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Tumor gene expression
signatures associated with
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lymphoma treated with CD19-
directed CAR T−cell therapy
(axicabtagene ciloleucel)
Yuan Tian1, Justin Budka 1, Frederick L. Locke 2,
Jason R. Westin3, Christina To1, Gayatri Tiwari1, Daqin Mao1,
Davide Bedognetti 1, Rhine R. Shen1, Jorge Andrade 1

and Simone Filosto1*

1Kite, a Gilead Company, Santa Monica, CA, United States, 2Department of Blood and Marrow
Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, United States,
3Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center,
Houston, TX, United States
Introduction: CAR T cell therapy provided transformative outcomes for patients

with B-cell lymphoma; however, a large fraction of patients remains at risk for

relapse, underlying the need to uncover mechanisms of resistance and predictive

biomarkers. Herein, we leveraged the ZUMA-7 phase III randomized trial of

relapsed/refractory large B-cell lymphoma (LBCL) patients treated with

axicabtagene ciloleucel (axi-cel; CD19-targeting CAR T cells) to discover

tumor gene expression signatures (GES) associated with outcome.

Methods: With tumor transcriptomics from 134 axi-cel patients, we employed

multivariate penalized Cox models analyzing event-free survival (EFS),

progression-free survival (PFS), and duration of response (DOR).

Results and Discussion: We identified two novel GES, a six-gene/transcript

signature (6-GES; CD19, CD45RA, CCL22, KLRK1, SOX11, SIGLEC5) correlated

with improved outcome after axi-cel (HR: 0.27, 95% CI: 0.16–0.44 for EFS),

representing lymphomas with abundant target antigen (CD19) expression,

adhesion molecules, and relatively low immune infiltration mostly composed

of cytotoxic lymphocytes (T and NK cells) and DCs, and secondly, a 17-gene/

transcript signature (17-GES; CD45RO, BCL2, IL-18R1, TNFSF4 [OX40L], KLRB1

[CD161], KIR3DL2, ITGB8, DUSP5, GPC4, PSMB5, RPS6KB1, SERPINA9, NBN,

GLUD1, ESR1, ARID1A, and SLC16A1) correlated with disease progression after

axi-cel (HR: 6.12, 95% CI: 3.57–10.50 for EFS), consistent with high immune

inflammation and escape mechanisms, such as the upregulation of genes

involved in repair of damaged DNA or chromatin remodeling, inhibition of

apoptosis, and a metabolically restrictive environment. These signatures did

not correlate with outcome in the standard-of-care arm of ZUMA-7

(chemotherapy, followed by transplant) or frontline therapy, supporting their

predictive rather than prognostic value. The findings were technically
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reproduced in a subset of ZUMA-7 samples profiled by RNA-seq (axi-cel, n=124;

SOC, n=125). The 6-GES was reduced, whereas the 17-GES was elevated at

progression post axi-cel, consistent with the notion that these signatures

represent features relevant for response and resistance to CAR T-cell therapy.

Conclusion: Our transcriptomic analysis identified gene expression signatures

potentially predictive of outcome with CD19-directed CAR T-cell therapy, and

these findings are informative for risk stratification and development of next-

generation products.
KEYWORDS

CAR T cells, large B cell lymphoma, axicabtagene ciloleucel, transcriptomics, gene
expression, tumor biopsies, CD19
Introduction

Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19

chimeric antigen receptor (CAR) T-cell therapy approved for the

treatment of adults with relapsed/refractory (R/R) large B-cell

lymphoma (LBCL) after two or more lines of systemic therapy and

for patients refractory to, or who relapsed within 12 months of, first-

line chemoimmunotherapy. In the Phase 3 ZUMA-7 study

(NCT03391466), axi-cel demonstrated superior event-free survival

(EFS) versus the standard-of-care (SOC) arm, consisting of platinum-

based chemotherapy followed by high-dose chemotherapy and

autologous stem cell transplantation in responding patients,

resulting in approval of axi-cel as a second-line treatment for R/R

LBCL (1). With a median follow-up of 47.2 months, axi-cel

demonstrated significantly longer overall survival versus SOC,

establishing axi-cel as a superior curative intent therapy (2).

Despite the transformative benefits of axi-cel therapy,

approximately 60% of LBCL patients do not respond or

experience disease progression after an initial response to therapy.

There is an unmet need to uncover mechanisms of resistance and

associated predictive biomarkers that would enable risk

stratification and inform design of next-generation CAR T-cell

therapy. Recently, gene expression profiling of tumors has shown

great promise for the identification of factors impacting CAR T-cell

therapy in R/R LBCL (3). Specifically, leveraging the NanoString

IO-360 panel, as well as immune-histochemistry (IHC), we have

reported that tumor target antigen (CD19) expression and a

predefined B-cell signature (from NanoString) associate with

longer EFS with axi-cel in R/R LBCL. Conversely, the

conventional prognostic biomarker of molecular subgrouping by

tumor cell of origin (GCB vs. non-GCB status) did not associate

with EFS following axi-cel treatment (3).

In this study, we performed gene expression profiling on tumor

samples from ZUMA-7 to identify novel and robust signatures

specifically associated with outcome to axi-cel therapy. Through
02
penalized multivariate modeling of clinical outcomes including

event-free survival (EFS), progression-free survival (PFS), and

duration of response (DOR), we identified two signatures that are

putatively predictive of efficacy following axi-cel therapy. These two

signatures outperformed all previously identified tumor

biomarkers, including CD19 expression, individual genes, and B-

cell signature, and provide biological insights into factors

influencing CAR T-cell outcome, which could be informative for

risk stratification and the development of next-generation CAR T-

cell products.
Methods

ZUMA-7 trial design, oversight, endpoints,
and assessments

The ZUMA-7 trial was conducted at 77 sites worldwide. Eligible

patients were at least 18 years of age and had histologically

confirmed large B-cell lymphoma, according to the World Health

Organization 2016 classification criteria, that was refractory to first-

line treatment or that had relapsed from complete remission no

more than 12 months after the completion of first-line

chemoimmunotherapy; patients intended to proceed to high-dose

chemotherapy with autologous stem-cell transplantation.

Refractory disease was defined as a lack of complete response to

first-line therapy, and relapsed disease occurring no more than 12

months after the completion of first-line therapy.

All the patients provided written informed consent. The trial

was conducted in compliance with the principles of the Declaration

of Helsinki. Full details around trial design and oversight were

previously reported (1, 2).

The primary end point was event-free survival (defined as the

time from randomization to the earliest date of disease progression

according to the Lugano classification, the commencement of new
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therapy for lymphoma, death from any cause, or a best response of

stable disease up to and including the response on the day 150

assessment after randomization) according to blinded central

review. Secondary end points included progression-free survival

(defined as the time from randomization to disease progression or

death from any cause), assessed centrally or by investigator and

overall survival, durability of response (defined as the time between

the first objective response to disease progression and the start of

new lymphoma therapy), and the incidence of adverse events, as

previously reported (1, 2, 4).

Endpoints utilized for the analyses reported in this manuscript

are EFS, PFS, and DOR per central review from the primary EFS

analysis data cut, as well as PFS per investigator assessment (as

indicated in the Result section and figures) from primary overall

survival analysis, which occurred 5 years after the first subject was

randomized, previously published (1, 2).

Classification of patients into molecular subtypes of cell of

origin (GCB vs. non-GCB), double/triple hit [high-grade B-cell

lymphoma (HGBL)], MYC rearrangement, and double-expressor

lymphomas (overexpression of MYC and BCL2 proteins) was based

on central laboratory analysis and previously reported (1, 3).
Multivariate analyses and discovery of gene
expression signatures

Details regarding ethics, patient samples, and efficacy endpoints

were described previously (3). In this post hoc analysis, evaluable

samples collected pretreatment (axi-cel, n=134; SOC, n=122) or at

progression, post axi-cel treatment (n=17), from patients in

ZUMA-7 study were analyzed. Gene expression profiling was

performed using the NanoString nCounter® PanCancer IO 360™

Panel. RNA extraction and processing into the nCounter platform

for the NanoString IO360 assay was conducted at NeoGenomics.

Nanostring RCC and RLF files were imported on nSolver Analysis

software (v.4.0). Raw data were further analyzed with nCounter

Advanced Analysis (v.2.0.134), and normalized linear count output

were used for all further analysis, as previously described (3).

Predefined IO-360 NanoString signatures were also analyzed.

To identify genes whose transcripts were associated with clinical

outcomes including duration of response (DOR), event-free

survival (EFS), and progression-free survival (PFS), penalized Cox

proportional hazards models were utilized (5). These multivariate

models consider the expression of multiple genes simultaneously to

select key predictors while preventing overfitting. The elastic net

penalty was used to combine the feature selection capability of Lasso

(L1 penalty) with the stability of Ridge (L2 penalty), improving the

robustness of biomarker identification, as per below formula:

argmax
b

log PL(b) − a ro
p

j=1

bj
�� �� + 1 − r

2 o
p

j=1

b2j

 !

where g was set to 0.9, and the optimal a was determined using

fivefold cross validation based on concordance index (C-index),

measuring predictive accuracy. Models were fitted individually for

three clinical outcomes (DOR, EFS, PFS), aiming to identify
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overlapping transcripts to ensure a robust final signature. Non-

zero coefficients were identified from the best-performing model to

derive gene signatures for each clinical outcome. Transcripts/genes

with negative coefficients (hazard ratio [HR]<1) were termed

favorable transcripts (associated with improved outcome),

whereas genes with positive coefficients (HR >1) were termed

unfavorable transcripts (associated with worse outcome).
Signature scoring and patient groups

A gene expression signatures (GES) score was assigned to each

sample using the mean scaled gene expression with the following

formula:

score =  
1
mo

m

i=1

(Counti − ui)
si

wherem is the number of genes within a specific signature, Counti
is the normalized linear count from NanoString or linear TPM value

when derived from RNA-Seq (see below about technical replication)

associated with genei within the given signature for the given sample,

ui   is the mean normalized count or TPM value calculated from all

samples for genei, and si is the standard deviation of normalized count

or TPM values derived from all samples for genei.

The patients were subsequently divided into two groups based

on their scores relative to the median. Those with scores above the

median were placed in the “high” group, whereas those with scores

at or below the median were assigned to the “low” group. This

median split method ensures an even distribution of participants

across the two groups, facilitating a balanced comparison in

subsequent analyses.
Technical replication with RNA sequencing

The predictive value of the identified signatures was replicated

using a subset of ZUMA-7 samples profiled by RNA sequencing

(RNA-Seq; axi-cel, n=124; SOC, n=125). Most patient samples

overlapped between the NanoString gene expression and RNA-

Seq analysis conducted herein (axi-cel, n=119; SOC, n=115).

Gene expression profiling was carried out from FFPE tumor

samples by performing next-generation sequencing (NGS). Total

RNA libraries were prepared using Illumina Stranded Total RNA

Prep, Ligation with Ribo-Zero Plus kit (catalogue # 20040529). This

kit utilizes the enzymatic rRNA depletion and ligation-based

addition of adapters and indexes for whole transcriptome

libraries, capturing coding and non-coding RNAs.

Following Illumina’s library prep protocol, 100 ng or 10 ng of

total RNA, depending on the available amount, was used for rRNA

depletion followed by fragmentation, cDNA synthesis, and library

amplification. Resulting libraries were quantified using Qubit, and

quality control was performed on TapeStation 4150 (Agilent). All

libraries were diluted to equimolar concentration and pooled for

sequencing on Illumina’s NovaSeq 6000 with a read length of 101-

bp paired end. The BBDuk tool (6) was applied to trim the adapters
frontiersin.org
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and the low-quality reads. Pair-ended RNA-seq reads were mapped

and quantified using Salmon v1.9.0 against the GENCODE V43

human transcriptome (https://ftp.ebi.ac.uk/pub/databases/gencode/

Gencode_human/release_43/gencode.v43.transcripts.fa.gz). Gene-

level counts and transcripts per million (TPM) values were

generated using Tximeta v1.16.1. TPM values were used for

downstream analysis. A total of 311 samples had available

transcriptional data from either screening or post-infusion time

point. RNA-sequencing quality control filtering was applied,

removing samples with ≤10% reads mapped to coding sequences,

leaving 296 samples, 277 pre-infusion samples, and 19 post-

infusion samples across both arms of ZUMA-7 (axi-cel and

SOC). Samples from patients who were not part of the safety

subset (patients enrolled in the study but not treated) were

excluded, resulting in 266 evaluable pre-infusion samples. To

remove duplicated subjects, for those with multiple samples

collected prior to axi-cel treatment, the sample with the latest

collection date was kept. If collection dates were the same, the

sample with the lower Molecular Batch ID (sample analyzed first)

was retained. After duplicate removal, 249 pre-infusion samples

remained available for the downstream analysis (124 from the axi-

cel arm and 125 from the SOC arm of ZUMA-7).
Analysis of first-line therapy
(online datasets)

To determine the association between the signatures identified

in this study and outcome to first-line R-CHOP or -CHOP-like

treatment, we utilized two publicly available datasets (7, 8). The

dataset from Schmitz et al. (8) included 229 patients who received

immunochemotherapy (R-CHOP or R-CHOP-like therapy),

whereas 522 patients who received R-CHOP as initial therapy

were selected from the Reddy et al. dataset (7). The linear-scale

TPM from the online dataset were scored into signature following

the same formula/method described above. The available clinical

outcome readout from the literature was PFS.
Univariate analysis of gene expression
signatures versus outcome

For this analysis, the RegParallel (version 1.12.0) R package

(https://github.com/kevinblighe/RegParallel) was utilized to

examine how the expression of genes influenced the rate of

progression-free survival. The function RegParallel was run to fit

the Cox proportional hazards regression model to gene expression

to independently test the association between survival time and

each gene. The output was analyzed with TIBCO Spotfire

(version 11.4.3).
Statistics

All analyses described herein were exploratory and

retrospective, performed without adjustment for possible
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confounding factors. Log−rank test was used to determine

statistical significance between the high and low groups in time-

to-event analyses presented as KM curves, where high means >

median value and low means ≤ median value. When further

subgrouping was performed (e.g., patient segregated by the GES

median threshold and further into GCB and non-GCB subsets), the

median GES values were calculated from the entire dataset. Where

indicated, an unstratified Cox regression model was used to provide

an estimate of the hazard ratio and associated P-value. Wilcoxon

rank-sum test was used when comparing two groups in categorical

analysis. Spearman’s rank-order correlation was used to evaluate

the association between variables. For these post hoc analyses, all P

values were descriptive and P < 0.05 was considered significant. No

adjustments for multiplicity testing were performed.
Results

Discovery of novel gene expression
signatures associated with efficacy
following Axi-Cel treatment

Transcriptomic analysis, generated via Nanostring nCounter

technology, aimed to identify robust gene expression signatures

predictive of three clinical outcomes, duration of response (DOR),

event-free survival (EFS), and progression-free survival (PFS),

following second-line axi-cel therapy. Penalized Cox regression

models were fitted individually for each of the three endpoints to

identify gene transcripts with non-zero coefficients (see methods).

Such analysis identified two distinct gene transcript lists,

encompassing transcripts favorably or unfavorably linked to the

three clinical outcomes (DOR, EFS, and PFS) in patients receiving

axi-cel, as represented in Figure 1A. The full list of transcripts with

the non-zero coefficient for each outcome is provided in

Supplementary Table 1, split into two tabs with favorable or

unfavorable transcripts. A list of six transcripts, herein referred to

as 6-GES, representing the intersection of favorable transcripts for

each outcome included CD19, CD45RA, CCL22, KLRK1, SIGLEC5,

and SOX11. Conversely, a list of 17 transcripts, herein referred to as

17-GES, representing the intersection of unfavorable transcripts,

included IL18R1, GPC4, KIR3DL2, ITGB8, PSMB5, RPS6KB1,

BCL2, TNFSF4, SERPINA9, DUSP5, NBN, GLUD1, ESR1,

CD45RO, ARID1A, KLRB1, and SLC16A1.

The gene expression values of the transcripts included in these

two lists (6-GES or 17-GES) were then used to generate a scaled

mean signature value of either 6-GES or 17-GES for each patient.

The association of the 6-GES and 17-GES with efficacy readouts

was evaluated by stratifying patients into “high” and “low” groups

based on the median signature scores. Kaplan–Meier curves

illustrate the significant associations (descriptive P< 0.05) between

the 6-GES or 17-GES and time-to-event efficacy readouts (DOR,

EFS, or PFS; Figure 1B). High expression of the favorable 6-GES

correlated with improved DOR (HR: 0.29, 95% CI: 0.17–0.52), EFS

(HR: 0.27, 95% CI: 0.16–0.44), and PFS (HR: 0.27, 95% CI: 0.16–

0.46) in axi-cel-treated patients, whereas high levels of the

unfavorable 17-GES negatively correlated with DOR (HR: 7.59,
frontiersin.org
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95% CI: 3.95–14.60), EFS (HR: 6.12, 95% CI: 3.57–10.50), and PFS

(HR: 7.47, 95% CI: 4.11–13.57) (Figure 1B; P< 0.0001 for all

readouts). These associations were specific to the axi-cel arm of

ZUMA-7 and not observed in patients receiving standard-of-care

(SOC) treatment (Figure 1C), underlying the potential predictive
Frontiers in Oncology 05
value of these signatures in the axi-cel treatment setting. These

signatures also strongly associated with PFS per investigator

assessment (Figure 2A).

Figure 2A presents the univariate associative analysis of 6-GES

or 17-GES or each individual transcripts or predefined GES from
FIGURE 1

Multivariable penalized cox regression modeling led to discovery of gene expression signatures (GESs) associated with clinical outcomes in patients
treated with second-line axicabtagene ciloleucel (axi-cel). (A) A six-gene expression signature (6-GES) was composed of CD19, CD45RA, CCL22,
KLRK1, SIGLEC5, and SOX11 transcripts, which were all transcripts with negative coefficients for DOR, EFS, and PFS, corresponding to a hazard ratio
less than 1 (better outcome = favorable transcripts). Conversely, a 17-GES was composed of IL18R1, GPC4, KIR3DL2, ITGB8, PSMBP5, RPS6KB1,
BCL2, TNFSF4, SERPINA9, DUSP5, NBN, GLUD1, ESR1, CD45RO, ARID1A, KLRB1, and SLC16A1, which were all transcripts with positive coefficients
for DOR, EFS, and PFS (hazard ratio > 1; worse outcome = unfavorable transcripts). B and C) Kaplan–Meier curves showing DOR, EFS, and PFS (per
central review) stratified by high or low GES score (high GES, > median; low GES, ≤ median) in axi-cel (B) or SOC (C) arms of ZUMA-7, as indicated.
P-values from log-rank tests compare the survival distributions between high and low GES groups.
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the NanoString IO-360 panel with PFS outcome (per investigator),

following axi-cel treatment in ZUMA-7: as shown, 6-GES and 17-

GES outperformed all individual genes and predefined GES for their

association with PFS (Figure 2A). Notably, of the 6 or 17 transcripts

identified by the multivariate analysis based on the non-zero
Frontiers in Oncology 06
coefficient around DOR, EFS, and PFS readouts, only CD19,

CD45RA, ESR1, and DUSP5 were significantly associated with

PFS in univariate analysis, consistent with the notion that 6-GES

and 17-GES can carry predictive value not recapitulated by

individual transcripts. Figure 2 also shows that there could be
FIGURE 2

6-GES and the 17-GES outperformed all the individual gene transcripts and all predefined GES from NanoString for their association with PFS
following axi-cel treatment and are relevant in both GCB and non-GCB subgroups. (A) Volcano plot showing the 6-GES, 17-GES, NanoString IO360
Signatures, and individual transcripts associated with PFS (per investigator) in the axi-cel arm of ZUMA-7. P values and hazard ratios (HR) were
calculated via a Cox proportional hazards model, where patients were divided into two groups based on biomarker median value split. P-value and
HR for each biomarker are shown. (B) Spearman correlation between 6-GES and 17-GES. (C) The combined impact of 6-GES and 17-GES on clinical
outcomes in axi-cel-treated patients is shown by Kaplan–Meier curves depicting DOR, EFS, and PFS (per central review) for patient subgroups
stratified by high (>median) or low (≤median) expression of the favorable 6-GES and unfavorable 17-GES. Patients with high 6-GES and low 17-GES
signature score (green line) exhibited the most favorable outcomes, whereas those with low 6-GES and high 17-GES (orange line) had the poorest
outcome. Numbers in parentheses indicate the number of patients in each subgroup. P-values from log-rank tests compare the survival distributions
between high and low GES groups. (D) The putative predictive value of the 6-GES and 17-GES is presented within the GCB and non-GCB subgroups
in the Axi-Cel Arm. Kaplan–Meier plots showing PFS in patients treated with axi-cel, stratified by cell-of-origin (GCB or non-GCB) and 6-GES or 17-
GES high vs. low groups. The left panel displays PFS (per central review) for patients classified using a six-gene GES, whereas the right panel shows
PFS for those classified by a 17-gene GES. Within each GES, patients are divided into high- and low-risk groups separately for GCB and non-GCB
subtypes. P-values from log-rank tests compare the survival distributions between high and low GES groups. Abbreviations: GCB, germinal center B-
cell-like; GES, gene expression signature.
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added value in combining 6-GES and 17-GES: the two GES

significantly (P = 0.01), but modestly (Spearman R = −0.16)

correlated (negatively) with each other (Figure 2B; Supplementary

Figure 3), and subgrouping based on a combination of high and low

6-GES and 17-GES could further improve risk stratification of axi-

cel patients (Figure 2C). Supplementary Figure 1 shows a

correlation matrix of the 6-GES and 17-GES with the predefined

IO360 GES (from NanoString) and the stromal and immune-

suppressive index (SII), previously reported (3). This shows that

6-GES correlated with the favorable B-cell signature and represents

a less immune infiltrated TME, whereas 17-GES correlated with a

more complex and immune-infiltrated TME, including enrichment

of the SII (3).
Predictive value of novel GESs in GCB and
non−GCB subgroups in the Axi−Cel Arm

The predictive value of 6-GES and 17-GES was further evaluated in

patients treated with axi-cel, stratified by the cell-of-origin subtype. As

shown in Figure 2D, the Kaplan–Meier curves illustrate the PFS based

on GES and cell-of-origin (COO) classification, defined as GCB vs.

non-GCB (ABC + unclassified) (3). In the germinal center B-cell

(GCB) subgroup, patients with a high 6-GES had significantly (P< 0.05)

longer PFS compared to those with a low 6-GES. The 17-GES was also

strongly associated with PFS in the GCB subgroup, with patients

having a low 17-GES experiencing better PFS outcomes. Among non-

GCB patients, the 17-GES remained associated with PFS, whereas the

6-GES did not significantly stratify patients in this subgroup, albeit

there was a trend (P=0.088) with a clear separation between the KM

curves. Consistently, Supplementary Figure 2 shows that the 6-GES

and 17-GES do not associate with COO (GCB vs. non-GCB;

Supplementary Figures 2A, B). The 6-GES is also not associated with

double-/triple-hit status (high-grade B-cell lymphoma (HGBL)),

double-expressor (overexpression of MYC and BCL2 proteins), or

MYC rearrangement status, whereas the 17-GES was lower in the

HGBL and MYC rearrangement subgroup, compared to LBCL not

otherwise specified (not applicable indicates LBCL not belonging to the

other molecular subgroups; Supplementary Figures 2C, D).
Technical replication of results using a
ZUMA-7 RNA−Seq dataset

To corroborate the association between the favorable 6-GES

and unfavorable 17-GES with axi-cel efficacy in ZUMA-7, we

analyzed an RNA-seq dataset derived from a subset of ZUMA-7

tumor samples. A total of 21 transcripts overlapped between RNA-

seq and NanoString quantification; CD45RA and CD45RO (CD45

isoforms) were excluded from the RNA-Seq analyses because RNA-

seq transcript quantification was performed at the gene level to

retain data robustness. Hence, in the context of RNA-Seq datasets, a

5-GES and a 16-GES were generated, consisting of the 6-GES minus

the CD45RA transcript and 17-GES minus the CD45RO transcript.

Spearman correlations across NanoString- and RNA-Seq-derived

GESs is shown in Supplementary Figure 3. The 5-GES and the 16-
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GES generated from RNA-Seq strongly associated with efficacy

endpoints, including DOR, EFS, and PFS (Supplementary Figure 4).

Patients with a high 5-GES value exhibited improved DOR, EFS,

and PFS compared to those with a low 5-GES value (P< 0.05).

Conversely, patients with a high 16-GES score demonstrated

inferior outcomes across all three endpoints relative to those with

a low 16-GES score.

The ability to recapitulate these findings in a dataset generated

through an orthogonal technology reinforces the robustness of the

favorable 6-GES (or 5-GES for RNA-Seq) and unfavorable 17-GES

(or 16-GES for RNA-Seq) as potential predictive biomarkers of

outcome following axi-cel therapy in R/R LBCL patients in the

second-line setting.
Lack of association with PFS in the first-
line setting (with R−CHOP/R-CHOP-
like treatment)

Next, we evaluated the association of the 5-GES (6-GES without

CD45RA) or 16-GES (17-GES without CD45RO) with PFS

outcome in two publicly available LBCL RNA-Seq datasets where

patients were treated with 1st Line R-CHOP or R-CHOP-like

therapy and have corresponding PFS data; for this, we utilized the

datasets from Schmitz et al. and Reddy et al. (7, 8). The dataset from

Schmitz et al. (8) included 229 patients, whereas the dataset from

Reddy et al. included 522 patients (7).

The 5-GES and 16-GES while being associated with outcome to

axi-cel in ZUMA-7 (P< 0.05; Supplementary Figure 4) did not show

an association with PFS to 1st Line R-CHOP/R-CHOP like

(Supplementary Figure 5), indicating their predictive (specific to

CAR T-cell therapy), rather than prognostic, value.
Expression of 6-GES and 17-GES at disease
progression post axi-cel treatment

The 6-GES and 17-GES were analyzed in evaluable patients

(available tumor biopsy) who progressed following axi-cel

treatment (n=17). The boxplots in Figure 3 depict the distribution

of 6-GES and 17-GES scores before treatment (n=256) and at

disease progression following axi-cel treatment. At the time of

progression, the favorable 6-GES score was numerically lower,

albeit not significant by descriptive statistics (P=0.082), whereas

the unfavorable 17-GES was significantly increased (P=0.031),

compared to pretreatment levels. These findings corroborate that

the 6-GES and 17-GES are likely representative of response and

resistance mechanisms and further support previous observations

(9) that the TME and the biomarkers associated with outcome can

change through lines of therapy.
Discussion

Axi-cel and other CAR T cell therapies have been delivering

transformative results across a number of hematological
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malignancies in the r/r setting, including diffuse large B-cell

lymphoma, follicular lymphoma, mantle cell lymphoma, acute

lymphoblastic leukemia, and multiple myeloma (10). CAR T cells

are also moving into earlier lines of therapy (11–13), whereas

bispecific antibodies are becoming increasingly available options

(14). However, there is still an incomplete understanding of the

mechanisms of resistance to these therapies and a scarcity of reports

around possible predictive biomarkers that could support risk
Frontiers in Oncology 08
stratification and decisions around sequencing of these therapies.

Recently, gene expression profiling of tumors has shown promise

for the identification of factors impacting CAR T-cell therapy in R/R

LBCL where B cells, as well as stromal and immunosuppressive

gene signatures, are emerging as important and interrelated

determinants of durable responses to axi-cel intervention (3, 9).

This study leveraged ZUMA-7, the largest available clinical

dataset for evaluating second-line CAR T-cell therapy in R/R
FIGURE 3

6-GES and 17-GES at disease progression following Axi-Cel treatment. Box plots displaying the expression scores of 6-GES (left panel) and 17-GES
(right panel) in tumors collected before ZUMA-7 treatments, both arms (n=256) and in tumors collected at the time of disease progression after axi-
cel (n=17). P-value for two-group comparison is calculated by using Wilcoxon rank-sum test.
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LBCL, to conduct transcriptomic analyses that identified two novel

gene expression signatures (GESs), herein referred to as 6-GES and

17-GES, potentially predictive of outcome following axi-

cel treatment.

The 6-GES is composed of CD19, CD45RA, CCL22, KLRK1,

SIGLEC5, and SOX11, and the 17-GES signature is composed of

IL18R1, GPC4, KIR3DL2, ITGB8, PSMB5, RPS6KB1, BCL2,

TNFSF4, SERPINA9, DUSP5, NBN, GLUD1, ESR1, CD45RO,

ARID1A, KLRB1, and SLC16A1. The presence of CD19 in the

favorable 6-GES (signature associated with better outcome) is not

surprising, and it is consistent with our previous observations where

tumor target antigen expression associated with EFS (3). The role of

the other five genes in the 6-GES signature is not immediately clear.

Piseddu et al. reported that CD11c+ DCs are the exclusive

producers of CCL22 in secondary lymphatic organs during

homeostasis and that a paracrine signaling from T cells was

essential for CCL22 secretion (15); hence, CCL22 might represent

a tumor microenvironment where there is close communication

between T cells and dendritic cells. KLRK1 could speak for immune

infiltration enriched in NK cells, NKT, and other cytotoxic

lymphocytes, including CD8 cells (16), whereas SIGLEC5 is a

putative adhesion molecule that could serve as a checkpoint for T

and other immune cells (17–19), perhaps dampening the

inflammation that would otherwise be initiated by the KLRK1+

cells. Dictor et al. previously reported no expression of SOX11 in

LBCL (20), and its meaning within the 6-GES is unclear, as it is for

CD45RA. Overall, the 6-GES might capture lymphomas with

abundant antigen expression and adhesion molecules and an

immune infiltration characterized prevalently by cytotoxic

lymphocytes (T and NK cells) and DCs; the latter might be

primed in support of durable responses once CAR T cells

infiltrate the tumor. In fact, activity of non-CAR T cells in LBCL

has been postulated to strongly contribute to the dept of the

response post axi-cel treatment (21) through antigen

spreading (22).

On the other hand, the unfavorable 17-GES appear to represent

a more complex TME (compared to the tumors with elevated 6-

GES) with higher and more heterogenous immune infiltration and

concurrent inflammation (e.g., IL18R1; KLRB1 (CD161); KIR3DL2;

TNFSF4 (OX40L); DUSP5) (23–27), and activation of immune-

escape mechanisms such as upregulation of genes involved in repair

of damaged DNA or chromatin remodeling (NBN and ARID1A

(28, 29);, inhibition of apoptosis (BCL2 (30, 31);), survival of

aggressive tumors (RPS6KB1 (32);), immuno-suppressive myeloid

cells (PSMB5 (33);), and a metabolically restrictive TME (e.g.,

SLC16A1 and GLUD1 (34, 35);). Some of the above might inform

therapeutic intervention. For instance, modulation of BCL-2 (36) or

targeting of the IL18R1 could improve outcome with CAR T cells.

Notably, in ZUMA-7, we found that IL-18 (ligand for IL18R1) gene

expression was associated (P< 0.05) with better PFS in univariate

analysis. Consistently, CAR T cells armored to secrete IL-18 have

shown encouraging clinical results in r/r LBCL, even after prior

CAR T-cell treatment (37).

The role of the protease inhibitor SERPINA9 within the 17-GES

is unclear and intriguing because SERPINA9 has been previously

associated with good prognosis in the context of 1st LBCL (38, 39).
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Previously, we reported that HGBL and Cell Of Origin status (GCB

vs. non-GCB), which are associated with poorer outcome in the

setting of first-line R-CHOP therapy (40, 41), are not associated

with outcome to axi-cel in the second-line setting (3). Here, we

report that the 6-GES and the 17-GES, which associated with DOR,

EFS, and PFS following axi-cel treatment, did not associate with

DOR, EFS, or PFS following second-line standard-of-care treatment

in ZUMA-7 or with PFS after first-line therapy (R-CHOP or

-CHOP like) in online datasets, presenting these GESs as

putatively predictive to outcome following CAR T-cell therapy in

r/r LBCL. These two signatures also outperformed all previous

tumor biomarkers associated with disease progression after axi-cel

treatment, including the B-cell signature from NanoString (3).

All of the above, jointly with the evidence that the TME evolves

through lines of therapy (3, 42), underlies the need for deeper

understanding of the prognostic vs. predictive value of these

biomarkers in the context of multiple therapies and how these

biomarkers, and the tumor biology that they represent, evolve

trough disease stages and treatments. This shall lead to better risk

stratification and development of next-generation CAR T-cell

products or combination strategies to overcome resistance.

This study had certain limitations. The analyses herein are

exploratory and retrospective. Conclusions drawn from these data

will require confirmation in an independent validation cohort.

Extrapolation of these findings in the real-world setting or in

prospective clinical studies is warranted.
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SUPPLEMENTARY FIGURE 1

correlation matrix of the 6-GES, the 17-GES, the pre-defined IO-360 GES and

the stromal and immune-suppressive index (SII). Correlation matrix of all

nanostring IO360 pre-defined GES(s) and the previously reported stromal and
immuno-suppressive index (SII) Vs 6-GES or 17-GES (nanostring dataset),

where Spearman R value is represented by scale-coloring, with positive
correlations in red and negative correlations in blue. P values< 0.05 are

indicated for each correlation with a “*” sign.

SUPPLEMENTARY FIGURE 2

Correlation of the 6-GES or 17-GES with COO (GCB Vs non-GCB), double/
triple hit (HGBL), MYC rearrangement or double-expressor status. The 6-GES

(A, C) or 17-GES (B, D) signature values (calculated from nanostring dataset)
are represented based on molecular subgroups of cell of origin (COO; GCB

Vs non-GCB; (A, B) or Double-expressor, double/triple hit (HGBL) or MYC re-
arrangement, compared to LBCL not otherwise classified (Not Applicable =

LBCL not belonging to the other molecular subgroups; (C, D). Box plots

present all datapoints (dots), with median represented as the horizontal bar,
inter-quartile range captured as the box borders, and whiskers representing

values within 1.5x IQR above or below the box. P-value for 2-group
comparison is calculated by using Wilcoxon rank sum test, as indicated. P-

value for > 2 groups comparison is calculated by using Kruskal-Wallis test,
as indicated.

SUPPLEMENTARY FIGURE 3

Correlations between the GES(s). (A) Correlation matrix of GES(s) from

nanostring or RNAseq, where Spearman R value is represented by scale-
coloring, with positive correlations in red and negative correlations in blue; R

values are indicated. (B) P values pertinent to the Spearman correlation matrix
shown in panel A, where the P values are represented in Log scale

and indicated.

SUPPLEMENTARY FIGURE 4

Technical replication of the GE signatures with efficacy in a ZUMA-7 RNA-seq
dataset. Kaplan-Meier curves show DOR, EFS, and PFS (per central review)

stratified by median scores of the 5-GES (6-GES without CD45RA)* or 16-
GES* from ZUMA-7 RNAseq dataset in axi-cel- (A) or SOC- (B) treated patient

groups (two arms of ZUMA-7 study). P-values from log-rank tests compare
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1519473/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1519473/full#supplementary-material
https://doi.org/10.3389/fonc.2025.1519473
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tian et al. 10.3389/fonc.2025.1519473
the survival distributions between high and low GES groups.*CD45RA and
CD45RO transcripts were excluded from the RNAseq analyses because RNA-

seq transcript quantification was performed at gene level to retain data

robustness; hence, the 5-GES and 16-GES were generated, composed of
6-GES or 17-GES without the CD45RA or CD45RO transcript, respectively.

SUPPLEMENTARY FIGURE 5

5-GES and 16-GES* are not associated with PFS in 1st line setting with R-
CHOP/R-CHOP like treatment (online datasets). Kaplan-Meier curves show
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PFS stratified by median scores of the 5-GES (6-GES without CD45RA)* (A) or
16-GES (17-GES without CD45RO)* (B) in R-CHOP/R-CHOP-like patients

from two RNAseq datasets of 1st Line setting (publicly available from “Schmitz”

et al. or “Reddy” et al.). P-values from log-rank tests compare the survival
distributions between high and low GES groups. *CD45RA and CD45RO

transcripts were excluded from the RNAseq analyses because RNA-seq
transcript quantification was performed at gene level to retain data

robustness; hence, the 5-GES and 16-GES were generated, composed of
6-GES or 17-GES without the CD45RA or CD45RO transcript, respectively.
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