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Maternally expressed gene 3 (MEG3), a long non-coding RNA, plays a pivotal role

in various biological processes, including tumorigenesis. Aberrant expression of

MEG3 has been implicated in several cancers, including genitourinary

malignancies. This comprehensive review explores the multifaceted functions

of MEG3 in the context of genitourinary cancers through unravelling the

molecular mechanisms underlying the influence of MEG3 on cellular

proliferation, apoptosis, invasion, and metastasis. Additionally, we discuss the

potential clinical implications of MEG3 as a biomarker and therapeutic target in

genitourinary cancers. By unraveling the intricate role of MEG3 in these biological

processes, this review aims to contribute to the development of novel strategies

for the diagnosis and treatment of genitourinary malignancies.
KEYWORDS

LncRNA - long noncoding RNA, MEG3 lncRNA, genitourinary cancers, renal cell
carcinoma, bladder cancer, prostate cancer, testicular cancer, cervical cancer
1 Introduction

Long non-coding RNAs (lncRNAs) are non-protein coding RNA molecules composed

of more than 200 nucleotides (1, 2). However, recent discoveries have identified rare

exceptions where lncRNAs encode small peptides (2–5). LncRNAs are key players in cancer

development and have been validated as diagnostic and prognostic biomarkers in multiple

cancers (1, 6–10). The general mechanisms by which lncRNAs act at the cellular level

include signaling, scaffolding, decoying, and guiding (11–14). Although most lncRNAs

exert their effects through a combination of mechanisms, the functions of lncRNAs can be
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broadly categorized into three main levels, namely the epigenetic,

transcriptional, and post-transcriptional levels (15–18).

First, lncRNAs play a role in the epigenetic regulation of various

genes (12, 19). This includes chromatin remodeling by affecting

chromatin structure and regulating gene expression, DNA

methylation with subsequent downregulation in target gene

expression, and histone modification which could silence target

genomic regions (20–22).

Second, lncRNAs could regulate gene expression on the nuclear

or transcriptional level by interacting with transcription factors acting

as scaffolds to prevent their binding to their target genes (22, 23).

Such interactions alter the nuclear architecture through the formation

of nuclear bodies such as paraspeckles and nuclear speckles which are

involved in RNA metabolism and modification of splicing factors,

respectively (24). Moreover, such interactions might affect pre-

mRNA splicing by interacting with splicing factors, either by acting

as decoys to sequester splicing factors or by inducing the

phosphorylation of these factors (25–27).

Third, lncRNAs could alter the gene expression on the

cytoplasmic or post transcriptional level by affecting the RNA

stability and translation, binding with miRNAs to form a sponge

RNA that competes with competing endogenous RNA (ceRNAs)

(28–31). Such ceRNAs prevent the sponged miRNAs from

performing their function or interacting with their respective

target proteins (32–34).

Physiologically, the lncRNA activity is tightly regulated (35, 36).

However, the dysregulation of lncRNAs in tumors worsens cancer

progression and prognosis by interfering with all the reported

hallmarks of cancer until now (25, 37, 38).
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2 Structure and function of MEG3

2.1 Structural characteristics and genomic
location of MEG3 imprint gene

The lncRNA human maternally expressed gene 3 (MEG3), an

imprinted gene located on chromosome 14q32.3 within the Delta-like

1-MEG3 locus (39, 40), is exclusively maternally expressed (41, 42).

Furthermore, the absence of a Kozak consensus sequence in the

undefined open reading frame classifies it as a non-coding RNA

(43, 44). MEG3 transcription is orchestrated by RNA polymerase 2,

resulting in the splicing of the gene into 10 exons that encompass five

distinct structural motifs, namely M-I to M-V (41, 45, 46). In its

mature state, the 1.6 kb MEG3 transcript exhibits polyadenylation at

its 3’ end and exists in both the nucleus and cytoplasm

(47–49) (Figure 1).
2.2 Transcriptional regulation of MEG3

The regulation of gene expression in the Delta-like 1-MEG3

region is governed by two differentially methylated regions (DMRs)

consisting of multiple methylated CpG sites: the intergenic DMR,

positioned approximately 13 kb upstream from the transcription

start site of MEG3, and the post-fertilization-derived secondary

DMR (MEG3-DMR), which overlaps with the promoter 1.5 kb

upstream (40, 42). The alternative RNA splicing process of MEG3

results in the production of approximately 12 distinct transcript
FIGURE 1

Structure and Function of MEG3. This figure illustrates the structure and function of long non-coding RNA (lncRNA) MEG3. The H11-H27 kissing loop
activates MEG3 and the regulatory motifs play a role in activating p53. MEG3's interaction with p53 promotes apoptosis in tumor cells. Additionally,
MEG3 interacts with PRC2 (via active EZH2), leading to the trimethylation of H3K27, which results in the epigenetic silencing of tumor-suppressor
genes, such as INK4A/ARF.
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isoforms within exons 1–4 and 8–10. Within this set of isoforms,

variation 1 emerges as the predominant transcript. The selective

expression pattern of MEG3 isoforms is tissue- and cell type-

specific. All twelve MEG3 isoforms are expressed in the liver of

human fetuses, while five specific isoforms, namely MEG3, MEG3b,

MEG3d, MEG3e, and MEG3g, are expressed in the tissues of the

pituitary gland (42, 50).
2.3 Physiological and pathological roles of
LncRNA MEG3

Owing to its genomic location and complex molecular

interplay, MEG3 plays a pivotal regulatory role in the processes of

development and growth (40, 51). In addition, MEG3 plays a role in

a wide variety of cellular processes, such as differentiation of

osteogenic tissue and progression of bone-related conditions such

as osteosarcoma, osteoarthritis, and osteoporosis (52, 53). MEG3 is

highly expressed in various normal human tissues, particularly the

brain and pituitary gland, especially in the gonadotrophin-
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producing cells (44, 54). Moreover, MEG3 has been implicated in

several diseases, including ischemic neuronal death, atherosclerosis,

and type II diabetes mellitus (49, 55–57). Its oncological relevance

was first unveiled by Zhang et al., who revealed that MEG3

expression is deficient in pituitary adenomas, and observed that

its ectopic expression resulted in the suppression of tumor cell

proliferation (49, 54). Recent studies have intriguingly

demonstrated a reduction in the MEG3 expression levels in

various tumors, where it functions as a tumor suppressor through

p53-dependent and p53-independent pathways (58, 59) (Figure 1).

MEG3, as a critical tumor suppressor gene, has the paramount

potential to orchestrate many cancer hallmarks. Specifically, it can

impede tumor cell proliferation, trigger apoptosis, inhibit invasion

and metastasis, hinder angiogenesis, and suppress metabolic

reprogramming in tumor cells (49). For instance, MEG3

demonstrated the ability to suppress the oncogenic activity of the

proteins c-Myc and b-catenin in liver cancer (58). It also induces

G0/G1 cell cycle arrest in prostate cancer cells (60) and G2/M arrest

in cervical cancer cells (Figure 2) (61). Restoration of MEG3

expression suppresses tumor growth (54) and induces apoptosis
FIGURE 2

Regulatory role of MEG3 in cancer progression and suppression. This figure depicts the multifaceted tumor-suppressive role of MEG3 in cancer
regulation. MEG3 induces cell cycle arrest at the G0/G1 or G2/M phases, restricting uncontrolled proliferation, and promotes apoptosis by
upregulating Caspase 9 and Cytochrome C while downregulating the anti-apoptotic protein Bcl-2. It suppresses oncogenic activity by inhibiting c-
Myc and B-actin and enhances tumor suppression by upregulating PTPN11, leading to increased p53 accumulation. MEG3 also inhibits metastasis by
enhancing the expression of PTEN and modulates key microRNAs (miR-7, miR-27a, miR-19a, and miR-21) to balance oncogenic and tumor-
suppressive pathways. Furthermore, it regulates epithelial-mesenchymal transition (EMT) by modulating p53 and NF-kB signaling, preventing the
transition of epithelial cancer cells into migratory mesenchymal cells. Through these mechanisms, MEG3 acts as a crucial regulator of cancer
progression and suppression.
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in several human cancer cell lines, such as lung cancer A549 cells

(62); SCC-15 and CAL27 tongue squamous cell carcinoma cell lines

(63); and gastric cancer cell lines SGC7901, AGS, MGC803,

MKN45, and BGC823 (59, 64).

MEG3 contains microRNA response elements, which enable

MEG3 to function as a ceRNA and effectively sponge and sequester

miRNAs that engage with diverse genes, proteins, such as p53,

enhancer of zeste homologue 2, and nuclear factor-kappa B

(Figure 2) (49). Through this mechanism, MEG3 can inhibit the

epithelial-mesenchymal transition and metastatic potential of

gastric cancer cells by sponging miR-21. This results in increased

expression of the epithelial marker E-cadherin and reduced levels of

mesenchymal markers, including N-cadherin, Snail, and b-catenin,
along with migration-related proteins such as matrix

metalloproteinase-2 (MMP-2), MMP-3, and MMP-9 (Figure 2)

(42, 65). Furthermore, by sponging miR-19a, MEG3 modulates

PTEN expression, thereby inhibiting the migratory and invasive

capabilities of glioma cells (Figure 2) (49, 66).

Beyond its role as a ceRNA, MEG3 can influence gene activity

through mechanisms such as translation, transcription, post-

translational modifications, and epigenetic regulation. Several

studies have linked MEG3 dysregulation to poor clinical

outcomes and the development of drug resistance. For instance,

MEG3 may ameliorate p53 levels by augmenting its transcriptional

activity and post-translational modifications (49). It can also

decrease the levels of murine double minute 2, an E3 ubiquitin

ligase that facilitates p53 ubiquitination and proteasomal

degradation, leading to the stabilization of p53 protein and

activation of its downstream targets (49, 67). Additionally, MEG3

inhib i t ion has been assoc ia ted wi th nicke l - induced

hypermethylation through increased DNMT3b levels, while the

suppression of PHLPP1 transcription has been attributed to

decreased interaction between MEG3 and its repressive

transcription partner c-Jun (53, 68). Moreover, upregulation of

MEG3 expression increases the sensitization of tumor cells to

radiation therapy and chemotherapy, thereby boosting the efficacy

of current treatment approaches (50). Nevertheless, the functional

properties of MEG3 and its involvement in both physiological and

pathologic cellular processes are still under active investigation.
3 Deep comparison between the role
of MEG3 and other lncRNAs

Upon examining the tumour-suppressive roles of lncRNAs in

genitourinary cancers, MEG3 has emerged as a notable candidate. It

is consistently downregulated in tumor tissues compared to normal

ones and exhibits significant tumor suppressive roles across all

genitourinary cancers. MEG3 primarily functions by promoting

apoptosis and by inhibiting proliferation, angiogenesis and

metastasis, marking it as a universal tumor suppressor in

these cancers.

Among other tumour-suppressive lncRNAs, GAS5 stands out

as most similar to MEG3. GAS5 has been identified as a robust

tumor suppressor in several genitourinary cancers, including
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ovarian, RCC, bladder, prostate, and cervical cancers. In ovarian

cancer, GAS5 disrupts mitochondrial membrane potential and

influences apoptosis pathways, similarly to MEG3, through the

promotion of BAX, BAK, and caspases (69, 70). Additionally, it

regulates cell proliferation by inhibiting miR-21, thereby increasing

SPRY2 expression, crucial for suppressing tumor growth and

proliferation (71).

In RCC, GAS5 shares functions with MEG3 by inhibiting cell

proliferation, migration, invasion, and inducing apoptosis and cell

cycle arrest (Table 1) (72). In bladder cancer, while GAS5

suppresses cell proliferation by modulating cellular components

like CCL1, it complements MEG3’s actions by also targeting major

oncogenic pathways (73). In prostate cancer, GAS5 functions by

inducing apoptosis and repressing androgen receptor (AR) activity,

sequestering the androgen/AR complex and inhibiting the AR

signaling pathway, which is vital for prostate cancer cell survival

and growth (74, 75). Unlike MEG3, GAS5’s mechanism primarily

focuses on disrupting hormone-driven growth signals.

Furthermore, in cervical cancer, GAS5 acts as a growth and

metastasis inhibitor by directly binding and downregulating miR-

196a and miR-205, crucial for the proliferation, invasion, and

apoptosis of cervical cancer cells (Table 1) (76, 77). GAS5’s broad

impact on tumor suppression through miRNA regulation parallels

MEG3’s function, though it targets different specific miRNAs,

enhancing the collective miRNA regulatory spectrum in this

cancer type.

The lncRNA MAGI2-AS3 exhibits tumour-suppressive

functions in various cancers by sponging multiple miRNAs,

including miR-15-5p, miR-374a-5p, miR-374b-5p, and miR-525-

5p. In ovarian cancer, it inhibits MYC signaling, significantly

reducing cell proliferation and migration, illustrating its capacity

to suppress multiple oncogenic pathways (Table 1) (78, 79). This

broad-spectrum targeting complements MEG3’s more focused

approach against specific miRNAs and pathways like YBX1 and

EGFR. In bladder cancer, MAGI2-AS3 operates through a ceRNA

mechanism involving the MAGI2-AS3/miR-31–5p/TNS1 axis, with

its downregulation linked to increased migration, proliferation, and

invasion, emphasizing its role in metastasis and tumor staging

(Table 1) (80).

Another lncRNA, CASC2, acts as a tumor suppressor in RCC by

targeting miR-21, which leads to reduced proliferation and

migration (81). Its effect on miR-21 provides a specific focal point

that complements MEG3’s broader regulatory effects. In bladder

cancer, CASC2 modulates the Wnt/b-catenin signaling pathway

and promotes cell death, significantly impacting proliferation,

migration, and invasion (Table 1) (82). These activities align with

MEG3’s, presenting a coordinated defense against key signaling

pathways that promote tumor growth. Moreover, PTENP1,

functioning analogously to MEG3 in bladder cancer, enhances the

expression of tumor suppressors like PDCD4 by suppressing miR-

20a, thereby inhibiting tumor growth and metastasis (Table 1) (83).

In cervical cancer, PTENP1 targets key regulatory pathways by

enhancing the expression of the tumor suppressor PTEN through

the sequestration of miR-106b, inhibiting cell growth, motility, and

EMT, crucial factors in cancer progression and metastasis (Table 1)
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TABLE 1 Illustrates the comparison between the role of MEG3 and other lncRNAs.

LncRNA Cancer Types Mechanism of Action Effects on Tumour Regulation References

GAS5 Ovarian, RCC, bladder,
prostate, cervical

Disrupts mitochondrial potential, regulates
apoptosis, inhibits proliferation

Suppresses proliferation,
migration,

invasion, apoptosis

Tumor
suppressor

(69–77)

MAGI2-AS3 Ovarian, bladder Sponges miRNAs, inhibits MYC signaling,
affects cell migration and proliferation

Reduces metastasis and
migration, affects

oncogenic pathways

Tumor
suppressor

(78–80)

CASC2 RCC, bladder Inhibits miR-21, regulates Wnt/b-catenin,
promotes cell death

Reduces proliferation,
migration, and invasion

Tumor
suppressor

(81, 82)

PTENP1 Bladder, cervical Enhances expression of tumor suppressors
(e.g., PDCD4, PTEN) via miRNA sequestration

Inhibits growth, migration,
metastasis, and EMT

Tumor
suppressor

(83–85)

TUSC8 Cervical Inhibits invasion and migration via miR-641/
PTEN axis

Reduces invasiveness,
promotes apoptosis

Tumor
suppressor

(86)

HAND2-AS1 Ovarian Reduces metastatic potential by regulating cell
adhesion, migration

Suppresses metastasis,
reduces viability

Tumor
suppressor

(87)

HOXA11-AS Ovarian Modulates transcriptional pathways, likely in
EMT regulation

Reduces metastasis Tumor
suppressor

(88)

HOTAIRM1 Ovarian Suppresses proliferation, invasion via
miRNA sponging

Reduces metastasis,
affects ARHGAP24

Tumor
suppressor

(89)

CASC2a Endometrial Inhibits growth via epigenetic gene inactivation Suppresses proliferation Tumor
suppressor

(90, 91)

PCDH10 Endometrial Inhibits cell growth, promotes apoptosis via
methylation changes

Enhances apoptosis,
inhibits growth

Tumor
suppressor

(92)

LINC00261 Endometrial Modulates miRNA/FOXO1 axis, affecting
migration and invasion

Reduces proliferation,
migration, invasion

Tumor
suppressor

(93)

TUSC7
and

LINC00672

Endometrial Enhances chemosensitivity, promotes apoptosis
via p53

Increases chemotherapy
response, apoptosis

Tumor
suppressor

(94, 95)

H19 Prostate Represses TGFb1, modulates metastasis via
miR-675

Suppresses metastasis,
reduces invasion

Tumor
suppressor

(74, 96)

PCAT29 Prostate Regulates androgen receptor, inversely
correlated with proliferation

Reduces proliferation
and migration

Tumor
suppressor

(97)

RFPL3S Testicular Germ Cell
Tumors (TGCT)

Linked to hypermethylation, affects cell
invasion and proliferation

Inhibits invasion
and proliferation

Tumor
suppressor

(98)

SARCC RCC Targets VHL-mutant RCC cells, reduces AR
expression, affects HIF-2a and C-MYC

Inhibits proliferation,
migration, invasion

Tumor
suppressor

(99)

NBAT1 RCC Inhibits proliferation, migration, invasion Inhibits tumor growth, serves
as a prognostic biomarker

Tumor
suppressor

(100)

BX357664 RCC Modulates EMT, affects MMP2, MMP9, TGF-
b1/p38/HSP27 signaling

Suppresses proliferation,
migration, invasion

Tumor
suppressor

(101)

BANCR Bladder Increases apoptosis, reduces migration
and proliferation

Promotes apoptosis,
inhibits migration

Tumor
suppressor

(102)

MDC1-AS Bladder Inhibits malignant phenotype via
MDC1 upregulation

Reduces proliferation,
migration, invasion

Tumor
suppressor

(103)

LINC00312
and

LINC00641

Bladder Sponges miR-197-3p, affects migration
and invasion

Inhibits migration
and invasion

Tumor
suppressor

(104, 105)

MEG3 Genitourinary (ovarian, RCC,
bladder, prostate, cervical)

Promotes apoptosis, inhibits proliferation,
angiogenesis, metastasis

Universal tumor suppressor,
inhibits growth
and metastasis

Tumor
suppressor

(106, 107)
(108–115)
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(84, 85). Another lncRNA, TUSC8, demonstrated tumour-

suppressive roles in cervical cancer where it focuses on the

inhibition of invasion and migration through the miR-641/PTEN

axis, similar to PTENP1, but with a specific miRNA target. By

upregulating PTEN, TUSC8 curtails pathways essential for cancer

cell invasiveness, supporting a role that complements both MEG3

and PTENP1 in modulating the tumor microenvironment

(Table 1) (86).

In ovarian cancer, several lncRNAs like HAND2-AS1,

HOXA11-AS, and HOTAIRM1 demonstrate tumor-suppressive

roles similar to MEG3. HAND2-AS1 reduces metastatic potential

by decreasing cell adhesion, migration, and viability, aligning with

MEG3’s regulation of epithelial-mesenchymal transition (EMT)

(87). HOXA11-AS, downregulated in epithelial ovarian cancer,

likely modulates transcriptional pathways, complementing

MEG3’s role in metastasis control (88). HOTAIRM1 suppresses

proliferation and invasion by enhancing ARHGAP24 expression

and sponging miR-106a-5p, mirroring MEG3’s anti-metastatic

effects (89). In endometrial cancer, CASC2a and PCDH10 act as

tumor suppressors with unique mechanisms. CASC2a,

downregulated in the cancer, inhibits growth through epigenetic

gene inactivation, contrasting with MEG3’s approach (90, 91).

PCDH10, re-expressed after methylation-induced downregulation,

curbs growth and enhances apoptosis, paralleling MEG3’s effects but

through methylation changes (92). LINC00261 also reduces

proliferation, migration, and invasion by modulating the miRNA/

FOXO1 axis, reflecting MEG3’s miRNA modulation strategy (93).

TUSC7 and LINC00672 enhance chemotherapeutic responses in

endometrial cancer, with TUSC7 increasing sensitivity to treatments

like CDDP and Taxol, and LINC00672 promoting chemosensitivity

through p53-mediated gene suppression. Both complement MEG3’s

effects on cell cycle and apoptosis, offering synergistic benefits (Table 1)

(94, 95).

In prostate cancer, lncRNAs such as H19 and PCAT29 play

critical but distinct roles in modulating tumor behavior. H19,

typically oncogenic in other cancers, serves as a tumor suppressor

in metastatic prostate cancer. It specifically represses the effects of

transforming growth factor beta 1 (TGFb1), a key factor in

metastasis, and modulates metastasis through the H19-miR-675

axis. This targeted regulation provides a pathway-specific

suppression that complements MEG3’s broader influence on

cellular apoptosis and invasion (Table 1) (74, 96). Additionally,

PCAT29 is recognized as an androgen-regulated tumor suppressor

whose expression is inversely correlated with the proliferation and

migration of prostate cancer cells. This regulatory role on androgen

signals offers a distinct but synergistic mechanism alongside

MEG3’s modulation of epigenetic and miRNA pathways,

enhancing the overall suppression of tumor growth and

metastasis in prostate cancer (Table 1) (97).

In testicular germ cell tumors (TGCT), the lncRNA RFPL3S

exhibits a significant reduction, which is associated with

hypermethylation and low copy number variations. The

downregulation of RFPL3S is linked to enhanced cell invasion

and proliferation in TGCT, positioning it as a potential

prognostic marker (Table 1) (98). This suggests that while MEG3
Frontiers in Oncology 06
modulates miRNA interactions to affect cell survival pathways,

RFPL3S’s influence primarily arises from epigenetic changes that

affect its expression.

In RCC, the lncRNA SARCC targets VHL-mutant RCC cells,

inhibiting proliferation by reducing the stability and expression of

the androgen receptor (AR). This suppression of AR decreases HIF-

2a and C-MYC expression, focusing on hormonal and hypoxia-

related pathways (Table 1) (99). Unlike SARCC, MEG3 has a

broader impact on signaling and apoptosis pathways, indicating a

more extensive role in RCC tumor suppression. Additionally,

NBAT1 functions as a tumor suppressor in RCC, inhibiting

proliferation, migration, and invasion, aligning with MEG3’s

effects and serving as a prognostic biomarker (Table 1) (100). In

other findings, BX357664 acts as a tumor suppressor by modulating

epithelial-mesenchymal transition (EMT) and affecting MMP2,

MMP9, and TGF-b1/p38/HSP27 signaling. It inhibits

proliferation, migration, invasion, and impacts the cell cycle,

providing a complementary mechanism to MEG3’s modulation of

the cell cycle and apoptosis (101).

In bladder cancer, BANCR increases apoptosis and reduces

migration and proliferation when overexpressed, focusing on

apoptosis rather than miRNA sponging. Its functional outcomes

align with those of MEG3, making them cooperative in curbing

tumor growth (102). MDC1-AS inhibits the malignant phenotype

through the up-regulation of MDC1, decreasing proliferation,

migration, and invasion, and supports MEG3’s effects on cell

cycle and apoptosis (Table 1) (103). Furthermore, LINC00312

and LINC00641 target migration and invasion pathways by

sponging miR-197-3p. Their approach mirrors MEG3’s strategy

of miRNA modulation but targets different specific miRNAs,

enhancing the suppression of invasive behavior in bladder cancer

(104, 105).
4 The role of MEG3 in
genitourinary cancers

4.1 Renal cell carcinoma

Renal cell cancer, also known as renal cell carcinoma (RCC), is

the most prevalent form of kidney cancer in adults, accounting for

approximately 90% of cases. It includes clear cell, papillary, and

chromophobe subtypes. Its incidence has consistently risen over the

past few decades, and it poses a significant threat to global health

(116). It has a mortality rate between 30 and 40% and is more

prevalent in males than in females.

The aggressiveness of RCC varies considerably between

individuals and is affected by several variables. More than 60% of

patients with RCC are detected incidentally during routine

ultrasound examination, and only 10% of patients exhibit

characteristic clinical symptoms (117). Accordingly, a significant

proportion of RCC cases are diagnosed at advanced stages, when

the tumor has already spread beyond the kidney, resulting in

inferior outcomes and limited treatment options. Certain

histological RCC subtypes, including clear cell carcinoma and
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papillary carcinoma, are typically associated with increased

aggressiveness and metastasis risk than other subtypes (118).

The role of MEG3 in RCC has been investigated in many

studies, shedding light on its impact on cancer progression and

potential therapeutic implications. MEG3 is downregulated in RCC

tissues and cell lines. Its overexpression resulted in decreased

proliferation, migration, and invasion of RCC cells via regulation

of ST3Gal1 transcription and EGFR sialylation, thereby influencing

the PI3K-AKT pathway (106). In addition, MEG3 was identified as

an inducer of RCC cell apoptosis by activating the mitochondrial

pathway, as indicated by decreased Bcl-2 expression and elevated

levels of cleaved caspase-9 and cytochrome c protein (107)

(Figure 3). Moreover, the combined expression of miR-124 and

MEG3 emerged as an independent prognostic factor in RCC, where
Frontiers in Oncology 07
the overexpression of miR-124 or MEG3 inhibited cell proliferation,

migration, and invasion, and restrained tumor growth.

Additionally, MEG3 induced p53 protein accumulation and

regulated the tumor-suppressive gene PTPN11 (119) (Table 2)

(Figure 3). MEG3 regulates miR-7/RASL11B signaling in clear cell

renal cell carcinoma, thereby promoting apoptosis; inhibiting cell

proliferation, migration, and invasion; and inducing G0/G1 cell

cycle arrest (120). In papillary renal cell carcinoma, MEG3

expression was downregulated in tumor tissues relative to that in

adjacent normal tissues (Table 2) (133). These findings implicate

MEG3 as a potential prognostic biomarker and molecular

therapeutic target for RCC management.

Furthermore, the expression of MEG3 has been studied in

various types of renal cell carcinoma (RCC), including clear cell
FIGURE 3

MEG3 lncRNA: a key regulator of tumor suppression across multiple cancer pathways. The diagram illustrates the role of MEG3 in various cancers as
a prognostic biomarker, therapeutic target, and enhancer of cis-platin sensitivity. In renal cell carcinoma, MEG3 inhibits the PI3K/AKT signaling
pathway, reducing tumor growth and promoting apoptosis. In ovarian cancer, it blocks angiogenesis and metastasis through specific miRNA
pathways. MEG3 also induces apoptosis in bladder cancer and inhibits metastasis by downregulating oncogenes. In cervical cancer, MEG3 promotes
apoptosis by inhibiting miR-21-5p and STAT3. It reduces cell growth in testicular cancer by regulating miR-1297. In endometrial cancer, MEG3
inhibits tumor growth by suppressing the Notch and PI3K/mTOR pathways, while in prostate cancer, it prevents metastasis through
H3K27 trimethylation.
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RCC (ccRCC) and papillary RCC (pRCC). In ccRCC, MEG3

expression is generally significantly reduced compared to normal

kidney tissue. This downregulation of MEG3 has been associated

with proliferation, migration and invasion in patients with ccRCC

(120). The loss of MEG3 expression in ccRCC is thought to

contribute to the pathogenesis of the disease through mechanisms

such as up-regulating RASL11B to induce G0/G1 cell cycle arrest;

and promoting cell apoptosis by suppressing miR-7 in ccRCC (120).

The expression patterns of MEG3 in pRCC are less well-defined

but suggest a similar trend of downregulation compared to normal

tissues (133). However, the extent and implications of MEG3

downregulation in pRCC are not as clearly established as in

ccRCC. Studies suggest that the pathways and the impact of

MEG3 downregulation in pRCC may differ slightly due to the

histological and molecular differences between ccRCC and pRCC

(118).Thus, while both ccRCC and pRCC show a trend of reduced

MEG3 expression, the details, extent, and implications of this

downregulation appear to vary, reflecting the distinct biological

behaviors of these RCC subtypes. Further research is needed to fully

elucidate the role of MEG3 in different RCC types and its potential

as a therapeutic target or biomarker.
4.2 Bladder cancer

Bladder cancer is a common cancer with higher incidence rates

in males than those in females. Trends in incidence vary by country,
Frontiers in Oncology 08
with stabilizing or declining rates among males and increasing rates

among females. Mortality rates have been declining, especially in

developed countries. The 5-year survival rate for muscle-invasive

and metastatic bladder cancer is less than 5% (134).

The most common type of bladder cancer is transitional cell

carcinoma. Other less common types include squamous cell

carcinoma and adenocarcinoma. The extent of tumor invasion

into the bladder wall and the presence of lymph node

involvement or distal metastasis determines the tumor stage. The

TNM staging system is commonly used to assess the stage of

bladder cancer, with higher stages indicating a more aggressive

disease. Molecular profiling advancements have expanded our

understanding of the aggressiveness of bladder cancer. Mutations

or alterations in genes such as TP53, RB1, and FGFR3 can indicate a

more aggressive tumor behavior (135).

MEG3 plays a vital role in the suppression of tumors in several

forms of cancer, including bladder cancer. In bladder cancer tissues,

MEG3 is significantly reduced compared to healthy controls. The

fact that MEG3 levels are negatively correlated with those of the

autophagy marker LC3-II suggests that MEG3 may play a role in

autophagy regulation. In human bladder cancer cell lines, activation

of MEG3 inhibited autophagy, whereas inhibition of MEG3

induced autophagy. The downregulation of MEG3 inhibits

apoptosis and induces cellular proliferation, but these effects are

reversed when autophagy is inhibited (136).

MEG3 serves a crucial role in inhibiting the invasion and

metastasis of bladder cancer cells. It functions as a ceRNA by
TABLE 2 Summarizes the functions of MEG3 across genitourinary cancers.

Tumor
MEG3

Expression
Function role Related genes miRNA Biomarker type References

Renal cell
carcinoma (RCC)

Downregulated
Proliferation, migration,

invasion, apoptosis

ST3Gall
EGFR
Bcl-2

PTPN11
RASL11B

miR-124
miR-7

Prognostic, therapeutic target
(106, 107)
(119, 120)

Bladder cancer Downregulated
Proliferation, migration,

invasion,apoptosis

c-Myc
PTEN
MMP2
MMP9

miR-494
miR-27a

Diagnostic, prognostic and
therapeutic target

(108, 109)
(121)

Prostate cancer Downregulated
Proliferation, migration,

invasion, apoptosis
QKI-5
H3K27

miR-9-5p
Prognostic and

therapeutic target
(110, 111)

Testicular cancer Downregulated Proliferation, apoptosis PTEN miR-1297 Therapeutic target (11, 12)

Cervical cancer Downregulated
Proliferation, apoptosis,
invasion, migration

BTG1
STC1
PTEN

P-STAT3

miR-21-5p
miR-421
miR-7-5p
miR-21

Diagnostic, prognostic and
therapeutic target

(112, 113)
(122–127)

Ovarian cancer Downregulated
Angiogenesis,

invasion, apoptosis

YBX1
RASA1
LAMA4
PTEN
EGFR

miR-376a
miR-30e-3p
miR-219a-5p
miR-205-5p

Prognostic and
therapeutic target

(114, 115)
(128–130)

Endometrial
cancer

Downregulated
Proliferation, apoptosis,
invasion, migration

MTOR
PD-L1

miR-216a Therapeutic target (131, 132)
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negatively modulating c-Myc through competing with PHLPP2

mRNA for binding with miR-27a. The potent proto-oncogene c-

Myc promotes proliferation, invasion, and apoptosis in numerous

malignancies. Overexpression of MEG3 inhibited the transcription

of c-Myc in a c-Jun-dependent manner, thereby preventing bladder

cancer invasion and metastasis (108) (Figure 3).

Overexpression of MEG3 increases the sensitivity of bladder

cancer cells to the chemotherapeutic agent, cisplatin. Mutual

expression of MEG3 and p53 suggests that they may participate

in a positive feedback cycle. In bladder cancer cells treated with

cisplatin, MEG3 overexpression induces cell apoptosis,

downregulates the anti-apoptotic protein Bcl2, and upregulates

the pro-apoptotic proteins cleaved-caspase-3 and Bax. Moreover,

overexpression of MEG3 inhibits cell invasion and downregulates

MMP2 and MMP9 in bladder cancer cells (121) (Figure 3, Table 2).

Patients with bladder cancer have lower serum levels of MEG3

than healthy subjects and patients with benign disease. Moreover, a

decrease in MEG3 expression is associated with a shortened relapse-

free time (137) (Table 2). These findings demonstrate the

therapeutic potential of MEG3 to improve the efficacy of

chemotherapy and inhibit the progression of bladder cancer.

They also indicate that MEG3 may serve as a diagnostic and

prognostic marker for bladder cancer. Additional research is

required to fully elucidate the underlying mechanisms and

investigate the therapeutic potential of MEG3 for the

management of bladder cancer.
4.3 Prostate cancer

Prostate cancer ranges from indolent, slowly growing tumors

with a good prognosis to aggressive, metastasizing cancers with

poor outcomes. Prostate cancer aggressiveness is determined by

Gleason score, PSA levels, and tumor stage. Higher Gleason scores

and PSA values indicate more aggressive illness. Genetic changes

and biomarkers may also affect tumor behavior. The aggressiveness

of prostate cancer requires early detection and personalized

treatment. Surgery, radiation, hormone therapy, and targeted

drugs can slow the progression of prostate cancer and improve

survival. Early diagnosis and risk classification are key to adapting

effective management approaches (138).

Various non-coding RNAs are implicated in the pathogenesis of

prostate cancer. Among them, MEG3 was found to be down-

regulated in prostate cancer and modulated the miR-9-5p/QKI-5

axis; thus, affecting cell proliferation, migration, invasion, and

apoptosis rate (110). Additionally, MEG3 inhibits prostate cancer

progression by facilitating H3K27 trimethylation of EN2 by binding

to enhancer of zeste homologue 2 (111) (Figure 3). However, both

MEG3 polymorphisms, rs11627993 C>T and rs7158663 A>G, did

not appear to affect prostate cancer susceptibility (Table 2) (139).

Collectively, these studies demonstrate the diverse regulatory

functions of MEG3 in prostate cancer, providing potential

insights into its impact on cancer progression and facilitating the

identification of novel therapeutic targets for this disease.
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4.4 Testicular cancer

While testicular cancers can arise from various cell types, the

majority are germ cell tumors. These tumors predominantly occur

in young men, although they can be diagnosed at any age (140).

Despite being a rare tumor, testicular germ cell tumor (TGCT)

was reported as the most commonly occurring cancer in males aged

15–44 years in the US (141). It was predicted that the occurrence of

TGCT will remain on the rise with the highest incidence in

Hispanics compared to that in any other racial or ethnic group in

the US (142). Histologically, the TGCTs can be classified into two

groups, seminomas and non-seminomas (143). While seminomas

are similar to PGCs, non-seminomas are divided into three classes,

undifferentiated embryonal carcinoma, extra-embryonic (yolk sac

choriocarcinoma) patterning, or differentiated as a teratoma (143).

The European Association of Urology predicted the relapse of 15–

30% of patients with TGCT after receiving the first line of

chemotherapy and the patients will require further therapies

(144). Moreover, primary TGCT can metastasize to several organs

including the brain, heart, lung, liver, and lymph nodes (145). In

normal spermatogenesis, primordial germ cells (PGCs) develop into

gonocytes, followed by multiple developmental steps to eventually

maturing into haploid spermatozoa (146, 147). However, if PGCs

fail to mature into gonocytes either fetal or postnatally, intratubular

germ cell neoplasia, also known as carcinoma in situ develops (148),

which is similar to PGCs and their genomes remains

undifferentiated and unmethylated (149). Next, intratubular germ

cell neoplasia progresses to TGCTs through the loss of PTEN and

p21 and the gain of murine double minute 2 expression (150, 151).

Moreover, KRAS mutations, which are unique to TGCT, are not

present in the intratubular germ cell neoplasia stage (152).

Conventionally, the treatment of the TGCTs is a combination of

radiotherapy along with chemotherapy, lymph node dissection, or

radical orchiectomy.

The MEG3 expression levels are markedly reduced in TGCT,

while the expression levels of miR-1297 were unchanged. Moreover,

PTEN protein levels were lower in the tumor tissues compared to

those in the paired adjacent non-tumor tissues; however, the PTEN

transcript levels were unchanged. The authors hypothesized that

there is post-transcriptional control of miR-1297 on the PTEN

transcripts (Table 2) (12). Bioinformatic analyses revealed that

miR-1297 can bind both MEG3 lncRNA and PTEN mRNA in

TGCT cells. Overexpressing the MEG3 in TGCT cells led to the

competitive binding of MEG3 lncRNA to miR-1297 rather than

PTEN, allowing PTEN to suppress the Akt-mediated cell growth of

the TGCT. Thus, overexpression of MEG3 could be a valuable tool

for the treatment of TGCT (11) (Table 2, Figure 3).
4.5 Cervical cancer

Cervical cancer remains one of the most prevalent gynecologic

malignancies worldwide. It ranks fourteenth among all

malignancies and fourth among females worldwide (153). Each
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year, more than 500,000 females are diagnosed with cervical cancer,

resulting in more than 300,000 fatalities worldwide (154). Globally,

the age-adjusted incidence of cervical cancer was estimated to be

13.1 per 100,000 females, with rates ranging from less than 2 to 75

per 100,000 females, depending on the country. In eastern, western,

central, and southern Africa, cervical cancer was the primary cause

of cancer-related deaths among females (155).

Human papillomavirus (HPV) infection, particularly HPV

types 16 and 18, is a significant etiologic factor for cervical

cancer. Infections with high-risk HPV can result in persistent

infection with subsequent genomic instability, thereby promoting

the transformation of normal cervical cells into cancerous ones

(156). Moreover, changes in particular genes and molecular

pathways play a crucial role in the aggressiveness of cervical

cancer. Mutations or dysregulations in TP53, p16INK4a, and

PTEN can disrupt cell cycle control and promote uncontrolled

cell proliferation, migration, and invasion (157) (158). In addition,

the expression levels of specific biomarkers have been linked to the

aggressiveness of cervical cancer as they facilitate extracellular

matrix degradation and tissue remodeling. The altered expression

of MMPs have been linked to an increase in tumor invasion and

metastasis (159). Furthermore, studies have highlighted the

function of lncRNAs in modulating the aggressiveness of cervical

cancer. Certain lncRNAs have the potential to function as

oncogenes or tumor suppressors, influencing cell proliferation,

migration, and invasion (160).

MEG3 is a tumor suppressor that influences the growth,

proliferation, and apoptosis of cervical cancer cells by modulating

multiple molecular pathways and signaling cascades. MEG3 is

consistently expressed at low levels in cervical cancer tissues and

cell lines. However, increasing the MEG3 levels in cervical cancer

cell lines can have significant effects. Elevated MEG3 levels inhibited

cell proliferation, induced cell cycle arrest, and promoted apoptosis

(122). In addition, MEG3 operates as a cancer suppressor by

reducing the levels of miR-21-5p in cervical cancer cell lines (112)

(Figure 3). Notably, inhibition of MEG3 in specific cell lines, such as

HeLa and CaSki cells, significantly increased the expression of the

oncomiR miR-21-5p (112). This highlights the potential function of

MEG3 as a tumor suppressor that is capable of inhibiting the

growth of cervical cancer (161). Downregulating MEG3 in cervical

cancer promoted cellular proliferation, primarily via the regulation

of miR-21 (112).

Moreover, MEG3 appears to have diagnostic and prognostic

value in cervical cancer. It can be used as a diagnostic marker and

prognostic indicator, especially for lymph node metastasis and

FIGO staging. Low MEG3 levels, lymph node metastasis, and

advanced FIGO stage (III and IV) have been identified as

independent cervical cancer prognostic factors (113). A previous

study revealed that the lncRNA-MEG3/miR-421/BTG1 pathway

modulation by lidocaine inhibited the proliferation of cervical

cancer cells and induced apoptosis (Table 2) (123). Additionally,

MEG3 induced apoptosis in cervical carcinoma cells through

endoplasmic reticulum stress and the miR-7-5p/STC1 axis (124).

In cervical cancer tissues and cell lines, the expression of MEG3 and

STC1 is diminished, while the expression levels of miR-7-5p are
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elevated. Overexpression of MEG3 or inhibition of miR-7-5p

induced apoptosis in cervical carcinoma cells in response to

endoplasmic reticulum stress (124). Furthermore, decreased

MEG3 expression appears to be an important indicator of the

transition from premalignant cervical lesions to invasive cancer

(125). In addition, by modulating the miR-21/PTEN axis, MEG3

promoted cisplatin sensitivity in cervical cancer cells. Conversely,

knocking down MEG3 promoted cervical cancer cell proliferation,

migration, and inhibited apoptosis, particularly in the presence of

cisplatin (126).

Besides being a tumor suppressor, MEG3 inhibits the

proliferation of cervical cancer cells by promoting the

ubiquitination-mediated degradation of P-STAT3 protein. MEG3

binds to P-STAT3 in cervical cancer cells, leading to its

ubiquitination and subsequent degradation, resulting in apoptosis

and inhibition of tumor cell proliferation (Table 2, Figure 3). A

better understanding of the regulatory axis MEG3-STAT3 in

cervical cancer may provide novel insights for potential treatment

strategies (127). In conclusion, owing to its significant role in

cervical cancer, MEG3 could potentially act as a diagnostic,

prognostic, and therapeutic target.
4.6 Ovarian cancer

Ovarian cancer is the seventh most prevalent cancer in females

and the eighth leading cause of cancer-related mortality, with five-

year survival rates below 45%. Although age-standardized rates are

stable or declining in the majority of high-income nations, they are

on the rise in many low- and middle-income nations (162). Ovarian

cancer is a highly aggressive and frequently fatal form of

gynecological cancer that originates in the ovaries. Lack of early

symptoms contributes to its aggressiveness, resulting in late-stage

diagnoses when the tumor has spread beyond the ovaries. The

preponderance of ovarian cancers are epithelial ovarian carcinomas,

and the most aggressive subtype is high-grade serous carcinoma.

Due to the aggressive nature of ovarian cancer, prompt and accurate

diagnosis, aggressive treatment strategies such as surgery and

chemotherapy, and conducting research to identify effective

targeted therapies are essential to improve patient outcomes (163).

Multiple studies have investigated the function of the lncRNA

MEG3 in ovarian cancer. First, MEG3 was reported to regulate

angiogenesis in ovarian cancer endothelial cells by sponging

miRNA-376a and YBX1, with significantly lower expression in

ovarian cancer endothelial cells than that in normal ovarian

endothelial cells. Overexpressing MEG3 in ovarian cancer

endothelial cells decreased tube formation through modulating

the miR-376a/RASA1 axis (114) (Figure 3). Second, MEG3

inhibited the progression of ovarian cancer by sponging miR-30e-

3p and regulating LAMA4 expression (115). In addition, MEG3

affected the epithelial-mesenchymal transition of ovarian cancer

cells by sponging miR-219a-5p and regulating EGFR; low levels of

MEG3 and miR-219a-5p were associated with a poor prognosis in

patients with ovarian cancer (Figure 3). Knocking down MEG3 and

miR-219a-5p in ovarian cancer cells increased the cellular viability,
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proliferation, invasion, and migration, and decreased apoptosis

(Table 2) (129). Another study reported that MEG3

overexpression inhibited the cellular viability and invasion while

promoting apoptosis in ovarian cancer through sponging miR-205-

5p (130). A recent study in epithelial ovarian carcinoma (EOC)

demonstrated that MEG-3 expression was significantly lower in

EOC tissues compared to normal ovarian tissues. Receiver

operating characteristic (ROC) analysis showed an AUC of 0.831,

with high sensitivity (100%) and specificity (97.04%) in

distinguishing malignant from normal tissues. Low MEG-3

expression correlated with advanced tumor stages, poor treatment

response, and adverse prognostic factors, while high expression was

associated with better survival outcomes (p < 0.001). These findings

highlight MEG-3 as a promising biomarker for EOC diagnosis,

prognosis, and personalized therapy (164). These studies

collectively shed light on the diverse regulatory functions of

MEG3 in ovarian cancer, indicating its potential role as a

therapeutic target for this disease.
4.7 Endometrial cancer

Endometrial cancer is the most prevalent gynecological cancer in

high-income countries, and its incidence is increasing worldwide.

The increasing prevalence of obesity is the most significant

underlying cause of endometrial cancer (165). The incidence and

mortality rates of endometrial cancer have increased by 21% and

>1000%, respectively, over the past two decades (166). Non-

endometrioid subtypes of cancer, such as serous and clear cell

carcinomas, have a greater propensity for invasion and metastasis.

These subtypes are frequently diagnosed at a later stage, which

renders treatment as more challenging. The identification of

specific molecular and genetic alterations associated with aggressive

endometrial cancer has led to advancements in targeted therapies.

Accordingly, biomarkers such as p53mutations and DNA mismatch

repair deficiencies may influence treatment decisions (167).

MEG3 was reported to be downregulated in highly invasive,

sphere-forming, and TX-resistant endometrial cancer cell

derivatives (168). In addition, MEG3 expression was substantially

reduced in endometrial cancer tissues compared to that in adjacent

normal tissues and normal endometrial cell lines, such as HEC-1A

and KLE (132). Another study supported these findings by

demonstrating that MEG3 expression was substantially lower in

endometrial cancer samples compared to that in normal

endometrial tissues (131). Notably, sustained overexpression of

MEG3 in HEC-1B and Ishikawa cells induced apoptosis and

decreased migration and invasion. In addition, MEG3 inhibited

the tumorigenesis and progression of endometrial cancer by

repressing the Notch signaling pathway (Table 2, Figure 3).

Downregulation of MEG3 was associated with elevated levels of

Notch1 and Hes1 proteins (132). In addition, MEG3 inhibited

endometrial carcinoma cell proliferation, invasion, and metastasis,

while inducing apoptosis and inhibiting the activation of the PI3K/

m-TOR signaling pathway (131) (Figure 3). MEG3 could

significantly suppress tumor growth as evidenced in tumor
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xenograft implantation in nude mice (131). Furthermore, MEG3

played a role in modulating PD-L1 expression in aggressive

endometrial cancer cells; its expression was regulated by miR-

216a (Table 2) (169). Together, these studies highlight the

significant downregulation of MEG3 in endometrial cancer; its

role in inhibiting cell proliferation, migration, and invasion; and

its regulatory roles in modulating the Notch and PI3K pathways,

thereby shedding light on potential therapeutic strategies for the

treatment of endometrial cancer.
5 MEG3 as a diagnostic biomarker:
challenges in clinical integration

The unique nature of lncRNAs, including their high specificity,

and sensitivity in detecting cancer, makes MEG3 a promising

diagnostic biomarker (170, 171). MEG3 can be detected in easily

accessible samples such as blood or serum, reducing the need for

invasive procedures like tissue biopsies (171–174). Additionally, its

stability in these fluids and ability to identify early-stage

malignancies highlight its value in improving diagnostic accuracy

and patient outcomes (164, 171, 173). These advantages suggest that

MEG3 could revolutionize cancer diagnostics. However, integrating

MEG3 diagnostics into clinical workflows presents challenges

including cost-effectiveness and technical feasibility. In terms of

cost-effectiveness, the development of MEG3-based assays,

such as qRT-PCR or sequencing techniques, may incur higher

expenses compared to conventional diagnostic methods like

immunohistochemistry.

Moreover, technical feasibility also poses a hurdle for

implementing MEG3 diagnostics on a broad scale, requiring

standardized protocols to address pre-analytical variability, such as

differences in sample collection, storage, and handling, which can

impact RNA stability and assay reliability (164). Addressing these

challenges through the development of robust, simplified protocols

and user-friendly testing kits could significantly enhance the

practicality of MEG3 diagnostics. Furthermore, multicenter clinical

trials are necessary to validate MEG3’s diagnostic performance and

establish its superiority over existing biomarkers. Overcoming these

hurdles will pave the way for MEG3 diagnostics to become a practical

tool in routine clinical settings.
6 MEG3 in clinical applications

Based on the aforementioned, MEG3’s tumor-suppressor role

in genitourinary cancers positions it as a promising biomarker for

early diagnosis and prognosis, while also opening exciting avenues

for translating laboratory findings into clinical applications. For

instance, a recent study investigating the role of MEG3 in a

homogenous series of advanced HGSOC patients demonstrated

that exogenous MEG3 expression in vitro and in vivo could reverse

the malignant phenotype of HGSOC cells, inhibiting cell

proliferation, migration, invasion, and spheroid formation in mice
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(128). Moreover, elevated MEG3 expression was independently

associated with better progression-free and overall survival in

patients. These findings are likely mediated through positive

regulation of the PTEN network, as PTEN loss is associated with

poor prognosis and impaired therapeutic response in HGSOC.

These preclinical results reinforce MEG3’s role as a tumor

suppressor and highlight its potential as a promising therapeutic

target (128).

Another preclinical study demonstrated that upregulation of

MEG3 in prostate cancer (PCa) cell lines induced apoptosis and G0/

G1 phase arrest, to inhibit the expression of Bcl-2 and Cyclin D1. In

vivo, MEG3 overexpression in PC3 cells resulted in significantly

reduced tumor weight and volume in mice, reinforcing its tumor-

suppressive properties. Overall, these results highlight the

therapeutic potential of MEG3, opening up opportunities for its

clinical application in prostate cancer treatment (60).

A new study demonstrates that MEG3 is downregulated in PCa

tissues, with lower expression levels correlating with poorer prognosis.

This study revealed that overexpression of MEG3 inhibited PCa cell

proliferation and promoted apoptosis (175). Mechanistically, MEG3

acts as a ceRNA by bindingmiR-9-5p, thereby alleviating its repressive

effect on NDRG1, a protein that regulates cell proliferation and

apoptosis. Furthermore, preclinical studies have demonstrated that

the upregulation of MEG3 significantly inhibits tumor growth in

animal models. All of these findings support the therapeutic promise

of MEG3 in PCa treatment (175).

Furthermore, another study MEG3 plays a critical role in bladder

cancer by modulatingmiR-494 and the tumor suppressor gene PTEN.

In vitro and in vivo assays have revealed that MEG3 inhibits the

expression of miR-494 in bladder cancer cells. Thus, restoration of

MEG3 levels holds therapeutic promise for the treatment of bladder

cancer (109). Collectively, these findings have propelled MEG3 into

the spotlight as a target for therapeutic interventions, encouraging the

need for well-designed clinical trials to evaluate its efficacy and safety

in patients with genitourinary cancers.

However, while MEG3’s tumor suppressive functions are well-

documented in genitourinary cancers, its potential as a standalone

therapy remains underexplored and requires further investigation.

Current data suggest that MEG3 may be more effective as an

adjuvant therapy rather than a primary treatment. For instance,

in bladder and cervical cancers, MEG3 overexpression has been

shown to improve the efficacy of chemotherapeutic agents like

cisplatin by promoting apoptosis and mitigating cellular invasion

and survival pathways (121, 126). This synergistic effect highlights

MEG3’s potential to enhance chemosensitivity and improve

outcomes in advanced or treatment-resistant cancers.
7 Barriers for advancing MEG3 in
clinical therapy and future direction

Despite these promising findings, significant challenges remain

in MEG3-based therapies into clinical practice. A primary barrier is

the effective delivery of MEG3 to target tissues. RNA-based

therapeutics, including antisense oligonucleotides (ASOs) and
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small interfering RNAs (siRNAs), those aimed at modulating

MEG3 expression, often encounter issues such as rapid

degradation by nucleases, poor cellular uptake, and limited

bioavailability at the tumor site (176, 177). These limitations

hinder the precise delivery of MEG3-targeting agents to their

intended sites of action. Delivery systems such as viral vectors,

lipid nanoparticles, and exosome-based platforms offer potential

solutions. However, each of these systems presents unique

challenges regarding efficiency, safety, and specificity (176, 177).

For instance, while lipid nanoparticles can enhance cellular uptake,

they may also provoke immune responses that could compromise

their therapeutic efficacy (177). Therefore, further research is

essential to optimize these delivery mechanisms, ensuring that

therapeutic agents, such as MEG3 effectively reach their intended

targets within the tumor microenvironment.

Another major concern is the potential for off-target effects. As

a ceRNA, MEG3 interacts with various miRNAs and downstream

pathways, which could lead to adverse effects if misregulated,

leading to undesirable unintended consequences, such as toxicity

(177). To mitigate this, future studies should focus on engineering

MEG3-based therapies to maximize specificity and minimize

unintended interactions. High-throughput screening approaches

could play a pivotal role in mitigating off-target effects, thus

enhancing the safety of MEG3-based interventions (177).

While preclinical models may demonstrate safety, human

responses can vary considerably, as evidenced by immune-related

toxicities observed in some clinical trials of RNA-based

therapeutics. These toxicities highlight the importance of rigorous

validation and meticulous testing in preclinical models and patient

cohorts to minimize adverse effects and improve therapeutic

outcomes. Finally, while MEG3-centered therapeutic strategies

offer significant promise in cancer treatment, addressing the

limitations related to delivery mechanisms and off-target effects is

essential. Continued research and development efforts are necessary

to overcome these challenges, ultimately enhancing the therapeutic

benefits of targeting MEG3 in cancer therapy.
8 Conclusion

This review provides a comprehensive overview of the emerging

roles of the tumor suppressor MEG3 in the genitourinary cancers,

positioning it as a promising therapeutic target. MEG3’s potential

for improving diagnostics and therapeutic strategies offers exciting

opportunities for advancing treatment options in these cancers.

However, significant challenges remain in translating MEG3-based

therapies into clinical practice, particularly in optimizing delivery

mechanisms and minimizing off-target effects.

Future research should focus on refining MEG3-based

strategies, exploring synergistic effects with conventional

treatments like chemotherapy and immunotherapy, and

addressing the logistical challenges associated with clinical

implementation. By overcoming these barriers, MEG3 could

significantly improve outcomes for patients with genitourinary

cancers and pave the way for its integration into precision oncology.
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