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Prognostic value of serum lipids
in newly diagnosed acute
promyelocytic leukemia
Shijie Wang, Qian Wang, Shuxin Lv and Ling Qin*

Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan
University of Science and Technology, Luoyang, China
Background and purpose: Dyslipidemia has been linked to acute promyelocytic

leukemia (APL), with abnormal lipid metabolism observed during treatment.

However, its role in APL pathogenesis remains unclear. This study investigates

the relationship between serum lipid levels and clinical features, risk stratification,

bleeding tendency, and prognosis of newly diagnosed APL patients, focusing on

the role of the PTK2 gene in regulating lipid metabolism and its potential as a

therapeutic target.

Materials and methods: We analyzed 90 newly diagnosed APL patients and 99

controls. Statistical analyses, including logistic regression, survival analysis, and

protein-protein interaction (PPI) network, were used to assess lipid correlations

with APL. Subgroup analyses explored specific clinical impacts, and functional

experiments validated PTK2’s role in lipid metabolism.

Results: Elevated triglycerides (TG) were positively associated with high-risk APL,

while reduced high-density lipoprotein cholesterol (HDL-C) levels correlated

with lower risk. Low-density lipoprotein cholesterol (LDL-C) was an independent

prognostic marker, with lower levels linked to poorer outcomes. PTK2 expression

significantly promoted APL cell proliferation, migration, and lipid metabolism,

highlighting its role in APL pathogenesis. PTK2 regulates lipid metabolism-related

factors, such as LDL and fibrinogen, through molecular pathways.

Conclusion: Dyslipidemia is closely related to APL, with TG and LDL-C levels

being key prognostic indicators. PTK2 plays a crucial role in lipid metabolism

regulation and APL progression, providing a new molecular basis for risk

assessment and targeted therapy. These findings offer potential biomarkers for

early diagnosis and personalized treatment strategies.
KEYWORDS
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GRAPHICAL ABSTRACT
Introduction

Acute Promyelocytic Leukemia (APL), a distinctive subtype of

acute myeloid leukemia (AML), is defined by the excessive

proliferation of promyelocytes within the granulocytic lineage in

the bone marrow. The underlying molecular mechanism of APL

involves the aberrant chromosomal translocation resulting in the

formation of the PML-RARa fusion gene (1, 2). The protein resulting

from this fusion gene disrupts the regular cell differentiation process,

leading to the buildup of promyelocytes in the bone marrow, and

facilitates the proliferation and survival of leukemia cells. The

administration of all-trans retinoic acid (ATRA) and arsenic

trioxide markedly enhances complete response rates and long-term

survival in APL (1). Nonetheless, APL patients continue to experience

elevated mortality rates and are prone to bleeding complications (3).

Consequently, timely diagnosis and preventive strategies assume

additional significance in managing APL.

Numerous studies have demonstrated the implication of

aberrant lipid metabolism in the pathogenesis of several cancers
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(4–7). Such dysregulated lipid metabolism influences inflammatory

responses and immune regulation, impacting cancer initiation and

progression (8). Biomarkers associated with lipid metabolism were

utilized to aid in the diagnosis and treatment of certain solid tumors

(6, 9). A study conducted in Korea demonstrated that individuals

with reduced levels of high-density lipoprotein (HDL) were at a

higher risk of developing hematological malignancies (10). The

association between multiple myeloma and disrupted lipid

metabolism in hematological malignancies has garnered

significant attention for its implications in diagnosing and

treating multiple myeloma (11).

Similarly, abnormal lipid metabolism has been linked to lower

survival rates in AML and is considered a pertinent target for AML

treatment (12). In newly diagnosed APL, hypertriglyceridemia has

been observed to be closely associated. Triglycerides and

cholesterol, recognized as signaling molecules indicative of tumor

growth, have been identified to play specific roles in cancer

development by transmitting signals that support tumor

progression and contribute to distinct lipid components (13).
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Nevertheless, no correlation study has been conducted on other

lipid indexes. Abnormal serum lipid levels may be linked to the

diagnosis and prognosis of APL. This study aims to investigate the

mechanisms underlying hypertriglyceridemia in newly diagnosed

APL patients, offering a new therapeutic approach for treating APL.

LDH is a glycolytic enzyme that plays a crucial role in cellular

energy metabolism and is ubiquitously expressed in various body

tissues. Extensive research on LDH has revealed its presence in many

solid tumors, serving as an indicator of poor prognosis. Elevated levels

of LDH signify a more significant tumor burden and have emerged as a

prevalent biomarker in the field of oncology (14). Currently, there is

limited focus on targeting LDH in hematologic tumors. This study not

only incorporates the analysis of serum lipid indexes but also conducts

a correlation analysis between LDH levels and standard clinical

parameters in newly diagnosed cases of APL. Furthermore, the genes

contributing to abnormal lipid metabolism were examined using the

GEO database. Subsequently, an enrichment analysis was conducted to

identify potential targets for the future diagnosis and prevention of

APL. PTK2, also known as protein tyrosine kinase 2, is a non-receptor

tyrosine kinase encoded by the human cell’s genes. It is widely

expressed in various tissues, including the digestive system, central

nervous system, eyes, urinary reproductive system, etc. PTK2, through

its tyrosine kinase activity, participates in processes such as cell

adhesion, migration, and proliferation, playing a positive regulatory

role in cell population proliferation, ubiquitin-dependent protein

degradation processes, and protein phosphorylation. PTK2 plays a

role in vascular morphogenesis, neuronal generation, and tyrosine

autophosphorylation processes, and various factors, including

extracellular matrix, growth factors, and intracellular signaling

molecules, regulate its activity. Abnormal functioning of PTK2 is

associated with various diseases, including leiomyoma, small-cell

lung cancer, and pulmonary arterial hypertension (15). Recent

studies have found that PTK2 has been found to regulate cell

proliferation and migration in various cancers, making it a potential

target for drug development and disease treatment (16). In addition,

abnormal activation of PTK2 affects cell adhesion and migration and

plays an important role in metabolic regulation in tumor cells (17). In

acute myeloid leukemia (AML), abnormal expression of PTK2 is

associated with poor prognosis and treatment resistance (18);

therefore, exploring the role of PTK2 in APL is of great significance

for understanding the relationship between lipid metabolism disorders

and APL.

In recent years, the advancement of molecular biology and cell

biology technologies has provided new methods for studying the

relationship between cancer and lipid metabolism. Protein-protein

interaction (PPI) network analysis, gene enrichment analysis, and

techniques such as qPCR, Western blot, and ELISA for gene

expression have gradually been applied to explore the role of lipid

metabolism dysfunction in cancer pathogenesis. These technologies

reveal the functions of genes or proteins and provide a molecular-level

understanding of the relationship between lipid metabolism and tumor

cell behavior (19). Protein-protein interaction (PPI) network analysis

typically utilizes RNA-Seq, expression profiling arrays, or proteomic

analysis to identify a series of differentially expressed genes or proteins

between different sample groups. Subsequently, potential interactions

between encoded proteins are explored through a series of database
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searches, and a protein interaction network is constructed to describe

the relationships among these genes or proteins, such as physical

contact, targeted modulation, etc., ultimately elucidating meaningful

molecular regulatory networks within organisms (20). Despite

significant achievements in solid tumor research, these advances have

been relatively scarce in applying to hematologic malignancies such as

APL. To address this issue, this study utilizes a variety of

aforementioned technologies, combined with PPI network analysis,

to identify the key gene PTK2 related to lipid metabolism in APL,

aiming to systematically analyze its role in lipid metabolism

abnormalities in APL and provide new insights into the pathogenesis

of the disease.

This study explores the relationship between lipid metabolism

abnormalities in APL patients (such as changes in levels of TG,

LDL-C, etc.) and their risk stratification, bleeding tendencies, and

prognosis; validates the role of the PTK2 gene in the pathogenesis of

APL and its regulatory function in lipid metabolism through gene

expression and functional experiments; identifies lipid metabolism

indicators and the PTK2 gene as potential biomarkers for risk

stratification and prognosis assessment in APL, providing targets

for future personalized therapy and new drug development.

Specifically, we included 90 newly diagnosed APL cases and 99

healthy controls and analyzed the association between serum lipid

indicators and APL clinical features using non-parametric tests,

logistic regression, and survival analysis. Furthermore, through

experiments such as qPCR, Western blot, and ELISA, we

analyzed the expression of the PTK2 gene in APL cells and its

effects on cell proliferation, migration, apoptosis, and lipid

metabolism. The scientific significance of this study lies in

revealing the role of disrupted lipid metabolism in APL and its

regulatory relationship with PTK2, providing a new perspective for

the molecular mechanism research of APL; in terms of clinical

applications, the study results are expected to provide potential

biomarkers and targeted treatment targets for early diagnosis,

bleeding risk prediction, and formulation of personalized

treatment strategies for APL patients, thereby improving the

prognosis of APL patients to a certain extent.
Materials and methods

Patient source

This study included 90 patients diagnosed with acute

promyelocytic leukemia (APL) from 2014 to 2024 at the First

Affiliated Hospital of Henan University of Science and

Technology. The diagnoses of all patients were confirmed based

on the “Chinese APL Diagnosis and Treatment Guidelines” and the

“World Health Organization (WHO) Classification of Hematologic

Diseases” (21). The study included newly diagnosed APL patients

and excluded patients with the following conditions: ① other

malignant tumors or comorbidities (including known diseases

that can cause abnormal lipid levels, such as hypertension,

diabetes, cardiovascular diseases, thyroid dysfunction, etc.); ② use

of medications that may affect the results or have undergone specific

treatments, use of medications affecting lipid levels in the past 3
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months (such as statins, fibrates, etc.); ③ special populations, such

as pregnant women, minors, patients with mental illness; ④ factors

affecting compliance or follow-up, such as patients with incomplete

clinical data. The study ultimately included 90 APL patients and

recruited 99 healthy control individuals. The entire inclusion

process is shown in Supplementary Figure S1.

The inclusion criteria for the healthy control group were: ① no

autoimmune diseases, malignant tumors, or comorbidities

(including known diseases that can cause abnormal lipid levels,

such as hypertension, diabetes, cardiovascular diseases, thyroid

dysfunction); ② not having suffered from any gastrointestinal-

related diseases in the past 3 months, no use of medications

affecting lipid levels (such as statins, fibrates); ③gender, age-

matched with the case group; ④ patient informed consent;

⑤complete personal information. All healthy controls underwent

a comprehensive physical examination to exclude other factors that

could impact the study. The study received approval from the

institute’s Medical Ethics Committee.
Clinical experiment data

The collected data include gender, age, BMI, and various

laboratory indicators: white blood cell count (WBC), hemoglobin

(Hb), platelet count (PLT), prothrombin time (PT), activated partial

thromboplastin time (APTT), fibrinogen (FIB), D-dimer, alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total

cholesterol (TC), triglycerides (TG), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-

C), serum apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB),

creatinine (Cr), and uric acid (UA).
Definition group

This study evaluated the severity of bleeding in APL using the

World Health Organization (WHO) severity rating system

(Supplementary Table S1). APL patients were categorized into

two groups according to their bleeding grade: individuals without

significant bleeding (grades 0, 1, and 2) and those with significant

bleeding (grades 3 and 4).

At the time of diagnosis, risk stratification was based on the

WBC and PLT from the complete blood count (Supplementary

Table S2). APL was classified into three risk groups: high,

intermediate, and low. The risk stratification criteria are as

follows: WBC <10×109/L, PLT >40×109/L indicate low risk, WBC

<10×109/L, PLT ≤40×109/L indicate intermediate risk, and WBC

≥10×109/L indicate high risk.
Follow-up time

All patients received treatment according to the Chinese

guidelines for acute promyelocytic leukemia, and the follow-up

period was extended to one year from the onset of the disease. At
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the end of the one-year follow-up, patients were classified as either

deceased or alive.
Data processed

The data processing was conducted using SPSS version 27.0,

while GraphPad Prism 10.0 was utilized to create charts. R Studio was

employed to analyze the samples related to APL and hyperlipidemia.

The Shapiro-Wilk test was performed to evaluate the normal

distribution of the measurement data. Data following normal

distribution were presented as mean ± standard deviation (X ±

SD), while non-normally distributed data were presented as

median (M) with quartiles (P25, P75). Count data were reported as

the number of cases and percentages (%), with group comparisons

conducted using the Chi-square test. Pearson correlation analysis

assessed the correlation between blood lipids and APL. A significance

level of P<0.05 was used to determine statistical significance.
Downloaded hyperlipidemia and APL data

The APL datasets were obtained individually from the Gene

Expression Omnibus (GEO) database at https://www.ncbi.nlm.nih.gov/

geo/ (16). Specifically, the datasets GSE34577 (comprising 14 APL

and 18 standard bone marrow samples) and GSE 1010 (consisting

of 12 hyperlipidemia and 12 standard lipid samples) were utilized as

the training set, whereas GSE 3059 (comprising 32 samples

exhibiting abnormal lipid metabolism) served as the validation set.
Differences in genetic analysis

The GEO2R (22) is a convenient online tool for analyzing

differentially expressed genes (DEGs) in the Gene Expression

Omnibus (GEO) comprehensive database. This study, GEO2R

was used to identify significant differences in gene expression

between APL patients and healthy control samples. Specifically,

we analyzed gene expression data from the GSE34577 and GSE1010

datasets, screening out differentially expressed genes related to lipid

metabolism (selection criteria: |log2FC| > 1, P < 0.05). These genes

may be closely related to lipid metabolism disorders in APL and are

potential targets for further research. By cross-analyzing DEGs

from different datasets using R Studio, identifying co-expressed

genes, and validating the expression status of these genes in an

independent validation set, the reliability of the screening results is

ensured. This step provides a clear gene candidate set to explore the

mechanism of lipid metabolism in APL.
The PPI network construction

In order to further elucidate the function and interactions of

lipid metabolism-related genes in APL, we constructed a Protein-

Protein Interaction (PPI) network using the online database

STRING (https://string-db.org/cgi/input.pl) (23). STRING is a
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database that analyzes protein interactions, integrating

experimental data, text mining, and prediction information. PPI

network analysis can reveal potential collaborative mechanisms of

proteins encoded by target genes in lipid metabolism and the

pathogenesis of APL. The STRING database integrates

experimental data and prediction information to help identify

direct or indirect interactions of proteins related to lipid

metabolism. Subsequently, the PPI network was visualized using

Cytoscape 3.8 technology (24) a biological network visualization

tool. Core genes in key hub positions in the network were identified

by applying network topological parameters (such as node degree

and betweenness centrality). Identifying key nodes in the network

suggests that they may be involved in the pathogenesis and

progression of APL through regulating lipid metabolism. The

construction of the PPI network provides a foundation for

elucidating the molecular functions of key genes.
Functional enrichment analysis

In order to further explore the biological functions of the

identified differentially expressed genes and the signaling

pathways they participate in, we performed enrichment analysis

on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways using the DAVID (http://

www.david.abcc.ncifcrf.gov/) (25). GO analysis focused on the

molecular functions of genes (such as lipid transport, regulation

of lipid metabolism, etc.) and biological processes (such as cell

proliferation and migration), while KEGG pathway analysis

revealed significant enrichment of these genes in lipid

metabolism-related pathways (such as the PPAR signaling

pathway). These results further support the hypothesis that PTK2

may regulate the pathogenesis of APL through lipid metabolism-

related pathways, providing a theoretical basis for subsequent

functional validation.
Cell culture

For the study of acute promyelocytic leukemia (APL), NB4

(ACC 207, DSMZ) and HL-60 (CCL-240™, ATCC) cell lines were

chosen as models, while CD34+ cell line (PCS-800-012™, ATCC)

was selected as a negative control. During culture, RPMI 1640

medium (Thermo Fisher Scientific, Cat No. 11875093) was used,

supplemented with 10% fetal bovine serum (FBS, Thermo Fisher

Scientific, Cat No. 10099141) and 1% penicillin-streptomycin

(Penicillin-Streptomycin, Thermo Fisher Scientific, Cat No.

15140122) for NB4 cells, and 20% FBS and 1% penicillin-

streptomycin for HL-60 cells. Cells were thawed rapidly in a 37°C

water bath after cryopreservation, washed with RPMI 1640 medium

to remove DMSO (Dimethyl Sulfoxide, DMSO, Sigma-Aldrich, Cat

No. D4540), resuspended in culture medium, and seeded in T25 cell

culture flasks (Corning, Cat No. 430639). The cells were then

cultured in a 37°C, 5% CO₂ cell culture incubator for 24 hours

for acclimation. Sub-culturing was performed when cell density
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reached 70-80%, involving washing, digestion, centrifugation, and

reseeding in a fresh culture medium. Long-term storage of cells

involved collection at appropriate densities, resuspending in a

freezing medium containing 10% DMSO and 90% FBS (CryoStor,

STEMCELL Technologies, Cat No. 3797), aliquoting into cryovials

(Thermo Fisher Scientific, Cat No. 373857), gradual cooling, and

transfer to liquid nitrogen storage.
RNA extraction

Total RNA from NB4 and HL-60 cells was extracted using

TRIzol reagent. Cells or tissue samples were lysed in TRIzol reagent

under RNase-free conditions. After adding and mixing chloroform,

centrifugation was carried out to separate phases, followed by

precipitation of RNA with isopropanol, an ethanol wash to

remove impurities, and final dissolution in DEPC-treated water.

RNA quality and concentration were verified using Nanodrop or

agarose gel electrophoresis.
Reverse transcription

The extracted RNA was reverse-transcribed using the

SuperScript IV First-Strand Synthesis System. Following the

manufacturer’s protocol, the reaction included 1 µg of RNA,

reverse transcriptase, random primers, dNTPs, and reaction

buffer. The reaction was typically incubated at 42°C for 60

minutes, followed by heat inactivation at 75°C for 5 minutes. The

synthesized cDNA was stored for subsequent qPCR analysis.
qPCR

qPCR analysis was performed using SYBR Green PCR Master

Mix to assess the expression levels of PTK2 and the reference gene

(GAPDH). The qPCR cycling conditions were set according to the

optimal annealing temperature for each primer, typically running

40 cycles of denaturation (95°C 15 seconds), annealing (60°C 30

seconds), and extension (72°C 30 seconds). Data analysis involved

recording fluorescence signals, calculating relative expression levels

based on Ct values, and utilizing the 2-DDCt method.
Western blot

Total protein from APL cells was extracted using RIPA buffer.

Cells were lysed in RIPA buffer with protease inhibitors to prevent

protein degradation. The lysate was clarified by centrifugation, and

the protein concentration was quantified. SDS-PAGE separated

protein samples, transferred to a PVDF membrane, and incubated

with specific antibodies against PTK2 and the reference protein

(GAPDH). After washing, secondary antibodies were applied, and

protein bands were visualized using an ECL detection system.

Protein expression was analyzed using image analysis software.
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Cell transfection

PTK2 gene was knocked down using small interfering RNA

(siRNA) to study its function in APL cells (Supplementary Figure S2).

Specific siRNAs targeting PTK2 were designed, and non-specific

siRNA (siNC) was used as a control. Transfection was performed

with Lipo3000 reagent. Cells were seeded in plates, and the

transfection mixture was added to the medium for cell uptake.

Transfected cells were cultured for 24-48 hours to allow for gene

knockdown. PCR validated knockdown efficiency, and si PTK2#3

showed the highest silencing efficiency for subsequent experiments.
ELISA

ELISA experiments were conducted to detect low-density

lipoprotein (LDL) and fibrinogen (FIB) in NB4 and HL-60 cells.

Cells were lysed after cell collection and stimulation, and LDL and

FIB were extracted for detection using ELISA kits. Absorbance was

measured using an ELISA reader, and concentrations were

calculated from standard curves.
CCK-8 assay

Cell proliferation was assessed using the CCK-8 assay kit. APL

cells were seeded in plates, CCK-8 solution was added and

incubated, and absorbance was measured to determine

cell proliferation.
Cell apoptosis

Cell apoptosis was detected using Annexin V-FITC/PI staining

and flow cytometry. Stained cells were analyzed to determine the

apoptosis rate based on fluorescence signals.
Migration assay

Cell migration assay was performed using Transwell chambers

to evaluate the impact of PTK2 on cell migration ability. Cells were

seeded in the upper chamber and allowed to migrate to the lower

chamber. After staining and fixation, migrated cells were counted

under a microscope.
Data analysis

Data analysis was conducted using SPSS 27.0 for statistical

analysis and GraphPad Prism 10.0 for graphing. R Studio was used

to analyze samples related to APL and hyperlipidemia. Shapiro-

Wilk test was utilized for normality assessment. Data were

presented as mean ± standard deviation for normally distributed

data and median with quartiles for non-normally distributed data.
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The chi-square test was used for intergroup comparisons. Pearson

correlation analysis evaluated the association between lipid levels

and APL. Statistical significance was set at P<0.05.
Results

General information

This study included 90 newly diagnosed patients with APL and

99 healthy individuals who presented at our hospital during the

same period (Table 1). In the APL group, 32 male patients

constituted 35.2% of the sample, and 58 female patients

represented 63.7% of the cohort. Among the healthy control

group, 55 male participants comprised 55.6%, and 44 female

participants accounted for 44.4%. The average ages of the healthy

control group and the APL patient group were 48 ± 2.2 years and 49

± 2.2 years, respectively, with no significant statistical difference (P

= 0.488)(Table 1). Therefore, the differences in lipid metabolism

indicators in this study are not influenced by age as a

confounding factor.

The results showed that in APL patients, the levels of lactate

dehydrogenase (LDH) and triglycerides (TG) were significantly

higher than those in the control group (P < 0.001)(Table 1).

Conversely, HDL, APOA1, and LDL levels were significantly

reduced in the APL group compared to the controls (P < 0.05)

(Table 1). However, the two groups had no significant differences in

APOB and TC levels (P > 0.05)(Table 1). Furthermore, WBC, Hb,

PLT, and other indices were notably lower in patients with APL

compared to the control group (P < 0.05)(Table 1). Significant

variations were also observed in PT, APTT, D-dimer, and

fibrinogen levels (P < 0.05)(Table 1). Although ALT, AST, CR,

and CK displayed statistically significant differences between the

APL and control groups (P < 0.05)(Table 1), their median values fell

within the normal reference ranges, indicating no significant

clinical implications.
LDH and TG increase the risk of APL

The research results indicate that the elevation of lactate

dehydrogenase (LDH) and triglyceride (TG) levels is significantly

associated with the risk of acute promyelocytic leukemia (APL) (26,

27). The univariate logistic regression analysis results (Supplementary

Table S3) indicated that factors associated with APL included LDH

(Wald = 33.64, P = 0.000), TG (Wald = 24.69, P = 0.000), HDL-C

(Wald = 6.45, P = 0.01), and LDL-C (Wald = 4.71, P = 0.03).

However, no significant correlation was found between TC (P =

0.55), APOA1 (P = 0.13), and APL (Supplementary Table S3).

Subsequent analysis revealed that gender (Wald = 7.48, P = 0.006),

BMI (Wald = 7.30, P = 0.007), ALT (Wald = 11.04, P = 0.00), AST

(Wald = 12.33, P = 0.00), Cr (Wald = 5.59, P = 0.02), and UA (Wald

= 5.84, P = 0.02) were correlated with APL (Supplementary Table S3).

Following univariate analysis, a logistic regression model was

employed to perform a multifactor analysis of serum lipid and LDH

levels. The detailed results are presented in Table 2. In the adjusted
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results without confounding variables (Model 1), LDH and TC

exhibited a positive correlation with the incidence of APL. After

adjusting for gender and BMI in Model 2, the risk of APL increased

by 2.4% per unit increase in LDH (OR=1.024, 95% CI: 1.01-1.03)

and by 80.1% per unit increase in TG (OR=1.081, 95% CI: 1.09-

2.99). After further adjustment for AST, ALT, and UA in Model 3,

the likelihood of APL rose by 2.3% per unit rise in LDH (OR=1.023,

95% CI: 1.01-1.03) and by 1.113 times per unit increase in LDL

(OR=2.113, 95% CI: 1.13-3.95). LDH and TG emerged as

independent risk factors associated with an increased APL risk.
TG and HDL-C associated with the risk
stratification of APL

Risk stratification of acute promyelocytic leukemia (APL) is

significantly associated with various metabolic indicators, and this

finding holds important clinical significance for early risk

prediction of APL (26, 27). In a cohort of 90 APL patients, 18

individuals (19.8%) were categorized as high risk, 53 patients

(58.2%) as medium risk, and 19 patients (20.9%) as low risk

(Supplementary Table S4). The levels of LDH showed a

progressive rise according to the risk stratification in various APL

classifications, with a statistically significant variation observed

among the three risk groups (P < 0.001) (Figure 1). Concurrently,

there was a gradual decline in HDL-C levels as the risk level

increased, with the most notable difference observed between the

low-risk and medium-high-risk groups (P < 0.001) (Figure 1). TG

levels were elevated in the high-risk category and decreased in the

medium-low-risk category, with a statistically significant contrast

noted between the low-risk and high-risk groups (P < 0.05)

(Figure 1). The FIB level increased with a higher risk level,

demonstrating a statistically significant difference between the

low-risk and high-risk groups. Additionally, the PT value

exhibited a prolonged elevation in the middle and high-risk

groups, with a notably significant difference from the low-risk

group (P < 0.05) (Figure 1). No significant differences among

risk-stratified APL categories were found in serum lipid indexes,

including APOA1, APOB, LDL, and TC. Furthermore, no

significant differences among the groups were observed in Cr,

AST, and ALT levels (P > 0.05) (Figure 1).
TABLE 2 The correlations between serum lipid index indicators and APL using multivariate logistic regression analysis.

Model 1 Model 2 Model 3

P OR (95% CI) P OR (95% CI) P OR (95% CI)

LDH 0.001* 1.024 (1.02,1.03) 0.000* 1.024 (1.01,1.03) 0.000* 1.023 (1.01,1.03)

TG 0.013* 1.848 (1.14,2.99) 0.023* 1.801 (1.09,2.99) 0.019* 2.113 (1.13,3.95)

HDL-C 0.876 0.979 (0.76,1.27) 0.837 0.869 (0.23,3.30) 0.892 0.908 (0.22,3.68)

LDL-C 0.15 0.625 (0.33,1.19) 0.223 0.662 (0.34,1.29) 0.111 0.55 (0.26, 1.15)
Model 1, crude model.
Model 2, adjusted for BMI, Sex.
Model 3, adjusted for BMI, Sex, Cr, UA, ALT, AST.
LDH, Lactate dehydrogenase; TG, Triglyceride; HDL-C, High density lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; CI, Confidence interval.
*P<0.05.
Bold values indicates significant p<0.05 results.
TABLE 1 General information.

Clinical
Characteristics

APL Control P

Year 49 ± 2.2 48 ± 2.2 0.488

Sex (N) 0.006*

Male 32 55

Female 58 44

BMI (Kg/m2) 24.46 23.2 0.024*

PT (s) 12.7 (11.8,14.8) 12.4 (11.9,13.0) <0.001*

APTT (s) 27.0 (23.3,31.2) 31.7 (28.9,34.3) <0.001*

D-Dimer (mg/L) 4.04 (3.06,14.65) 0.71 (0.55,1.51) <0.001*

FIB (g/L) 1.71 (1.06,2.48) 2.85 (2.40,3.60) <0.001*

WBC (10*9/L) 1.55 (0.90,4.35) 5.89 (4.78, 7.33) <0.001*

Hb (g/L) 83.5 (64.8,101.0) 138 (120,150) <0.001*

PLT (10*9/L) 26.1 (13.8.40.5) 224.0 (186.5,270.0) <0.001*

ALT (U/L) 21 (15,38) 17 (12,24) <0.001*

AST (U/L) 23 (17,33) 19 (16,24) <0.001*

ALP (U/L) 80 (67,99) 73 (61,98) 0.308

LDH (U/L) 254 (163,373) 162 (141,182) <0.001*

TC (mmol/L) 4.26 (3.91,4.87) 4.33 (3.77,5.07) 0.264

TG (mmol/L) 1.93 (1.13,2.95) 1.15 (0.77,1.47) <0.001*

HDL-C (mmol/L) 0.95 (0.86, 1.27) 1.18 (1.06,1.37) <0.001*

Apo A1 (g/L) 1.07 (0.94,1.32) 1.20 (1.07,1.38) 0.045*

ApoB (g/L) 0.90 (0.77,0.99) 0.87 (0.71,1.00) 0.225

CR (mmol/L) 60.0 (48.8,69.8) 55.0 (18.0,69.1) 0.031*

LDL-C (mmol/L) 2.34 ± 0.60 2.53 ± 0.62 0.028*

UA (mmol/L) 250.25 ± 85.68 282.5 ± 92.325 0.014*
WBC, white blood cell; Hb, hemoglobin; PLT, platelets; PT, Prothrombin time; APTT, Partial
prothrombin time; FIB, fibrinogen; ALT, Alanine aminotransferase; AST, Aspartate
aminotransferase; ALP, Alkaline phosphatase; CR, Creatinine; UA, Uric acid; LDH, Lactate
dehydrogenase; TC, Total cholesterol; TG, Triglyceride; HDL-C, High density lipoprotein
cholesterol; LDL-C, Low density lipoprotein cholesterol; Apo A1, Apolipoprotein A1; ApoB,
Apolipoprotein B; *P<0.05.
Bold values indicates significant p<0.05 results.
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PT, FIB, ALT, HDL-C, and TG were incorporated into the

multiple-ordered logistic regression model, and the corresponding

outcomes are presented in Table 3 below. The TG level directly

correlated with APL risk classification, whereas HDL showed an

inverse relationship with APL risk stratification. Therefore,

increased TG and decreased HDL levels were associated with

higher APL risk stratification.
Lipid levels were lower in people at higher
blood risk

In acute promyelocytic leukemia (APL), changes in lipid

metabolism are closely related to the risk of bleeding, especially in

patients at high risk of hemorrhage. The significant reduction in

serum lipid levels in high-risk blood patients provides a basis for

further exploration of its potential mechanism (28, 29).

Supplementary Table S5 shows comprehensive statistical data of
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all patients (including males and females) categorized as having a

high risk of bleeding APL according to the WHO grading criteria.

Specifically, compared to 47 low-risk bleeding APL patients, the

levels of apolipoprotein A1 (APOA1) in 43 high-risk bleeding

patients were significantly reduced (P=0.016) (Figure 2),

indicating that metabolic abnormalities may play a crucial role in

bleeding risk. Although LDH showed a rising trend in the high-risk

blood group, it did not reach a significant difference (Figure 2). In

addition, other lipid indicators such as total cholesterol (TC),

triglycerides (TG), low-density lipoprotein (LDL), and high-

density lipoprotein (HDL) showed no statistical differences

between the high and low-risk groups (Figure 2). These results

further suggest that changes in blood lipid levels in high-risk APL

patients are closely related to the increased risk of bleeding,

especially the possible association between low LDL-C levels and

higher bleeding risk. These findings help identify high-risk bleeding

patients early in clinical practice and improve the treatment

management strategy for APL.
FIGURE 1

Differences in the levels of serum lipid metabolism-related factors in APL patients in different risk-stratified groups. (A) Comparison of serum lipid
metabolism factors levels in APL patients in different risk-stratified groups. This figure shows the levels of serum total cholesterol (TC, mmol/L),
triglycerides (TG, mmol/L), high-density lipoprotein cholesterol (HDL-C, mmol/L), low-density lipoprotein cholesterol (LDL-C, mmol/L),
apolipoprotein A1 (ApoA1, g/L), and apolipoprotein B (ApoB, g/L) in patients with acute promyelocytic leukemia (APL) in the high-risk group,
intermediate-risk group, and low-risk group. (B) Comparison of levels of serum coagulation and inflammation-related factors in APL patients in
different risk-stratified groups. This figure shows the levels of plasma prothrombin time (PT, s), activated partial thromboplastin time (APTT, s), D-
dimer (mg/L), white blood cells (WBC, 109/L), alanine aminotransferase (ALT, U/L), and aspartate aminotransferase (AST, U/L) in patients with APL in
the high-risk group, intermediate-risk group, and low-risk group. (C) Comparison of levels of serum biochemical factors in APL patients in different
risk-stratified groups. This figure shows the levels of hemoglobin (Hb, g/L), platelets (PLT, 109/L), alkaline phosphatase (ALP, U/L), lactate
dehydrogenase (LDH, U/L), creatinine (Cr, mmol/L), and uric acid (UA, mmol/L) in patients with APL in the high-risk group, intermediate-risk group,
and low-risk group. Data are presented as mean ± standard deviation or median (interquartile range), and differences between groups were
compared using one-way analysis of variance or Kruskal-Wallis test, *P<0.05, **P<0.01, ***P<0.0001.
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LDL associated with poor prognosis in APL

Low-density lipoprotein (LDL) is not only associated with

cardiovascular disease, but recent studies have shown that it also

plays a role in tumor progression and inflammation. In acute

promyelocytic leukemia (APL), changes in LDL levels may be

associated with prognosis through their effects on inflammation

and cell apoptosis (30). Our study employed univariate and

multivariate regression analyses to investigate the association

between several biomarkers and Acute Promyelocytic Leukemia

(APL) prognosis. The results revealed significant associations

between APL prognosis and levels of PT (P = 0.01), FIB (P =

0.004), LDH (P = 0.003), and LDL [P = 0.038 (Table 4)]. Subsequent

multiple logistic regression models demonstrated that FIB and LDL

were independent risk factors, exerting a notable influence on the

prognosis of APL. Specifically, each additional unit increase in FIB

levels was associated with a substantial 91.4% decrease in the risk of

death for APL patients (Table 4). Similarly, an increase of one unit
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in LDL levels corresponded to an 82% lower risk of mortality

among individuals with APL (Table 4). This suggests that LDL and

FIB may have potential clinical value as independent biomarkers in

the prognostic assessment of APL patients.
No association between APL survival and
LDH or lipids

The APL patients were stratified into higher and lower groups

based on the median TC, TG, HDL-C, ApoA1, ApoB, and LDL-C

values. Kaplan-Meier analysis was conducted, with the results in

Figure 3 revealing that neither blood lipid levels nor LDH had a

statistically significant impact on APL survival (P > 0.05).
Differential expression, interaction
network, and functional enrichment
analysis of PTK2

In this study, we first screened differentially expressed genes by

analyzing the GSE64577 and GSE1010 datasets and ultimately

confirmed PTK2 as a key gene. The research flowchart in

Figure 4A shows the process of screening differentially expressed

gene PTK2 from the dataset, including using GeneMANIA for

interaction network analysis and enrichment analysis.

In the GSE64577 dataset (left side of Figure 4B), 404 genes were

upregulated, and 871 genes were downregulated, while in the

GSE1010 dataset (right side of Figure 4B), 89 genes were

upregulated and 164 genes were downregulated. By applying

stringent criteria (P value <0.05 and |log2FC|>1), 6 differentially

expressed genes were selected in the dataset, as shown in Figure 4C.

Subsequently, revalidation in the external dataset GSE3059

confirmed PTK2 as the final differentially expressed gene.
TABLE 3 Exploring the associations between indicators of serum lipid
index and different risk stratification APL using multivariate
logistic regression.

B STD Wals P 95% CI

LDH 0.002 0.002 1.57 0.21 (-0.001, 0.006)

TG 0.284 0.134 4.472 0.034* (0.021, 0.548)

HDL-C 2.087 0.722 8.347 0.004* (-3.503, -0.671)

PT 0.148 0.11 1.816 0.178 (-0.067 - 0.363)

FIB 0.413 0.194 4.522 0.033 (-0.794, -0.032)

ALT 0.013 0.01 1.883 0.17 (-0.006, 0.032)
LDH, Lactate dehydrogenase; TG, Triglyceride; HDL-C, High-density lipoprotein cholesterol;
PT, Prothrombin time; FIB, fibrinogen; ALT, Alanine aminotransferase.
*P<0.05.
Bold values indicates significant p<0.05 results.
FIGURE 2

Differences in the levels of serum lipids at different bleeding risk stratifications. This figure shows the levels of serum total cholesterol (TC, mmol/L),
triglycerides (TG, mmol/L), high-density lipoprotein cholesterol (HDL-C, mmol/L), low-density lipoprotein cholesterol (LDL-C, mmol/L),
apolipoprotein A1 (ApoA1, g/L), and apolipoprotein B (ApoB, g/L) in patients classified into low bleeding risk group (low) and high bleeding risk group
(high). *P < 0.05.
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GeneMANIA analysis identified the top 20 predicted

interacting proteins with PTK2, including BCAR1, RAP1B, PXN,

UNC5C, SRC, GRB7, GRB2, CRK, DCC, TLN1, CASP7, PTPRA,

PTRH2, VCL, CASS4, EDIL3, CCNA1, EFS, ITGB5, and GIT1, as
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shown in Figure 4D. Network analysis showed that 70.9% of the

proteins involved physical interactions, and 16.01% were co-

expressed proteins. In addition, 4.96% were predicted

interactions, 3.22% were involved in co-localization, 2.63% had

gene-level interaction correlations, 1.74% were associated with

pathways, and 0.55% shared protein domains. Furthermore, genes

related to PTK2 may exhibit standard biological functions and

pathways. Further functional analysis using GeneMANIA revealed

that PTK2, SRC, and GRB2 can interact in multiple cellular

signaling pathways, including the ERBB signaling pathway, FC

receptor signaling pathway, and Fc receptor-mediated stimulation

signaling pathways. They also regulate protein kinase B signaling

and transmembrane receptor protein tyrosine/threonine kinase

signaling. PTK2 and CRK are involved in the protein kinase B

signaling pathway, FC receptor signaling pathway, and Fc receptor-

mediated stimulation signaling pathway. PTK2, BCAR1, and GRB7

are related to the ERBB signaling pathway, while PXN is associated

with the tyrosine/threonine kinase signaling pathway.

To enhance our understanding of the functional role of PTK2, we

conducted functional and pathway enrichment analysis of PTK2 and

its interacting protein genes (Figure 4E). In biological processes, focal

adhesions play a core role in cell-matrix adhesion, regulation of cell-

matrix adhesion, and assembly of cell-matrix connections. In cellular

structures, focal adhesions primarily localize to cell-matrix

connections, adhesion plaques, and the leading edge of cells.

Regarding molecular functions, focal adhesions mainly bind to

integrins, adrenergic receptors, and actin. Analysis from the KEGG

database shows significant enrichment of biological functions related

to adhesion plaques and regulation of actin cytoskeleton in the cell.
The role of PTK2 in the proliferation,
migration, and lipid metabolism of
APL cells

Based on the results of bioinformatics analysis, to further

explore the specific functions of PTK2 in acute promyelocytic

leukemia (APL), we conducted cell experiments to validate

further its role in cell proliferation, migration, and lipid

metabolism. The experimental results showed that the expression

of PTK2 in multiple cell lines was significant, with the expression

levels of PTK2 in APL (NB4 and HL-60) significantly higher than

the control group (CD34+), indicating that PTK2 plays an

important role in the occurrence and development of APL

(Figure 5A). We ultimately chose NB4 and HL-60 for further

study based on these results. To further investigate the function

of PTK2, we constructed a cell model with PTK2 knockdown, and

the results showed a significant decrease in PTK2 expression in the

knockdown group (Figure 5B). Cell proliferation ability assessed by

the CCK-8 experiment showed a significant decrease in cell

proliferation ability with PTK2 knockout (P < 0.01) (Figure 5C).

In addition, results from Annexin V-FITC/PI staining showed that

the apoptosis rate of the knockout group cells was significantly

higher than that of the control group (P < 0.01), indicating that

PTK2 knockout significantly increased cell apoptosis (Figure 5D).

In migration experiments, the overexpression of PTK2 significantly
TABLE 4 Univariate and multi-factor analysis of prognostic correlation
in APL.

Univariate analysis
Multivariate
analysis

P OR (95% CI) P OR (95% CI)

Year 0.096
1.037

(0.994, 1.082)

Gender 0.756
1.238

(0.322, 4.757)

BMI (Kg/m2) 0.772 0.97 (0.791, 1.19)

PT (s) 0.01*
1.315

(1.068, 1.618)
0.344

1.161
(0.852, 1.583)

APTT (s) 0.978
1.001

(0.917, 1.093)

D-Dimer (mg/L) 0.396
1.023

(0.971, 1.077)

FIB (g/L) 0.004*
0.059

(0.009, 0.409)
0.031*

0.086
(0.009, 0.802)

WBC (10*9/L) 0.838
1.003

(0.979, 1.027)

Hb(g/L) 0.511
0.991

(0.965, 1.018)

PLT (10*9/L) 0.659
0.996

(0.977, 1.015)

ALT (U/L) 0.578 0.992 (0.965, 1.02)

AST (U/L) 0.712
1.004

(0.982, 1.026)

ALP (U/L) 0.718 0.996 (0.972, 1.02)

LDH (U/L) 0.003*
1.004

(1.002, 1.007)
0.535

1.001
(0.997, 1.005)

TC (mmol/L) 0.687
0.882

(0.477, 1.627)

TG (mmol/L) 0.836 0.965 (0.69, 1.35)

HDL-C
(mmol/L)

0.389
0.425

(0.061, 2.972)

LDL-C
(mmol/L)

0.038*
0.276

(0.081, 0.934)
0.031* 0.18 (0.038, 0.858)

Apo A1(g/L) 0.726 0.718 (0.112, 4.58)

ApoB (g/L) 0.197 2.95 (0.57, 15.262)

Cr (mmol/L) 0.621 1.004 (0.988, 1.02)

UA (mmol/L) 0.324 1.003 (0.997, 1.01)
WBC, white blood cell; Hb, hemoglobin; PLT, platelets; PT, Prothrombin time; APTT, Partial
prothrombin time; FIB, fibrinogen; ALT, Alanine aminotransferase; AST, Aspartate
aminotransferase; ALP, Alkaline phosphatase; CR, Creatinine; UA, Uric acid; LDH, Lactate
dehydrogenase; TC, Total cholesterol; TG, Triglyceride; HDL-C, High-density lipoprotein
cholesterol; LDL-C, Low-density lipoprotein cholesterol; Apo A1, Apolipoprotein A1; ApoB,
Apolipoprotein B. *P<0.05.
Bold values indicates significant p<0.05 results.
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promoted the migration ability of NB4 and HL-60 cells, while PTK2

knockout significantly inhibited cell migration ability (Figure 5E).

Further, ELISA results indicated that the overexpression of PTK2

significantly increased the levels of low-density lipoprotein (LDL)

and fibrinogen (FIB) in NB4 and HL-60 cells (P < 0.01), while in the

PTK2 knockout group, the expression levels of LDL and FIB were

significantly decreased (P < 0.01) (Figure 5F). These results

demonstrate that PTK2 plays an important biological role in APL

cells by regulating lipid metabolism and promoting cell

proliferation and migration.
Discussion

This study analyzed the serum lipid levels of patients with acute

promyelocytic leukemia (APL) and healthy controls, showing

significant lipid metabolism abnormalities in APL patients,

characterized by elevated triglycerides (TG) and decreased levels

of high-density lipoprotein cholesterol (HDL-C) and low-density

lipoprotein cholesterol (LDL-C). Previous studies (31) have also

mentioned lipid metabolism abnormalities in APL patients but only

pointed out that the increase in TG levels may be related to the

pathogenesis of APL, especially in connection with lipid metabolism

disorders during ATRA therapy (13). This study also found that the

PTK2 gene may play a significant role in APL by regulating lipid
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metabolism, cell proliferation, and migration processes.

Furthermore, serum lipid levels may have potential indicative

significance in the pathogenesis and risk stratification of APL

patients, suggesting that the PTK2 gene could become a new

therapeutic target, providing a new perspective for understanding

the pathogenesis of APL.

Several studies have shown lipid metabolism reprogramming in

various malignant tumors, with significant upregulation of lipid

synthesis in solid tumors and abnormal activation of lipid synthesis

pathways in blood tumors (32). Adipocytes have adverse regulatory

effects in the bone marrowmicroenvironment, as they can surround

tumor tissue to evade destruction and secrete metabolic regulators

that affect the energy metabolism and insulin sensitivity of

surrounding cells, thereby modulating the bone marrow

microenvironment, inhibiting normal hematopoietic stem cell

function, and promoting leukemia cell proliferation and

differentiation (33, 34). Research indicates that changes in

adipocyte metabolism in close contact with leukemia cells involve

increased phosphorylation of adipose lipase and accelerated

lipolysis, transferring fatty acids to meet the nutritional needs of

leukemia cells. Molecular mechanism studies have found high fatty

acid-binding protein FABP4 expression in leukemia cells, which

competitively consume fatty acids. Knocking down FABP4 in vitro

or using small-molecule inhibitors significantly inhibits leukemia

cell proliferation, and downregulating FABP4 can inhibit leukemia
FIGURE 3

Effects of different lipid levels and LDH levels on the survival rate of APL patients. Kaplan-Meier survival analysis compared the impact of different
lipid levels (including (A) Total cholesterol (TC), (B) Triglycerides (TG), (C) High-density lipoprotein cholesterol (HDL-C), (D) Low-density lipoprotein
cholesterol (LDL-C), (E) Apolipoprotein A1 (ApoA1), (F) Apolipoprotein B (ApoB)) and Lactate dehydrogenase (LDH) levels on the survival rate of
patients with acute promyelocytic leukemia (APL). The results show that neither lipid nor LDH levels significantly impact the survival rate of APL
patients (P > 0.05).
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progression and extend mouse survival (35). Adipocytes influence

leukemia cell differentiation and survival and the cytotoxic effects of

radiotherapy and chemotherapy drugs. When adipocytes are

present, leukemia cells exhibit reduced responsiveness to
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doxorubicin, leading to increased survival rates due to the

absorption of chemotherapeutic agents by adipocytes, lowering

their concentration around leukemia cells and altering the

molecular structure of chemotherapeutic drugs to render them
FIGURE 4

Differential gene expression screening, PTK2 interaction network, and functional enrichment analysis. (A) The research flowchart demonstrates the
process of selecting differentially expressed genes from the GSE64577 and GSE1010 datasets, ultimately confirming PTK2 as a key gene. (B) (Left)
Volcano plot of up-regulated and down-regulated genes in the GSE64577 dataset; (Right) Volcano plot of up-regulated and down-regulated genes
in the GSE1010 dataset. Red represents up-regulated genes, and green represents down-regulated genes. (C) Six differentially expressed genes were
selected through strict criteria (P value <0.05 and |log2FC|>1). (D) In GeneMANIA analysis, the top 20 proteins were predicted to interact with PTK2
and their interaction networks, with corresponding networks and functions marked in different colors. (E) Functional and pathway enrichment
analysis results of PTK2 and its interacting protein genes. The redder the color, the lower the p-value; the greener the color, the higher. The size of
the circle represents the proportion of genes.
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inactive or induce leukemia cells to be unresponsive, thereby

reducing their cytotoxicity (36). This study focuses on changes in

lipid components such as HDL-C and LDL-C, revealing the

association of elevated TG levels with high-risk APL patients,

which is consistent with previous research results in acute

myeloid leukemia (AML) and other cancers (37). It indicates that

lipid metabolism abnormalities significantly affect APL

development and progression. Moreover, the study finds a

potential link between high triglyceride levels and the PPAR

signaling pathway, suggesting that monitoring lipid metabolism

abnormalities as indicators for risk stratification in APL progression

is clinically applicable and feasible. Future research can further

explore the relationship between the fatty acid-binding protein

FABP4 and this pathway.

APOA1 plays a key role in high-density lipoprotein transport,

exhibiting anti-inflammatory and anti-apoptotic characteristics (38). It

may also indirectly affect coagulation processes by improving vascular

health and blood circulation (39, 40). Previous studies have shown the

significant cytotoxic effects of oxidized low-density lipoprotein (ox-

LDL), impacting cell function and closely linked to cardiovascular

events and inflammatory reactions in hematological diseases (41, 42).
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Given this, further investigation into the role of LDL-C in bleeding risk

in APL is essential. This study found that low levels of APOA1 are

associated with bleeding risk, while low levels of LDL-C are associated

with poor prognosis. This suggests that lipid metabolism abnormalities

affect the onset of APL and involve complications and prognosis.

Changes in blood lipid levels can reflect the disease state and risk of

complications in APL patients, providing theoretical support for lipid

metabolism as a potential biomarker for bleeding tendency in APL

patients. Additionally, the study reveals that patients at high risk of

bleeding have significantly lower Hb levels than those at low risk (65 vs.

93 g/L, P < 0.001). The decrease in Hb levels may reflect bleeding

severity and bone marrow hematopoietic function inhibition. Low Hb

levels are important indicators of deteriorating conditions in APL

patients, notably associated with bleeding risks. Furthermore, since

there are gender differences in normal Hb levels between males and

females, the Hb data in the study are comprehensive statistical results

for all patients. Future studies may further analyze stratified data by

gender to more comprehensively assess the impact of gender on

anemia and bleeding risks.

In recent years, there have been significant advances in LDH

therapy research for solid tumors, as inhibiting LDH can improve the
FIGURE 5

Expression and functional experiments of PTK2 in APL. (A) The mRNA expression levels of PTK2 in different cells were detected by qRT-PCR, n=3, t-test
analysis, *** represents p<0.001. (B) Construction of the PTK2 knockout model was confirmed by Western blot and qRT-PCR, n=3. Red represents NB4,
blue represents HL-60, t-test analysis, ** represents p<0.01, *** represents p<0.001; (C) Cell proliferation capacity was evaluated by CCK-8 experiment,
n=5, two-way ANOVA analysis, *** represents p<0.001. (D) Cell apoptosis rate was detected by Annexin V-FITC/PI staining method, n=3, t-test analysis,
*** represents p<0.001. (E) Cell migration ability was evaluated by Transwell experiment, n=3, t-test analysis, *** represents p<0.001. (F) ELISA, n=5,
detected levels of LDL and FIB. The statistical method used a t-test; P < 0.05 was statistically significant, and *** represents p<0.001.
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tumor microenvironment and weaken the immunosuppressive cell

action (43, 44). Changes in serum lipid markers contribute to risk

stratification in APL, with TG and HDL-C levels particularly critical.

Moreover, a significant increase in LDH levels could provide references

for the diagnosis and prognosis of APL, as it has already been

confirmed as an adverse prognostic indicator in solid tumors (14).

The findings of this study pave the way for new clinical applications in

the early diagnosis and personalized treatment of APL, revealing the

unique significance of lipid profiles in risk stratification and prognosis

of APL. Therefore, it is recommended to introduce lipid metabolism

and LDH monitoring in APL patient management and consider the

PTK2 gene as a potential target gene for developing more precise APL

treatment strategies.

However, this study has its limitations. Firstly, the sample size is

small, with only 90 cases of APL patients, leading to insufficient

representativeness of the sample. The data is derived from a single-

center study with a short follow-up time and no consideration of other

treatments’ potential mixed effects on lipid metabolism, potentially

resulting in selection bias. Subsequent research should involve

multicenter data to enhance generalizability. Secondly, analyzing the

expression of PTK2 using various methods has certain limitations in

sensitivity and specificity. Thirdly, although technologies like CRISPR-

Cas9 have been widely used in malignant tumor research, more gene

editing methods should be employed in future explorations of the

regulatory roles of LDH and PTK2 genes to delve deeper into their

molecular mechanisms in APL. Additionally, this study has unresolved

issues, such as the direct relationship between lipid metabolism

abnormalities and APL relapse. Future studies should increase the

sample size and conduct long-term follow-ups to investigate the

relationship between lipid metabolism and disease recurrence. The

specific mechanisms of the PTK2 gene in the lipidmetabolism pathway

require further research, which can be accomplished by combining

transcriptome and metabolome data to dissect the regulatory role of

PTK2 in the complex metabolic network. PCSK9 inhibitors have

shown progress in lipid metabolism applications and could be

explored for their potential in APL treatment, aiding in designing

more precise treatment strategies.

In conclusion, this study reveals the changes in serum lipid levels in

newly diagnosed APL patients and their association with PTK2 gene

expression, expanding the understanding of the role of lipid

metabolism disorders in the pathogenesis of APL. Scientifically, it

provides a new perspective for exploring the molecular mechanisms of

APL; clinically, serum lipid markers and LDH levels are likely to be

used for early diagnosis and prognosis evaluation in APL patients,

while the PTK2 gene holds promise as a new therapeutic target.
Conclusion

This study not only revealed significant lipid metabolism

abnormalities in newly diagnosed acute promyelocytic leukemia

(APL) patients, characterized by elevated triglycerides (TG) and

decreased high-density lipoprotein cholesterol (HDL-C), low-
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density lipoprotein cholesterol (LDL-C), apolipoprotein A1

(APOA1) levels, but also profoundly verified the key role of the

PTK2 gene in the pathogenesis of APL through cellular experiments

(Graphic abstract). The results indicated that high expression of

PTK2 in APL cells significantly promoted cell proliferation and

migration and upregulated LDL and fibrinogen (FIB) levels while

knocking out PTK2 markedly inhibited these functions, resulting in

reduced cell proliferation, decreased migratory capability, and

increased apoptosis rate. These findings suggest that PTK2 plays

an important role in regulating lipid metabolism and promoting the

proliferation and migration of APL cells and may be one of the key

molecules in the pathogenesis of APL. Furthermore, the results of

this study further demonstrated that lipid metabolism

abnormalities in blood lipid parameters are closely related to the

risk stratification, bleeding tendency, and prognosis of APL.

Elevated TG levels are closely related to the pathogenesis of APL

and may be involved through abnormal expression of PTK2. Lower

APOA1 levels are significantly associated with a higher risk of

bleeding, while lower LDL-C levels are correlated with poorer

prognosis. Lactate dehydrogenase (LDH) levels are also

significantly positively correlated with APL’s occurrence and risk

stratification. These findings provide new perspectives and a

theoretical basis for APL’s clinical diagnosis, early prevention, and

treatment strategies. This study systematically demonstrated for the

first time that lipid metabolism indicators can be used for risk

stratification and prognosis assessment of APL, providing strong

theoretical support for guiding the clinical management of APL

through monitoring serum lipid levels. Meanwhile, PTK2 and other

molecules related to lipid metabolism may become potential

intervention targets in future APL treatments. Despite the

innovative nature of this study, the sample size is relatively

limited, including only cases from a single center, which may

restrict the generalizability of the results. In addition, this study is

observational and cannot establish causal relationships between

lipid metabolism abnormalities and APL, thus requiring larger-scale

multicenter prospective studies and further experimental validation

to confirm these findings. Future research should focus on a more

in-depth exploration of lipid metabolism regulation and the

pathogenesis of APL, especially the specific mechanisms of

elevated TG levels and the role of PTK2 in APL. Moreover,

multicenter prospective studies and clinical trials will help verify

the clinical effectiveness of blood lipid levels as diagnostic and

prognostic indicators for APL. By developing treatments or drugs

targeting lipid metabolism abnormalities, combined with

personalized treatment plans, it is hoped that APL patients’

survival rate and quality of life can be further improved.
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SUPPLEMENTARY FIGURE 1

Flow chart for inclusion and exclusion of APL patients and healthy controls.

SUPPLEMENTARY FIGURE 2

Efficiency of PTK2 gene knockdown in APL cells using siRNA. (A) NB4 and (B)
HL-60 cells were subjected to knockdown of the PTK2 gene using three

different siRNAs (siPTK2#1, siPTK2#2, siPTK2#3). ThemRNA expression levels
of the PTK2 gene were detected by qPCR. The results showed that siPTK2#3

had the highest knockdown efficiency, hence siPTK2#3 was selected for
subsequent experiments involving PTK2 gene knockdown. The experimental

results are presented in a bar graph, with relative expression levels normalized
to an internal reference gene. Data are presented as the mean ± standard

deviation of three independent experiments, and statistical analysis was
performed using a t-test.
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