore its potential in the early diagnosis of liver

cancer. Compared with traditional serum markers like AFP,

circRNAs demonstrate higher specificity and sensitivity.

Researchers found that changes in the expression levels of specific

circRNAs in liver cancer tissues and blood samples effectively

differentiate liver cancer patients from healthy controls, providing

better diagnostic value. For instance, Conn et al. (48) discovered

that circRNA_circFOXP1 promoted the infiltration and migration

of liver cancer by regulating cell-cell interactions within the liver

cancer microenvironment. Its high expression in liver cancer tissues
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closely linked to deep tumor infiltration and poor prognosis. Hence,

circRNA can serve as a novel diagnostic marker for liver cancer,

potentially improving the accuracy and efficiency of early diagnosis.

Moreover, numerous studies on liver cancer patients reveal that

hsa_circ_0000798 (113), hsa_circ_0027089 (114), and

hsa_circ_0058124 (115) are up-regulated in liver cancer tissues.

In contrast , some circRNAs down-regulate, including

hsa_c i r cSMARCA5 (116 ) , h s a_c i r c_0068669 ( 117 ) ,

hsa_circ_0028502 (118), and hsa_circ_0076251 (118). These

circRNAs are regarded as potential biomarkers for liver cancer.

Additionally, some circRNAs play roles in several hallmarks of

cancer, including cell death and survival, invasion, metastasis, and

angiogenesis. Various validation tests, such as northern blotting,

spot blotting, RNA-seq, and circRNA-specific microarrays, show

significant dysregulation of many key circRNAs in liver cancer cells,

tissues, blood, and exosomes (Figure 3).

4.3.3 Potential and feasibility of circular RNA as a
therapeutic target in liver cancer

In liver cancer, a variety of specific circRNAs show aberrant

expression, and these molecules occupy a central role in the

progression of liver cancer, and thus are considered as potential

diagnostic indicators and therapeutic targets for liver cancer (119–

121). circRNAs can be found in tissues (122), exosomes (123–125),

plasma (31), serum (126), cerebrospinal fluid (127), urine (31),
Frontiers in Oncology 07
saliva (128), and other biological samples were detected. Due to the

structural property of reverse splicing of circRNAs, they are able to

avoid recognition by nucleic acid exonucleases and therefore have a

longer half-life compared to linear RNAs. This stability makes

circRNAs ideal candidates for cancer diagnosis, monitoring and

treatment (129–131).

Numerous studies have revealed the potential application of

circRNAs as cancer biomarkers (132–137). However, in-depth

evaluation of their diagnostic accuracy is lacking. For instance,

high expression of circASAP 1 strongly associates with poor

prognosis, lower survival, and higher recurrence rates in liver

cancer (88) . Addi t iona l l y , the expres s ion leve l s o f

hsa_circ_0001955 (138) and circ_104075 (139) increase in the

tissues, serum, and plasma of liver cancer patients. Notably, the

increased expression of circ_104075 is specific to liver cancer, as

similar increases do not occur in other liver diseases or tumors

(139). Serum levels of both circRNAs significantly reduce after

surgical resection of the tumor tissue, suggesting that

hsa_circ_0001955 and circ_104075 may serve as biomarkers for

assessing the efficacy of surgical treatment and the risk of tumor

recurrence. Moreover, DHX 9 expression significantly upregulates

in liver cancer, inhibiting the production of cSMARCA 5

(hsa_circ_0001445) by binding and inhibiting the pairing of

flanking reverse-complementary sequences. This, in turn,

hampers the production of cSMARCA 5 (hsa_circ_0001445)
FIGURE 2

Multiple roles of CircRNA in liver cancer:circRNA plays multiple roles in liver cancer. It regulates cell proliferation and tumor initiation, participates in
the EMT process, and promotes invasion and metastasis of liver cancer cells. In addition, circRNA affects the progression and prognosis of liver
cancer by regulating the immune system. Notably, some circRNAs may induce and maintain drug resistance in liver cancer treatment, challenging
therapeutic strategies.This image was made using Microsoft PowerPoint.
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(140). As a tumor suppressor, cSMARCA 5 inhibits liver cancer

growth through the cSMARCA 5/miR-17-3p/miR-181b-5p/TIMP3

pathway. A decrease in cSMARCA 5 in liver cancer tissues

correlates with increased tumor growth and metastasis, making it

an independent prognostic indicator for patients post-tumor

resection (87).
4.4 CircRNA in exosomes and liver cancer

In studies exploring the relationship between circRNAs in

exosomes and liver cancer, we observed a significant

overexpression phenomenon of circRNA Cdr1as in exosomes

released by liver cancer cells, a phenomenon that promotes the

proliferation and migration ability of neighboring normal cells. circ-

ZEB 1 and circ-AFAP 1 are associated with stemness and prognosis

of liver cancer poorly and can regulate the epithelial-mesenchymal

transition (EMT) process. Our novel exosome-derived circRNAs

play crucial roles as key components of various intercellular

crosstalk and communication systems in malignant transmission.

This finding provides valuable support for the use of plasma

exosomal circRNA as a clinical prognostic indicator for liver

cancer patients (141). zhang et al. found that adipocyte-derived

circ-DB promoted tumor growth and affected DNA damage repair

through miR-34a and USP7 regulation (142), and Lai et al.

indicated that circFBLIM1 was found in serum exosomes and
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liver cancer cells are highly expressed, and its inhibition limits

glycolysis and liver cancer progression (143), and Huang et al.

showed that circRNA-100338 in MHCC97H exosomes promotes

liver cancer cell invasion and metastasis (144). The selective sorting

of circRNAs into exosomes involves interactions with RNA-binding

proteins (RBPs) such as GW182 and ELAVL1, which recognize

specific sequence motifs (e.g., GGAG/CCCU) in circRNA loops

(141). The nSMase2/sphingomyelinase pathway regulates ceramide

production, promoting exosome biogenesis and circRNA loading

(142). The exosome circANTXR 1 correlates with clinical

characteristics (TNM stage and tumor size) and poor prognosis of

liver cancer patients, and the circANTXR 1/miR-532- 5 p/XRCC 5

axis-mediated inhibition of liver cancer progression may be an

effective strategy for treatment (145). For the association between

high expression of exosomal circAKT 3 and poor prognosis,

circAKT 3 could be used as a surveillance biomarker for early

detection of recurrence (146). sun et al. identified three circRNAs

(hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792) as highly

sensitive and specific biomarkers for liver cancer diagnosis (147),

and Chen et al. found that circ-0051443 was delivered to liver

cancer cells via exosomes, regulated miR-331-3p and BAK1, and

inhibited the malignant behavior of liver cancer (148). The above

studies not only deepened our understanding of the mechanism of

circRNA action in liver cancer, but also suggested the important

role of exosomes as circRNA delivery mediators in the regulation of

tumor microenvironment. These findings provide new perspectives
FIGURE 3

CircRNAs are closely related to liver cancer, and they are associated with processes such as proliferation, metabolism, angiogenesis, metastasis,
immune regulation and apoptosis. In these processes, CircRNAs may either act as oncogenes (marked in black font), promoting tumor development,
or play the role of suppressor genes (marked in red font), inhibiting the tumor process, demonstrating their complex and diverse functions. This
image was made using Microsoft PowerPoint.
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and potential targets for the development of circRNA-based

therapeutic strategies for liver cancer, and are expected to provide

new ideas and approaches for clinical intervention. A growing

number of studies have indicated that some serum exosomal

circRNAs also have potential as biomarkers for prognosis and

tumor monitoring. As shown in the Table 2.
5 Conclusion and outlook

Emerging evidence from liver cancer research underscores the

pivotal role of circRNAs in modulating gene expression networks

and cellular signaling pathways. These regulatory mechanisms not

only elucidate the pathophysiological basis of hepatocellular

carcinoma but also provide actionable insights for developing

circRNA-based therapeutics, including innovative biomarkers and

precision-targeted anticancer interventions (149).It has gradually

attracted extensive attention from researchers. Despite the
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remarkable progress in circRNA research related to liver cancer,

several challenges still remain.
5.1 Methodological limitations and
technological advancements

While single-cell RNA-seq and spatial transcriptomics have

revolutionized our understanding of circRNA heterogeneity, their

application remains constrained by:

Current research on circRNA function primarily relies on

bioinformatics predictions and in vitro experiments but lacks in

vivo validation. Meanwhile, researchers have not yet completely

clarified the target genes and mechanisms of action of circRNAs,

and the specific interaction network between circRNAs and liver

cancer requires further elucidation. The multiple cell types within

the liver, such as hepatocytes, hepatic stellate cells, blast cells, and

immune cells, also complicate circRNA studies in liver disease.
TABLE 2 Overview of dysregulated serum exosomal circRNA in liver cancer.

CircRNA Name Year Expression in
liver cancer

Regulatory Axis Function Ref

ciro-DB 2018 Upregulated miR34N USP7 Promoting tumor growth and reducing DNA damage (142)

cirePTGRI 2019 Upregulated miR449x/MET Increasing migratory and invasion and metastasis.
potential prognosis biomarker

(150)

Cdrlas 2019 Upregulated miR-1270/AFP Promoting prolierative and migratory (151)

hsa_circ_0051443 2020 Downregulated miR-331-3p/BAKI Suppressing liver cancer progression, promoting cell apoptosis and
arresting the cell cycle, diagnosis biomarker of liver cancer

(148)

circRNA-I00338 2020 Upregulated Not provide Enhancing invasiveness and angiogenesis.promoting
metaseasis, as a risk indicator of pulmonary metastasis and
poor survival.

(144)

circFBLIMI 2020 Upregulated miR-33B/LRP6 Promoting liver cancer progression and glycolysis (143)

circRNA·SORE 2020 Upregulated YBXI Mediating sorafenib resistance in liver cancer (152)

hsa_circRNA_104348 2020 Upregulated miR-187-3p promoting proliferation, suppressed apoptosis of liver cancer cells (100)

circUHRFI 2020 Upregulated miR-449c.5p/TIM-3 Contributing to immunosuppression by inducing NK cell
dysfunction in liver cancer, casuing resistance to anti-
PD1 immunotherapy

(112)

circTMEM45A 2020 Upregulated miR-665/IGF2 Promoting cell mobility in vitro, as well as in vivo tumorigenesis,
acting as a diagnosis biomarker

(153)

circAKT3 2020 Upregulated Not provide Associating with a higher risk of liver cancer recurrence
and mortality

(146)

circANTXRI 2021 Upregulated miR-532-5p/XRCC5 Promoting the proliferation, migration and invasion of liver
cancer cells

(145)

circGPR137B 2022 Downregulated miR-4739 inhibiting liver cancer tumorigenesis and metastasis through the
circGPR137B/miR-4739/FTO feedback loop.

(154)

circRPN2 2022 Downregulated miR-183- 5 p/FOXO 1 Inhibiting Aerobic Glycolysis and Metastasis in liver cancer (155)

hsa_circ_0002003 2023 Upregulated miR-1343- 3 p/STMN 1 promoting liver cancer progression (156)

circPIAS 1 2024 Upregulated circPIAS 1 enhancing iron storage in liver cancer cells and conferring
resistance to ferroptosis

(157)
fr
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Future studies should aim to expand the functional spectrum of

circRNAs, thoroughly resolve their regulatory networks, and utilize

advanced technological tools like single-cell sequencing and

functional genomics to uncover the mechanisms of their roles in

liver cancer development and progression. More in-depth studies

are necessary.

Future directions:
Fron
1.Develop integrative pipelines combining single-cell circRNA

profiling with patient-derived organoids to bridge

preclinical and clinical data gaps.

2. Leverage AI-driven models (e.g., Transformer-based

architectures) to predict circRNA-protein interaction networks.
5.2 Limitations of sample size and dataset

Existing studies mainly rely on small sample sizes and

heterogeneous datasets, which restrict the broad application and

dissemination of the results. Large-scale, standardized clinical samples

and datasets will enhance the reliability and accuracy of the studies.

Future directions:
1. Large-Scale Cohort Studies: Initiatives like the Liver Cancer

Precision Medicine Consortium provide unparalleled

opportunities to analyze circRNA signatures across

diverse ethnicities and disease stages.

2. Standardized Data Repositories: Expanding public

databases with uniformly processed RNA-seq and clinical

metadata will accelerate meta-analytic discoveries.
5.3 Challenges of clinical translation

Although circRNA has shown great potential in laboratory

research, its translation into clinical applications still faces many

challenges, such as drug delivery, stability, and specificity.

Circular RNA, as a novel non-coding RNA, holds significant

theoretical and applied value in the study of liver cancer. Future

studies can further explore the potential of circRNA for early

diagnosis and prognostic assessment of liver cancer, develop new

strategies for circRNA-targeted therapy, and utilize circRNA in

individualized therapy. Additionally, by combining bioinformatics

analysis with clinical data, researchers can establish a

multidimensional database of circRNA to facilitate its application

as a biomarker. In summary, further in-depth exploration of
tiers in Oncology 10
circRNA in liver cancer research will lead to new breakthroughs

and advancements in liver cancer treatment and management.
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