
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Hongbing Zhang,
Tianjin Medical University General Hospital,
China

REVIEWED BY

Anton S. Tkachenko,
Charles University, Czechia
Marwa M Abu-Serie,
City of Scientific Research and Technological
Applications, Egypt

*CORRESPONDENCE

Mingyuan Luan

Mingyuan.Luan@med.uni-tuebingen.de

†These authors have contributed equally
to this work

RECEIVED 29 October 2024
ACCEPTED 15 January 2025

PUBLISHED 30 January 2025

CITATION

Zhang Y, Yi S and Luan M (2025)
Advances in non-apoptotic
regulated cell death: implications
for malignant tumor treatment.
Front. Oncol. 15:1519119.
doi: 10.3389/fonc.2025.1519119

COPYRIGHT

© 2025 Zhang, Yi and Luan. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 30 January 2025

DOI 10.3389/fonc.2025.1519119
Advances in non-apoptotic
regulated cell death: implications
for malignant tumor treatment
Yizheng Zhang1†, Shiqi Yi2† and Mingyuan Luan1*

1Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer
Center Tübingen, Tübingen, Germany, 2Department of Obstetrics and Gynecology, West China
Second Hospital, Sichuan University, Chengdu, China
Cell deathmechanisms are broadly classified into accidental cell death (ACD) and

regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental

process, while RCD is tightly regulated by specific signaling pathways and

molecular mechanisms. Tumor cells are characterized by their ability to evade

cell death and sustain uncontrolled proliferation. The failure of programmed cell

death is a key contributor to tumor initiation, progression, and resistance to

cancer therapies. Traditionally, research has focused primarily on apoptosis as

the dominant form of RCD in cancer. However, emerging evidence highlights the

importance of other non-apoptotic forms of RCD, such as pyroptosis,

ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment

response. These pathways are gaining attention for their potential roles in

overcoming therapy resistance. In this review, we will discuss the recent

advances in the study of non-apoptotic cell death pathways in malignant

tumors and explore their therapeutic implications, offering insights into new

targets for cancer treatment strategies.
KEYWORDS
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Introduction

In 1972, John Kerr and colleagues coined the term apoptosis to describe a form of

programmed cell death (PCD) in response to intrinsic pathological signals. PCD later

evolved into the concept of RCD, which includes both pathologically induced and

pharmacologically modulated cell death (1). RCD exhibits distinct morphological

features, differentiating it from accidental cell death, such as necrosis. Since then,

research on regulated cell death has grown exponentially (2). Over the past three

decades, apoptosis has garnered significant attention from the scientific community, with

its molecular mechanisms being relatively well elucidated. Apoptosis primarily occurs

through two distinct pathways: the extrinsic and intrinsic mitochondrial pathways. The

extrinsic pathway is typically regulated by death-related membrane receptors, such as FAS
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and TNFR, and is driven by initiator caspases, including CASP8 and

CASP10 (3). In contrast, the intrinsic pathway is triggered by

mitochondrial outer membrane permeabilization (MOMP),

leading to the release of mitochondrial proteins that activate the

initiator caspase CASP9 and downstream effector CASP3, a process

tightly regulated by the BCL2 family of proteins (4, 5).

Cell death is a crucial biological process that regulates organismal

development and maintains homeostasis (6). Defects and

dysregulation of normal cell death signals promote tumor initiation

and progression, which is a hallmark of malignant tumors (7). The

role of apoptosis in tumor cell survival and how to target and induce

apoptosis has been a major focus of antitumor drug development in

recent decades (8, 9). Clinically, apoptosis-inducing drugs, including

cytotoxic chemotherapies and targeted therapies, are widely used in

the treatment of malignant tumors (10). However, due to the

significant heterogeneity of tumors, some patients gradually

develop reduced sensitivity or even primary resistance to anti-

tumor treatments, severely affecting therapeutic efficacy (11, 12).

Tumor cell resistance to apoptosis has been identified as a key

mechanism behind drug resistance (13). Therefore, finding ways to

effectively activate cell death pathways when apoptosis is inhibited

represents a potential strategy for overcoming tumor resistance,

though it remains a significant challenge.

In addition to apoptosis, various other forms of RCDs have been

identified and extensively studied, including pyroptosis, necroptosis,

ferroptosis, parthanatos, anoikis, autophagy-dependent cell death,

entosis, mitotic catastrophe, lysosome-dependent cell death,

disulfidptosis, cuproptosis and alkaliptosis (14, 15). RCD occurs in

both physiological and pathological contexts, playing a critical role in

maintaining cellular homeostasis. Dysregulation of these processes is

frequently implicated in the development of various diseases,

particularly cancer (16). Importantly, targeting RCD-associated

proteins and pathways might offer a promising therapeutic

approach for overcoming resistance to conventional treatments,

providing new hope for patients who have developed resistance to

standard therapeutic agents.

In this review, we will explore the diverse pathways of RCD,

emphasizing their key features, mechanistic details, and significance

in cancer treatment, particularly in relation to cancer progression

and drug resistance. Additionally, we will analyze the intricate

cross-talk between various RCD signaling pathways, highlighting

their complex interactions in the cancer treatments. Furthermore,

we will assess the therapeutic potential of targeting different forms

of RCD as innovative strategies for overcoming drug resistance and

enhancing treatment efficacy in cancer patients. These emerging

approaches offer new insights and hope for improving clinical

outcomes in cancer therapy.
Pyroptosis

Pyroptosis, also known as inflammatory cell death, is a form of

RCD driven by inflammasomes, and it exhibits distinct

morphological features compared to apoptosis. Unlike apoptosis,

pyroptosis does not involve significant DNA fragmentation but is

characterized by notable nuclear condensation, pore formation in
Frontiers in Oncology 02
the plasma membrane, and cell swelling (17). Inflammasomes are

cytoplasmic multiprotein complexes that are typically activated by

external stimuli, such as lipopolysaccharides (LPS), and they play a

crucial role in the release of interleukin family members (e.g., IL-1b,
IL-18), formation of the adaptor protein ASC, and activation of pro-

inflammatory caspases, which ultimately induce pyroptosis (18).

In the classical pathway, pyroptosis is mediated by caspase-1,

whereas in the non-classical pathway, it is mediated by caspase-4,

caspase-5, and caspase-11. Caspase-4 and caspase-5 mediate

pyroptosis in human cells, while caspase-11 functions in murine

cells. Activated caspase-1 cleaves pro-IL-1b and pro-IL-18 into their
mature forms, which are then released extracellularly, triggering an

inflammatory response (19). Concurrently, activated caspase-1

cleaves gasdermin D (GSDMD) into a 22 kDa C-terminal

fragment (GSDMD-C) and a 31 kDa N-terminal fragment

(GSDMD-N) (20, 21). The GSDMD-N fragment translocates to

the plasma membrane, binds to the phospholipid bilayer, and forms

transmembrane pores, leading to membrane rupture and cell lysis

(22). Additionally, research has shown that pyroptosis can also be

mediated by the caspase-8-GSDMD and caspase-3-GSDME

pathways, indicating that in certain contexts, pyroptosis and

apoptosis may occur simultaneously (23, 24).

As a form of cell death, pyroptosis has the potential to inhibit

tumor initiation and progression. Studies have shown that various

chemotherapeutic agents, targeted therapies, and natural compounds

can induce pyroptosis in a range of different tumors (25, 26). For

instance, chemotherapeutic drugs such as doxorubicin, actinomycin D,

bleomycin, paclitaxel, and cisplatin have been found to induce

pyroptosis in lung cancer cells through the caspase-3-GSDME

pathway (24, 27). Additionally, doxorubicin has been shown to

induce pyroptosis in melanoma by inhibiting eukaryotic elongation

factor-2 kinase (eEF-2K), which not only enhances the anti-tumor

effects but also suppresses autophagy (28). Moreover, the third-

generation platinum-based anti-cancer drug, oxaliplatin, has been

reported to induce pyroptosis in colon cancer cells through elevated

levels of reactive oxygen species (ROS) and activation of the JNK

kinase, also via the caspase-3-GSDME pathway (29). Additionally,

the small molecular compound cucurbitacin B (CuB) has been shown

to inhibit non-small cell lung cancer both in vitro and in vivo by

triggering pyroptosis through the TLR4/NLRP3/GSDMD signaling

pathway (30) (Figure 1A).

Combination therapies involving targeted agents and cytotoxic

chemotherapeutics have been shown to enhance anti-tumor effects

by inducing pyroptosis, thereby stimulating a robust immune

response. For instance, inhibitors targeting polo-like kinase 1

(PLK1) can enhance the anti-tumor activity of cisplatin by

inducing pyroptosis in esophageal squamous cell carcinoma (31).

In lung cancer, small molecule inhibitors targeting KRAS, EGFR, or

ALK can trigger apoptosis via the mitochondrial pathway and

induce pyroptosis through the caspase-3-GSDME pathway (32).

Additionally, research has demonstrated that targeting kinases such

as BRAF andMEK, as well as activating the transcription factor p53,

can induce pyroptosis in melanoma and non-small cell lung cancer,

respectively (33, 34). These findings highlight the potential of

inducing pyroptosis as a strategy for molecularly targeted anti-

tumor therapies. Moreover, compounds such as L61H10, miltirone,
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pyridoxine and metformin have been identified as capable of

targeting key molecules in pyroptotic pathway in tumor cells,

contributing to the maintenance of anti-tumor treatment efficacy

while exhibiting fewer side effects (35). This promising avenue

warrants further investigation.

In recent years, the role of pyroptosis in various diseases has

garnered significant attention, leading to the development of

therapeutic strategies targeting pyroptotic pathways. Generally,

pyroptosis plays opposing roles in inflammatory and oncological

diseases. In the context of inflammatory diseases, the goal is often to

inhibit pyroptotic pathways to mitigate the inflammatory response.

Conversely, in the treatment of malignant tumors, the activation of

pyroptosis is desired to induce cell death in tumor cells. Therefore,

targeting and inducing pyroptosis presents a novel therapeutic

approach, particularly for tumors with high expression of

molecules such as GSDMD and GSDME. However, it is essential

to note that therapeutic strategies aimed at targeting pyroptosis

require further investigation and evaluation through various

clinical trials.
Necroptosis

Necroptosis is a form of regulated necrosis that shares

morphological characteristics with necrosis (36). It was first

observed in 1996 in porcine kidney cells infected with vaccinia

virus, which expresses CrmA protein that inhibits both CASP1 and

CASP8 (37). CASP8 was found to play a crucial role in negatively

regulating this form of cell death (38). Necroptosis typically occurs
Frontiers in Oncology 03
when CASP8 is inhibited, either genetically or through caspase

inhibitors such as Z-VAD-FMK (39). The activation of receptors

like TNFR, FAS, TLR3, and ZBP1 has been associated with

necroptosis induction (40).

At the molecular level, receptor-interacting serine/threonine

kinase 1 (RIPK1) was initially identified as a key regulator of

necroptosis (41). Subsequently, receptor-interacting serine/

threonine kinase 3 (RIPK3), a downstream effector of RIPK1, was

found to critically modulate necroptosis mediated by death

receptors (42, 43). RIPK3 controls the phosphorylation of

downstream molecule MLKL, which has been shown to function

as the executioner of necroptosis. The phosphorylation cascade

involving RIPK1, RIPK3, and MLKL, as well as the formation of the

necrosome, represents the canonical pathway for necroptosis

induction (44, 45).

The role of necroptosis in cancer remains ambiguous, with

evidence suggesting it can either suppress or promote tumor

progression. In most of the cases, necroptosis occurs when

apoptotic signaling is impaired, allowing it to act as a barrier to

tumor growth (46). However, necroptosis also triggers inflammatory

responses that could contribute to tumor promotion (47). For

instance, key necroptotic proteins, such as RIPK3, are often

downregulated in various cancers, and patients with low RIPK3

expression generally have poorer prognosis compared to those with

higher expression (48, 49). Downregulation of RIPK1 has been

observed in head and neck squamous cell carcinoma, with its

expression correlating with disease progression (50). In contrast,

many cancers demonstrate upregulation of necroptotic factors. For

instance, in pancreatic ductal adenocarcinoma, elevated levels of
FIGURE 1

Key molecules and therapeutic targets in pyroptosis, necroptosis, cuproptosis, and ferroptosis. Schematic summarizing the key molecular pathways
and therapeutic targets of (A) pyroptosis, (B) necroptosis, (C) cuproptosis, and (D) ferroptosis.
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RIPK1, RIPK3, and MLKL are associated with accelerated tumor

progression (51). Similarly, in breast cancer models, the absence of

RIPK1, RIPK3, and MLKL results in slower tumor growth and

heightened sensitivity to radiotherapy (52). Interestingly,

necroptosis has also been implicated in anti-tumor immunity, with

research suggesting that RIPK3 plays a regulatory role in the activity

of natural killer T (NKT) cells, enhancing NKT-mediated anti-tumor

responses (53). Furthermore, studies elucidated that targeting

necroptosis can enhance antitumor immunity by activating

antigen-presenting cells, promoting cross-priming of CD8+ T cells,

and triggering antitumor immune responses (54).

Although necroptosis can play a dual regulatory role in tumor

development, inducing or modulating necroptosis presents a

promising strategy for bypassing apoptosis resistance in treatment-

resistant tumors under certain conditions. An increasing number of

compounds have been found to induce necroptosis. For instance,

shikonin, a natural compound, has been shown to bypass drug

resistance by inducing necroptosis via the RIPK1/RIPK3-dependent

pathway (55). Similarly, the classic chemotherapeutic agent 5-

fluorouracil (5-FU) can suppress tumor cells through a TNF-

dependent necroptotic pathway when caspase activity is inhibited

(56). Recently, researchers have also reported that Z-DNA-mediated

necroptosis can be induced in liver cancer cells by the anti-cancer

compound CBL0137 (57). As well as the methylated indolequinone,

MAC681 has demonstrated antileukemic potential through the

induction of immunogenic necroptosis and PARP1 degradation

(58). In addition, small-molecule compounds such as

cryptotanshinone (CPT) have also been identified as necroptosis

inducers in lung cancer (59) (Figure 1B). By the way, death receptor

ligands, some viruses, and even radiotherapy have been shown to

suppress tumor growth, at least in part, by inducing necroptosis (60).

Taking together, increasing evidence suggests that necroptosis

exhibits complex interactions with tumor immunity, autophagy,

and apoptosis, playing a significant role in tumor progression,

metastasis, immune surveillance, and patient prognosis. Targeting

necroptosis has emerged as a potential novel strategy in cancer

treatment, enhancing the sensitivity of anti-tumor therapies and

supporting immunotherapeutic approaches.
Cuproptosis

Cuproptosis is a novel form of regulated cell death triggered by

intracellular copper accumulation. It is driven by the binding of

excess copper to mitochondrial lipoylated proteins, disrupting their

structure and leading to the aggregation of toxic protein complexes.

This disruption destabilizes mitochondrial function, causing

proteotoxic stress that leads to cell death. The process is regulated

by key molecules like Ferredoxin 1 (FDX1) and lipoic acid synthase

(LIAS), which cause aggregation of lipoylated TCA enzymes such as

dihydrolipoamide acetyltransferase (DLAT). Meanwhile, FDX1 also

induces the transform of Cu2+ to Cu+, which leads to the binding

and destabilization of mitochondrial iron-sulfur (Fe-S) cluster

proteins (61). Increasing evidence suggests that cuproptosis is

associated with mitochondrial dysfunction. Excessive

mitochondrial copper ion concentrations can lead to structural
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and functional damage to mitochondria (62). Saris et al. reported

that copper overload in rats disrupts mitochondrial membrane

potential, induces mitochondrial swelling, oxidative stress, and

calcium efflux (63). Yang et al. found that excessive copper ions

attack mitochondrial protein thiols, impairing mitochondrial

defense systems, leading to a decrease in mitochondrial

membrane potential and ATP levels. Copper ion-derived free

radicals can directly oxidize sulfhydryl residues in respiratory

chain complex IV on the inner mitochondrial membrane, thereby

inhibiting its activity (64). Zischka et al. demonstrated that excessive

copper ions directly attack cysteine residues in the mitochondrial

inner membrane, altering the conformation and activity of inner

membrane proteins and affecting mitochondrial oxidative

phosphorylation (65). Brancaccio et al. showed that excessive

copper disrupts the assembly and maturation of iron-sulfur

cluster proteins in the mitochondrial respiratory chain (66).

Steverding et al. suggested that lipid peroxidation products, such

as alkenes or aldehydes caused by copper overload, might interact

with numerous lysine residues on respiratory chain complexes,

altering their conformation and charge (67). Liao et al. observed

that copper overload affects mitochondrial metabolism, leading to

decreased mitochondrial membrane potential, increased membrane

permeability, and induction of mitochondria-related apoptosis in

renal cells (68). These findings collectively indicate that

mitochondrial copper overload damages mitochondrial structure

and function.

In cancer biology, cuproptosis is particularly relevant as some

tumors exhibit increased susceptibility to copper-induced toxicity. This

presents opportunities for developing targeted therapies by modulating

copper levels to selectively induce cell death in tumor cells (69).

Current investigations into therapeutic strategies suggest that

combining disulfiram and copper (DSF/Cu) with standard

chemotherapy could be an effective cancer treatment approach

(70). Furthermore, research indicates that triptolide can also

induce cuproptosis, presenting a novel antitumor strategy for

cervical cancer by specifically targeting the X-Linked inhibitor of

apoptosis (XIAP) (71) (Figure 1C). However, further research is

needed to fully elucidate the pathways involved and optimize the

therapeutic strategies targeting this form of cell death.

Nanoparticles (NPs) have emerged as promising tools for

inducing cuproptosis. Research has reported the development and

comparison of two diethyldithiocarbamate-copper oxide

nanocomplexes (DC), DC(I + II) NPs (diethyldithiocarbamate

(DD) nanocomplex combined with Cu4O3) and DC(I) NPs (DD

nanocomplex combined with Cu2O), in combination with DD, for

the treatment of metastatic liver cancer. DC (I + II) NPs showed

superior efficacy by selectively inducing cuproptosis, disrupting

mitochondrial enzymes, and suppressing cancer stemness and

metastasis markers, while maintaining normal liver function and

hematological parameters. These findings establish DC (I + II) NPs

as a highly effective therapeutic formulation for metastatic liver

cancer (72). Study has demonstrated novel nanocomplexes of

diethyldithiocarbamate (DE) with copper oxide (CD NPs) and

zinc oxide (ZD NPs) NPs to target cancer stem cells and disrupt

redox balance in metastatic breast cancer. CD NPs demonstrated

superior efficacy by selectively inducing oxidative stress, inhibiting
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ALDH1A, reducing tumor size, and eradicating liver metastases,

making them a promising and safe nanomedicine for metastatic

breast cancer treatment (73). Abu-Serie et al. developed novel

nanoformulations of copper diethyldithiocarbamate by chelating

diethyldithiocarbamate to bacterially and chemically synthesized

copper oxide NPs. The chemically synthesized nanoformulation

demonstrated superior anticancer efficacy compared to

biosynthesized CD NPs, with higher cellular uptake, stronger

ALDH1A1 inhibition, and enhanced free radical generation,

making it a promising candidate for further investigation in

animal models (74).
Ferroptosis

Ferroptosis was first identified and described during a

compound screening, where the compound erastin was found to

induce this novel form of non-apoptotic regulated cell death in

certain cell lines (75, 76). Ferroptosis differs from other forms of

regulated cell death in several ways. Morphologically, cells

undergoing erastin-induced ferroptosis exhibit abnormalities such

as mitochondrial shrinkage, reduced cristae, and outer membrane

condensation and rupture (77). This process may be regulated by

pro-apoptotic BCL2 family members such as BID and PUMA (78).

Mechanistically, ferroptosis is distinct from apoptosis and

necroptosis, characterized by iron-catalyzed lipid peroxidation

driven by Fenton reactions and lipoxygenases. Polyunsaturated

fatty acids (PUFAs) in membrane lipids are the primary targets of

lipid peroxidation (79, 80).

The exact mechanism by which uncontrolled lipid peroxidation

triggers ferroptosis remains incompletely understood. Molecular

dynamics studies have suggested that lipid peroxidation induces

membrane thinning, which facilitates the penetration of oxidative

agents into the cell, creating a self-perpetuating cycle that destabilizes

the plasma membrane and ultimately leads to pore formation and

rupture (81). Glutathione peroxidase 4 (GPX4) is a crucial regulator

in this process, protecting cellular membranes from oxidative damage

and acting as a key inhibitor of ferroptosis. Ferroptosis is frequently

linked to the downregulation or inhibition of GPX4. Thus, ferroptosis

represents a distinct form of regulated cell death, intricately

associated with oxidative stress and lipid peroxidation.

Ferroptosis inducers are broadly classified into two main

categories (1): Direct inducers of lipid peroxidation: such as RSL3

(82) and ML162 (83), inhibit glutathione peroxidase 4 (GPX4),

leading to the accumulation of ROS within cells. This process is

iron-dependent. (2) Indirect inducers that deplete cellular antioxidant

defenses, such as erastin, which can directly bind to the Xc- system

(SLC7A11-SLC3A2 complex), blocking the transport of cystine into

cells, leading to the accumulation of lipid peroxides and ultimately

inducing ferroptosis (84). Additionally, inducers like FIN56

(C25H31N3O5S2) promote GPX4 degradation (85), while FINO2

(C15H28O3) generates ROS to accelerate lipid peroxidation (86).

Ferroptosis was initially identified and characterized in RAS-

mutant cancer cells, many of which exhibit sensitivity to this form

of cell death. However, tumor cells from different tissue origins

show varying levels of sensitivity to ferroptosis (78). For instance,
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studies have demonstrated that artesunate can induce ferroptosis in

glioblastoma cells via p38-ERK pathway (87), and diffuse large B-

cell lymphoma (DLBCL) cells are highly sensitive to erastin-

induced ferroptosis (88). In glioblastoma treatment with

temozolomide, ferroptosis triggered by DMT1-dependent

pathway has been identified as a key mechanism of tumor cell

death (89). Additionally, researchers have also identified that

targeting AKT kinase with MK2206 induces ferroptosis in

colorectal cancer by modulating FTO/YTHDF2-dependent m6A

methylation of GPX4, resulting in its upregulation and subsequent

degradation (90) (Figure 1D). As a distinct form of regulated cell

death, ferroptosis holds potential for treating tumors resistant to

apoptosis-inducing agents.

Interestingly, cancer cells that have undergone epithelial-to-

mesenchymal transition (EMT) tend to accumulate more

polyunsaturated fatty acids (PUFAs), the substrates of lipid

peroxidation and ferroptosis. ZEB1, a key player in both

adipogenesis and EMT, acts as a mechanistic bridge in this

process (91). This makes mesenchymal-like cancer cells more

reliant on the protective function of GPX4 (92). In vitro studies

have shown that targeting GPX4 can induce ferroptosis in

chemotherapy-resistant cells, highlighting the therapeutic

potential of the ferroptosis pathway in treating drug-resistant

cancers (93). Besides, reports indicate that targeting hypoxia-

inducible factor 1 alpha (HIF1A), yes-associated protein (YAP),

the activating transcription factor (ATF) protein family, and p53

can lead to the accumulation of ROS, ultimately triggering

ferroptosis (94). Additionally, tyrosine kinase inhibitors (TKIs)

have been extensively utilized in targeted and precision medicine,

however, the development of drug resistance remains a significant

challenge in their therapeutic efficacy. Studies suggest that targeting

ferroptosis-related pathways may enhance anticancer activity and

offer promising strategies for overcoming TKI resistance (95).

NPs have emerged as promising tools for inducing ferroptosis.

Abu-Serie et al. developed and evaluated nanoformulations of

diethyldithiocarbamate (DDC) with ferrous oxide NPs (DFeO

NPs) and ferric oxide NPs (DFe2O3 NPs), demonstrating their

ability to induce ferroptosis and oxidative stress, effectively

eradicate cancer stem cells, and reduce metastatic activity without

causing adverse effects in vivo (96). Additionally, Abu-Serie et al.

demonstrated that the unique nanocomplexes (DE-FeO NPs) of

diethyldithiocarbamate (DE, an ALDH1A1 inhibitor) with ferrous

oxide NPs (FeO NPs) exhibit superior performance compared to

standard chemotherapy in attenuating chemoresistance and

radioresistance in glioblastoma by increasing lipid peroxidation

and ROS while depleting glutathione and glutathione peroxidase

4 (97). Abu-Serie developed a nanocomplex of FeO NPs and

diethyldithiocarbamate (FD) and demonstrated that its

combination with 5-fluorouracil effectively induces ferroptosis,

reduces cancer stem cell populations, and suppresses metastasis,

showcasing strong synergistic anticancer effects (98). Abu-Serie

developed a nanocomplex of ferrous oxide NPs (F(II) NPs) and

diethyldithiocarbamate (DE) (DF(II) NPs) to induce selective

ferroptosis for treating metastatic liver cancer. DF(II) NPs

demonstrated superior therapeutic efficacy and safety compared

to the typical DF(II) complex, effectively eradicating metastatic liver
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cancer cells by enhancing lipid peroxidation, suppressing

antioxidant defenses, and downregulating oncogenic and cancer

stem cell genes in both in vitro and in vivo models (99).

Nevertheless, further investigation is essential to identify the

malignancies most sensitive to ferroptosis and to determine the

appropriate ferroptosis inducers for specific cancer therapies.

Additionally, understanding the relationships and distinctions

between ferroptosis and other forms of regulated cell death in

various pathological contexts is critical. This knowledge could

significantly contribute to optimizing therapeutic strategies and

enhancing the efficacy of cancer treatments.
Disulfidptosis

Disulfidptosis is a newly identified form of RCD triggered by

abnormal disulfide bond formation, leading to cytoskeletal collapse,

particularly in actin filaments, and cell death. Mechanistically,

SLC7A11 imports cysteine, and GLUT1 dysfunction impairs

glucose uptake, causing disulfide stress and triggering disulfidptosis

(100). It predominantly occurs in cancer cells with elevated glucose

metabolism, where cysteine oxidation disrupts the cytoskeletal

integrity (101). This mechanism holds particular relevance in

cancer biology as it represents a novel target for therapeutic

interventions, especially in glucose-dependent tumors.

Recent studies suggest that inhibiting glucose transporters

(GLUTs) may be an effective strategy for inducing disulfidptosis

in SLC7A11 high expression tumors, which are common in many
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human cancers. For instance, the GLUT1 inhibitor BAY-876 and

the GLUT1/3 inhibitor KL-11743 have been shown to induce

disulfidptosis in cancer cells (102). Additionally, the MYH9

inhibitor Blebbistatin induces F-actin contraction and cell

shrinkage, mimicking disulfidptosis-like changes, thus enhancing

drug sensitivity in liver cancer (103) (Figure 2A). These findings

underscore the potential of disulfidptosis-targeted therapies in

treating aggressive and resistant malignancies.
Parthanatos

Parthanatos, also known as poly(ADP-ribose) polymerase 1

dependent cell death (PARP1-dependent cell death), is a form of

regulated cell death that can be activated under conditions such as

oxidative stress that induce high levels of DNA damage (104, 105).

Unlike apoptosis, PARP1-dependent cell death does not involve

apoptotic bodies or DNA fragmentation, nor does it exhibit cellular

swelling. Instead, it is characterized by distinct plasma membrane

rupture (106, 107). Mechanistically, the process requires

hyperactivation of PARP1. PARP1 recognizes DNA damage and

initiates the formation of poly(ADP-ribose) (PAR) polymers using

nicotinamide adenine dinucleotide (NAD) and ATP. On one hand,

this synthesis depletes cellular ATP and NAD, while on the other

hand, it causes mitochondrial inner membrane depolarization and

the release of apoptosis-inducing factor (AIF) (105, 108). AIF then

translocates to the nucleus, where it induces chromatin

condensation and large-scale DNA fragmentation, leading to
FIGURE 2

Key molecules and therapeutic targets in disulfidptosis, parthanatos, anoikis, and autophagy-dependent cell death. Schematic summarizing the key
molecular pathways and therapeutic targets of (A) disulfidptosis, (B) parthanatos, (C) anoikis, and (D) autophagy-dependent cell death.
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chromatin dissolution, a hallmark of parthanatos (109). Meanwhile,

AIF-independent parthanatos has been reported, where PARP-1

activation leads to cell death via mitochondrial dysfunction and

energy collapse in response to H2O2, without AIF involvement in

the execution of cell death (110).

Parthanatos has been implicated in the pathogenesis of various

diseases, including retinal detachment, Parkinson’s disease,

smoking-related lung disease, ischemic stroke, and oxidative

stress-induced hearing loss (111–115). In the context of cancer,

multiple molecules within the parthanatos pathway are intricately

linked to tumorigenesis and progression. PARP1 plays a crucial role

in DNA damage repair, it can facilitate DNA repair and replication

in certain contexts, promoting cell survival, while in other

situations, it may induce DNA breaks that lead to cell death.

Studies have indicated that tumors tend to develop more rapidly

in the absence of PARP1 (116). Additionally, PARP1 has been

demonstrated to inhibit tumor proliferation and metastasis (117).

Patients exhibiting negative to low expression levels of PARP1 tend

to have poorer prognoses and shorter overall survival (118).

Interestingly, a crucial aspect of parthanatos is the catalytic

activation of PARP1, though during apoptosis, activated caspase-3

cleaves and inactivates PARP1 (119). This implies that inducing

parthanatos in malignancies, particularly those with inhibited

apoptotic pathways, can effectively suppress tumor growth.

Recently, several drugs and compounds have been identified

that can induce parthanatos in cancer cells. Chemotherapy agents

such as temozolomide and oxaliplatin have been shown to trigger

parthanatos by inducing extensive DNA damage (120, 121).

Furthermore, the AKT kinase inhibitor SC66 has been reported to

activate parthanatos in a p53-Sirt6 dependent manner (122).

Deoxypodophyllotoxin (DPT) has also been found to initiate

parthanatos by promoting the nuclear translocation of AIF via

activation of mitochondrial respiratory chain complex I (123).

Besides, research has revealed that the cardiac glycoside

compound ZINC253504760 can induce parthanatos in multidrug-

resistant (MDR) leukemia cells (124) (Figure 2B). Notably, reagents

that promote the generation and accumulation of ROS may hold

significant potential for inducing Parthanatos in cancer cells, as

ROS can stimulate the formation of PAR, which initiate

parthanatos (125).

Thus, from a therapeutic standpoint, further investigation into

the precise mechanisms of PARP1-dependent cell death, alongside

exploration of the clinical efficacy and safety of PARP1-targeted

therapies, holds significant potential. Such research could offer

valuable strategies for treating various malignancies, especially in

cases of drug resistance, recurrence, or refractory tumors, providing

a promising avenue for improving patient outcomes.
Anoikis

Anoikis is a specific form of cell death triggered by the loss of

cell contact with the extracellular matrix (ECM) or neighboring

cells. Detachment of integrins deactivates survival signaling

pathways, such as EGFR-PI3K-AKT, while activating apoptotic

pathways, including ligand-mediated signals (e.g., TNF/TNFR,
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FasL/Fas) and mitochondrial pathways (126). Although anoikis

shares downstream apoptotic mechanisms, it is uniquely induced

by cell-ECM detachment. This specialized process is essential for

maintaining tissue integrity and preventing metastasis by

eliminating displaced cells. However, tumor cells that evade

anoikis can survive detachment from the primary site, enabling

distant metastasis (127).

Anoikis resistance is pivotal in facilitating metastasis, making it

a promising therapeutic target in cancer treatment. Targeting key

molecules involved in this process has shown potential to induce

anoikis. For instance, the EGFR inhibitor gefitinib has been

demonstrated to trigger anoikis in cervical cancer (128), while the

integrin inhibitor cilengitide promotes atypical anoikis in glioma

(129). Additionally, an AKT inhibitor, KP372-1 has been shown to

induce anoikis in squamous cell carcinoma of the head and neck

(130) (Figure 2C).
Autophagy-dependent cell death

Autophagy-dependent cell death is driven by intracellular

catabolic pathways regulated by over 40 autophagy-related genes

and proteins (ATGs) (40). These pathways lead to excessive

activation of autolysosomes, resulting in the degradation of

essential cellular components and cell death. Typically, autophagy

functions as a dynamic recycling system that maintains cellular

homeostasis, often acting as a survival mechanism. However, recent

evidence suggests that autophagy can also function as a primary

mechanism of cell death, including tumor suppression (131).

Targeting key autophagy-regulating genes such as PI3K and

mTOR with inhibitors like NVP-BEZ235 and GDC-0980 has

shown potential to enhance the effectiveness of treatment in

malignant pleural mesothelioma (132). Preclinical and clinical

evidence also indicate that the autophagy inhibitor chloroquine

can sensitize prostate cancer cells to treatment (133). Additionally,

the natural compound silibinin has been found to induce

autophagy-dependent cell death in glioma, mediated by oxidative

stress and the nuclear translocation of AIF (134) (Figure 2D).
Entosis

Entosis is a cellular process in which one living cell engulfs

another, forming a cell-in-cell (CIC) structure. This process is

initiated by cadherin/b-catenin-mediated cell adhesion and driven

by actomyosin contraction regulated by Rho GTPases (135, 136).

This phenomenon is often observed in cancer and plays a role in

tissue homeostasis (137, 138). The engulfed cell may undergo

internalization and potential degradation through LC3-associated

phagocytosis (LAP) (139). As a form of cell death linked to

autophagy activation, entosis involves one cell engulfing and

lysing another, distinct from autophagy-dependent cell death,

which entails self-destruction through autophagy. Entosis has

been reported to facilitate the death of entotic cancer cells,

functioning as a tumor-suppressive mechanism. However, studies

also indicate that most of the tumors exhibiting the entotic
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phenotype tend to be more malignant and are associated with

poorer prognosis, suggesting tumor cells might use mitosis as

shields to evade elimination (140).

Inhibition of entosis holds the potential to enhance the

effectiveness of cancer therapies by sensitizing tumor cells to

treatment, potentially overcoming resistance mechanisms and

improving therapeutic outcomes. Recent studies have

demonstrated that the inhibition of the Orai1 Ca²+ channel with

the inhibitor SKF96365 effectively prevents entosis (141).

Additionally, targeting Rho-ROCK signaling using the ROCK

inhibitor H-1152 attenuates entosis by reducing actomyosin

contraction (136). Furthermore, direct inhibition of actomyosin

with Cytochalasin B has also been shown to suppress entosis

(142) (Figure 3A).
Lysosome-dependent cell death

Lysosome-dependent cell death (LDCD) is a form of programmed

cell death initiated by lysosomal membrane permeabilization following

to stress like p53 activation and ROS, resulting in the release of

hydrolytic enzymes, such as cathepsins, into the cytosol. These

enzymes facilitate cellular degradation and lead to cell death (143).

Researchers also suggest that LDCD is involved in inducing apoptosis,

necrosis, entosis, pyroptosis and ferroptosis (144, 145).

LDCD plays a crucial role in both neurodegenerative diseases

and cancer, regulating cell death pathways and presenting

promising therapeutic targets. For instance, the sigma-2 receptor

(S2R) agonist siramesine triggers LDCD in breast cancer by
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destabilizing lysosomes and releasing cathepsins (146).

Additionally, FV-429, a synthetic flavonoid compound induces

LDCD in T-cell malignancies through lysosomal dysregulation

(147), while artesunate enhances lysosomal function and

degradation, promoting LDCD in cancer cells (148) (Figure 3B).
Mitotic catastrophe

Mitotic catastrophe is a form of regulated cell death that is initiated

by DNA damage and subsequent activation of the p53/p21 pathway,

leading to cell cycle arrest. Dysregulation of Cyclin B/CDK1 causes

improper mitotic entry, while dysfunction of Aurora-A Kinases

(AURKA) impairs spindle assembly, both of which contribute to the

onset of mitotic catastrophe. Following this, caspase activation is

triggered, ultimately leading to cell death. These pathways function

as critical safeguards against genomic instability by ensuring that cells

with mitotic errors or DNA damage are eliminated (149, 150). It serves

as a protective mechanism to prevent the division of damaged cells,

often triggered by DNA damage.

This process also plays a significant role in enhancing the efficacy of

chemotherapy in cancer treatment, as it can induce cancer cell death

(151). For example, the AURKA inhibitor Alisertib disrupts

chromosome segregation, leading to mitotic catastrophe in multiple

myeloma (152). Similarly, paclitaxel stabilizes microtubules, impairing

chromosome segregation and inducing mitotic catastrophe in

gastric cancer (153). Doxorubicin has also been shown to trigger

mitotic catastrophe in hepatocellular carcinoma (154) (Figure 3C).

Although the classification of mitotic catastrophe as a form of regulated
FIGURE 3

Key molecules and therapeutic targets in entosis, lysosome-dependent cell death, mitotic catastrophe, and alkaliptosis. Schematic summarizing the
key molecular pathways and therapeutic targets of (A) Entosis, (B) lysosome-dependent cell death, (C) mitotic catastrophe, and (D) alkaliptosis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1519119
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1519119
cell death remains controversial, it plays a critical oncosuppressive role

by eliminating mitosis-incompetent cells, making it a promising target

for cancer therapy and an important area of study.
Alkaliptosis

Alkaliptosis is a recently identified form of regulated cell death

characterized by an increase in intracellular pH, primarily driven by

the inhibition of carbonic anhydrase IX (CA9), a key enzyme

regulating pH homeostasis. Inhibition of CA9 disrupts this balance,

leading to the accumulation of alkaline metabolites and triggering a

cascade of cellular stress responses that culminate in cell death (155).

Targeting alkaliptosis has emerged as a potential therapeutic

approach in cancer treatment (156). Recent studies have shown

that the opioid receptor-like 1 (OPRL1) antagonist JTC801 can

induce alkaliptosis by activating the NF-kB pathway. The canonical

NF-kB pathway is activated by ligands (e.g., lipopolysaccharide) via

the IKK complex (IKKa, IKKb, IKKg), leading to IkBa degradation

and nuclear translocation of NF-kB subunits (p50, p65) (157). CA9 is

identified as a negatively regulated target of the NF-kB pathway, with

its expression downregulated upon NF-kB activation (155). Another

study demonstrated that direct inhibition of CA9 using the

compound U-104 effectively suppressed pancreatic ductal

adenocarcinoma (PDAC) cell proliferation (158) (Figure 3D),

further highlighting its therapeutic potential.
Regulated cell death: a double-edged
sword in cancer elimination and adaptation

Pyroptosis represents a double-edged sword in cancer. GSDMD, a

key effector protein of pyroptosis, is often overexpressed in gliomas,

with its expression levels increasing in parallel with the WHO grading

of gliomas and negatively correlating with prognosis (159). In glioma

cells treated with temozolomide (TMZ), the expression of pyroptosis

markers, including GSDMD, caspase-1, and IL-1b, significantly
increases, accompanied by morphological changes indicative of

pyroptosis. The extent of pyroptosis positively correlates with TMZ

concentration, whereas inhibiting GSDMD expression markedly

reduces TMZ-induced pyroptosis and facilitates tumor cell

proliferation (159, 160). These findings suggest that GSDMD plays a

crucial role in modulating glioma cell sensitivity to TMZ. Similarly, 5-

fluorouracil has been shown to induce caspase-3/GSDME-dependent

pyroptosis in gastric cancer cells, shedding light on the mechanisms

underlying chemotherapy in gastric cancer (161). Furthermore,

cannabidiol triggers the integrated stress response and mitochondrial

stress in hepatocellular carcinoma cells, leading to the activation of

ATF4 and its downstream target CHOP. This subsequently promotes

the expression of Bax, a member of the BCL-2 family, and induces

caspase-3/caspase-9/GSDME-dependent pyroptosis (162).

The ability of cell death to trigger adaptive immune responses is

referred to as immunogenic cell death (163). Pyroptosis, with its

molecular mechanisms that induce a strong inflammatory response,

is considered a form of ICD under certain conditions (18, 164). During

immunogenic pyroptosis, the release of numerous tumor antigens,
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damage-associated molecular patterns (DAMPs), and inflammatory

cytokines can efficiently drive dendritic cells (DCs) maturation, trigger

activation of tumor antigen-specific T cells, facilitate cytotoxic

T lymphocyte infiltration into tumors, transform immunologically

“cold” tumors into “hot” tumors, improve the responsiveness to

immune checkpoint blockade therapy, and ultimately strengthen the

body’s antitumor immune response (165–167).

The specific role of necroptosis in tumors remains difficult to define.

Hänggi et al. discovered that triggering necroptosis in established

breast tumors creates a myeloid-dominated immunosuppressive

microenvironment. This environment impairs T cell activity, facilitates

tumor progression, and shortens survival (168). However, RIPK3, a

critical molecule in the initiation of necroptosis, has been shown to

suppress migration and invasion of colorectal cancer cells when

overexpressed (169). Furthermore, ectopic expression of RIPK3 in

cancer cells lacking its expression can inhibit tumor growth (49, 170).

These findings suggest that the loss or downregulation of RIPK3 in

tumor cells promotes cell survival and tumorigenesis.

Necroptosis in cancer cells holds promise for creating an

inflammatory immune microenvironment within the tumor by

releasing DAMPs, cytokines, and/or chemokines, which can lead to

either tumor-promoting or antitumor effects (171–173). Necroptotic

tumor cells attract macrophages and DCs, which are activated by

DAMPs and cytokines. Activated DCs migrate to lymph nodes,

where they prime naïve CD4+ and CD8+ T cells. The naïve T cells

then differentiate into effector T cells, exit the lymph nodes, re-enter

circulation, and infiltrate tumor tissues to exert antitumor effects.

RIPK3 has been shown to induce cytokine secretion, activate NKT

cells, and enhance their tumor-killing activity. However, necroptotic

tumor cells can also attract myeloid-derived suppressor cells

(MDSCs) and tumor-associated macrophages (TAMs), leading to

tumor-associated immunosuppression.

Ferroptosis acts as a double-edged sword in regulating tumor

immunity. On one hand, ferroptosis influences the phenotype and

function of immune cells, while immune cells can also regulate the

ferroptosis process in tumor cells. For example, activated CD8+ T cells

secrete IFN-g, which inhibits the Xc− system, ultimately inducing

ferroptosis in tumor cells and exerting antitumor effects. Ferroptosis

cells can release specific signals, such as arachidonic acid derivatives

and the damage-associated molecular pattern protein, high-mobility

group box 1 (HMGB1), to mediate antitumor immunity (174). On the

other hand, ferroptosis may lead to a state of chronic inflammation

closely associated with tumor initiation and progression. To support

the survival of neighboring tumor cells or evade immune detection,

ferroptosis tumor cells and tumor-infiltrating immune cells can

produce immunosuppressive mediators, such as prostaglandin E2

(PGE2), thereby inhibiting antitumor immunity and ultimately

promoting tumor growth. For instance, although inhibition of GPX4

increases intracellular lipid peroxidation products and triggers

ferroptosis in tumor cells, it simultaneously enhances PGE2-

mediated immune evasion, fostering tumor progression (175).

Studies have shown that CD8+ T cells and neutrophils promote

ferroptosis in tumor cells through the secretion of interferon-g (IFN-g)
and the transfer of myeloperoxidase-containing granules, respectively

(176). Other components of the tumor microenvironment (TME),

such as transforming growth factor-b1 (TGF-b1) and n-3 and n-6
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polyunsaturated fatty acids (PUFAs), also enhance ferroptosis in tumor

cells (177, 178). Subsequently, ferroptotic cancer cells release

immunostimulatory signals that promote the maturation of dendritic

cells, activate M1-polarized macrophages, and enhance T-cell

infiltration and activity within tumors. Additionally, ferroptotic

cancer cells reduce the release of TGF-b1, thereby inhibiting

immunosuppressive cancer-associated fibroblasts (CAFs) (179).

Furthermore, ferroptosis induction disrupts the immunosuppressive

functions of various immune-suppressing cells, including tumor-

infiltrating neutrophils (180), myeloid-derived suppressor cells

(MDSCs) (181), regulatory T (Treg) cells (182), and M2-polarized

tumor-associated macrophages (TAMs) (183), thereby enhancing

antitumor immunity.

Autophagy-dependent cell death also plays a dual role in tumors.

Elevated autophagy levels help tumor cells survive metabolic stress

caused by starvation, hypoxia, and factor deprivation (184, 185).

Additionally, enhanced autophagy enables tumor cells to resist

damage from radiotherapy and chemotherapy, conferring a high

level of stress tolerance. This allows tumor cells to limit damage,

maintain viability, sustain dormancy, and promote recovery (186).

Conversely, autophagy also plays a critical role in mitigating damage

during stress responses, which may hinder tumorigenesis. By clearing

damaged proteins and organelles, autophagy may help maintain

energy balance through intracellular recycling and ultimately

prevent genomic damage, a key driver of tumor development.

Overall, autophagy equips tumor cells with the capacity to adapt

and evolve under selective pressures, progressively becoming more

harmful to the host. This adaptability contributes to the difficulty of

effectively treating cancer (186).

Regarding the role of entosis in tumors, from the perspective of

internalized cells, entosis represents a form of “self-cannibalism”

among tumor cells, capable of inhibiting tumor growth by driving

the death of internalized cells. However, from the perspective of

host cells, entosis can promote tumor progression. On one hand,

internalized cells can provide nutrients to host cells; on the other

hand, entosis can disrupt host cell division, potentially leading to

genomic instability and facilitating tumor progression (187). In

PDAC, entosis is the predominant form of CIC and is associated

with tumor invasiveness and poor prognosis. Tumor cells can

exploit entosis to generate highly invasive subpopulations. Within

these internalized cells, the expression of several oncogenes is

upregulated, conferring enhanced tumorigenic potential in both

in vitro and in vivo models (188).

Mitotic catastrophe serves as a safeguard mechanism to prevent

genomic instability, limiting the proliferation of unstable cells and

thereby contributing to cancer prevention (189). However, even after

undergoing mitotic catastrophe, certain tumor cells can survive by

evading cell death and adapting to genomic instability (189). Study

has shown that p53 can mediate mitotic catastrophe. p53 deficient

cells exhibit a higher frequency of polyploidization in response to

mitotic inhibitors compared to their p53 proficient counterparts.

Moreover, the absence of p53 permits multipolar divisions in

tetraploid cells, leading to the generation of aneuploid, genomically

unstable progeny, which can contribute to tumorigenesis (190, 191).

Regarding cuproptosis, it can play dual roles in tumors. On one

hand, it promotes tumor proliferation, metastasis, and angiogenesis.
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Excess Cu+ can activate the MAPK-ERK pathway, thereby

enhancing tumor cell proliferation (192) and stimulating the

synthesis of various angiogenic factors, including angiopoietin,

VEGF and FGF1 (193). Copper can also facilitate tumor

metastasis through the LOX pathway (194, 195). Additionally, it

may help tumor cells evade immune clearance by upregulating the

expression of PD-L1 (196). On the other hand, copper overload can

exert anti-tumor effects by interfering with the mitochondrial TCA

cycle, depleting GSH, and reducing the antioxidant capacity of

tumor cells, ultimately inducing tumor cell death (197).

Notably, cuproptosis disrupts the cell membrane, leading to the

release of DAMPs that trigger a robust immune response. This process

enhances lymphocyte infiltration and drives the secretion of

inflammatory cytokines, effectively reshaping the immunosuppressive

TME. Furthermore, the combination of ES@CuO nanoparticles with

PD-1 therapy significantly boosts the antitumor effectiveness of

immune checkpoint inhibitors (198).
Cross-talk among regulated cell
death pathways

Parthanatos shares some characteristics with necroptosis,

apoptosis, and autophagy, but differs significantly in its molecular

mechanisms. Unlike apoptosis, Parthanatos does not result in the

formation of small DNA fragments or apoptotic bodies (199). In

contrast to necrosis, it does not cause swelling of cellular organelles

(107, 200). Unlike autophagy, Parthanatos does not involve the

formation of autophagosomes or lysosomal degradation (201).

Compared to necroptosis, Parthanatos does not induce swelling

of the plasma membrane and organelles, cell lysis, or activation of

RIPK1 (201).

Ferroptosis and pyroptosis exhibit distinct characteristics, yet both

mechanisms hold significant research value in the field of cancer

therapy. Studies have shown that antitumor immune cells, such as

CD8+ T cells, play a dual role in promoting and inducing these two

forms of cell death (202). On one hand, CD8+ T cells secrete granzyme

A (GzmA), which acts as a cleavage enzyme for GSDMB. The cleaved

GSDMB subsequently triggers pyroptosis. On the other hand, CD8+ T

cells release IFN-g, which downregulates SLC7A11, leading to the

accumulation of lipid ROS and the induction of ferroptosis. Moreover,

tumor cells undergoing pyroptosis further enhance the activation and

differentiation of antitumor immune cells, contributing to the

eradication of the tumor.

Some evidence suggests a crosstalk between necroptosis and

pyroptosis. Necroptosis, induced through RIPK3 activation,

promotes NLRP3-caspase-1-mediated IL-1b secretion (203).

Subsequent experiments using MLKL and inflammasome gene

knockout models further support that necroptotic signaling can

trigger the RIPK3-mixed lineage kinase domain-like protein

(MLKL)-NLRP3-Caspase-1 axis (204).

Inhibition of ULK1 impedes mitophagy, resulting in the

accumulation of ROS. The generated ROS subsequently activates

the NLRP3-Caspase3/8 signaling axis, leading to the cleavage of

GSDME and the formation of GSDME-N. GSDME-N integrates

into the plasma membrane, promoting pyroptosis (205).
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In certain contexts, selective autophagy acts as a pro-survival

mechanism during ferroptosis by selectively removing damaged or

dysfunctional cellular components, thereby limiting lipid

peroxidation and maintaining cellular homeostasis. For instance,

endoplasmic reticulum (ER)-phagy specifically targets and degrades

portions of the ER. The ER-resident receptor RETREG1/FAM134B

interacts with MAP1LC3 to facilitate ER degradation through

autophagy. In the context of ferroptosis, ferroptosis inducers

effectively activate RETREG1-mediated ER-phagy, thereby

suppressing ferroptosis. However, when RETREG1 is knocked

down, ER-phagy is inhibited, leading to increased sensitivity to

ferroptosis (206). Simultaneously, ACSL4 facilitates the formation

of lipid peroxidation substrates during ferroptosis. The ACSL4

protein contains six KFERQ-like motifs, making it a substrate for

chaperone-mediated autophagy (CMA). CMA-mediated

degradation of GPX4 promotes ferroptosis, whereas CMA-

mediated degradation of ACSL4 can suppress this process (207).

Autophagy-dependent cell death, entosis, and lysosome-

dependent cell death are closely linked to autophagic flux,

regulated by key molecules such as AMPK activation and mTOR

suppression. These processes lead to lysosomal membrane

permeabilization and hydrolase release, resulting in cell death.

Additionally, they share common upstream signals, including p53

activation and ROS accumulation (208, 209).

Cuproptosis and ferroptosis share critical cross-talk in

regulating cell death pathways. Both involve mitochondrial

dysfunction, with cuproptosis driven by copper-induced TCA

cycle protein aggregation and ferroptosis triggered by lipid

peroxidation from ROS accumulation. Mitochondrial metabolism

links the two pathways, as disruption of iron-sulfur cluster

biogenesis and reactive oxygen species production influences

both. Furthermore, gene interactions between cuproptosis

regulators (e.g., FDX1, DLAT) and ferroptosis regulators (e.g.,

GPX4, SLC7A11) emphasize their interaction, highlighting

potential therapeutic strategies that target mitochondrial

vulnerabilities in cancers (210).
Summary

RCD is fundamental to disease pathology, with numerous studies

linking its dysregulation to a wide range of conditions. Overactivation

of specific cell death pathways can result in pathological cell death,

contributing to neurodegenerative diseases such as Alzheimer’s.

Conversely, suppression of these pathways can facilitate abnormal

cell proliferation, leading to tumorigenesis. Identifying aberrant RCD

pathways in various diseases, particularly cancers, and developing

targeted therapies for these pathways presents promising potential for

novel treatments. This review also highlights drugs that induce

distinct RCD forms and their molecular targets (Figures 1–3).

Inducing RCDs in cancer therapy presents significant challenges,

primarily due to the need for targeting specific pathways while

minimizing harm to healthy tissue. Cancer cells often exhibit

resistance to RCDs through altered signaling or evasion of death
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pathways, particularly apoptosis. Future therapeutic strategies include

developing targeted therapies that selectively activate RCD pathways

like pyroptosis, ferroptosis, or necroptosis, as well as leveraging

nanomedicines. Combining RCD inducers with immunotherapies

could enhance therapeutic efficacy. Non-apoptotic RCDs, which

bypass apoptotic resistance, offer promising approaches for

overcoming drug resistance in cancer treatment. Additionally,

certain RCD types induce immunogenic cell death, stimulating

anti-tumor immune responses. This provides a new avenue for

integrating RCD induction with immunotherapy to improve

treatment outcomes. However, the mechanisms of some RCD types

remain poorly understood, the activation of some RCDs might be

double-edged swords for eliminating cancer cells, highlighting the

need for further research. Exploring novel RCD pathways through

clinical trials will be critical for developing innovative and effective

cancer treatments that improve patient outcomes.
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