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g-glutamyltransferases is
associated with tumor
progression and patient
outcome in prostate cancers
Wencong Jiang1, Wang Liu2, Jiang Zhao3, Zhijian Xu3, Ming Xi1,
Xiangwei Wang3* and Benyi Li2*

1Department of Urology, Huadu District People’s Hospital, Guangzhou, China, 2Department of
Urology, The University of Kansas Medical Center, Kansas City, MO, United States, 3Department of
Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
Introduction: The human gamma-glutamyltransferase (GGT) is a membrane-

bound extracellular glycoprotein with an enzymatic activity that cleaves gamma-

glutamyl peptide bonds in glutathione and other peptides and transfers the

gamma-glutamyl moiety to acceptors. It has been shown aberrant expression of

GGT proteins in human cancers while their expression profiles in prostate

cancers are not reported.

Methods: In this study, we analyzed the expression profiles of all protein-coding

GGT genes using the TCGA-PRAD RNA-seq dataset derived from primary

prostate cancers. GGT family gene expression profiles were also analyzed

using the SU2C/PCF RNAseq dataset derived from aggressive late-stage

prostate cancer patients. Androgen modulation of GGT family gene expression

was analyzed using multiple NCBI/GEO datasets.

Results: Our results showed that prostate tissues expressed four major isoforms

of GGT family genes (GGT1/5/6/7), of which GGT1 expression was upregulated

but GGT6/GGT7 expression was downregulated in cancer tissues compared to

benign tissues. However, GGT5 expression was increased along with tumor stage

progression and associated with worse progression-free survival. GGT6

expression exhibited a superb AUC value in prostate cancer diagnosis and was

associated with favorable progression-free survival. GGT1 expression was highly

increased but GGT6/GGT7 expression was largely reduced in ERG-fusion-

positive cases. In CRPC tumors, GGT6 expression was suppressed in patients

with anti-AR therapies, which was reversed when patients were taken off the

treatment. This AR-dependent modulation was confirmed in LNCaP cells and

LuCaP35 xenograft models. In addition, compared to CRPC-Adeno tumors,

treatment-induced NEPC tumors showed a reduced GGT1 but an elevated

GGT7 level, which was in line with higher levels of GGT7 in NEPC H660 cells.
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Conclusion: Our data suggests that GGT6 is a new AR downstream target but

GGT7 is a potential NEPC biomarker.
KEYWORDS

prostate cancer, GGT family genes, castration-resistance, neuroendocrinal progression,
DNA methylation
Introduction

The human gamma-glutamyltransferase (GGT; EC 2.3.2.2) gene

family includes 11 genes, 4 full-length proteins with both heavy and

light chains (GGT1/GGT5/GGT6/GGT7), 3 light chain-only proteins

(GGTLC1/GGTLC2/GGTLC3), and 4 pseudogenes (GGT2P/

GGT3P/GGT4P/GGT8P) (1). The full-length proteins are

membrane-bound extracellular enzymes anchored onto the plasma

membrane with a short N-terminal transmembrane domain (1). The

major physiological function of these GGT enzymes is to break down

extracellular glutathione (GSH) that cannot be taken up bymost cells.

GGT enzymes hydrolyze the g-glutamyl group on GSH releasing

cysteinyl-glycine dipeptide, which will be broken down into cysteine

and glycine by cell surface dipeptidases for cellular uptake (2). GGT

enzymes also convert leukotriene LTC4 to LTD4 (3, 4) and cleave g-
glutamyl peptide bonds in other peptides (5), resulting in g-glutamyl

moiety transfer to acceptors (6). These functionalities are critical for

cellular GSH homeostasis in anti-oxidative defense, inflammatory

molecule synthesis, and drug metabolism (6, 7).

GGT genes are ubiquitously expressed in plant and mammalian

cells, the most studied isoforms are GGT1 and GGT5 with well-

known enzymatic activities (6), while the functional role of GGT6/

GGT7 is still unclear (1). GGT1/GGT5 proteins are often expressed

by different cell types within the tissue. For example, GGT1 protein

is expressed on the apical surface of the renal proximal tubules while

GGT5 protein is expressed by the interstitial cells of the kidney.

GGT1/GGT5 are moderately expressed on the secretory or

absorptive cells in sweat glands, prostate, liver, bile ducts,

pancreatic acini, intestinal crypts, and testicular tubules (6). These

different patterns of expression are responsible for their distinct

substrate specificity. For instance, GGT5 uses the substrates in

blood and intercellular fluids, while GGT1 mainly uses the

substrates in duct and gland fluids throughout the body (8). Since

its abundant expression in liver cells, hepatic toxicity-induced liver

cell damage results in the blood release of GGT proteins, which has

been used as a biomarker for liver disease (9). Genetic knockout

studies in mice showed that GGT1 and GGT5 both enzymes can

convert leukotriene C4 to leukotriene D4, but they have (9).

In human prostate cancers, higher GGT1-derived g-
glutamyltransferase activity was recently reported in exosomes

isolated from patient blood samples compared to benign prostatic

hypertrophy (BPH) individuals (10). GGT1 protein levels in

exosomes were significantly higher in aggressive C4-2B cells
02
compared to less aggressive LNCaP cells, suggesting that GGT1

expression is associated with disease progression in prostate cancer.

However, it is largely unknown the expression patterns of all GGT

family genes in prostate cancers and their correlations with disease

progression and patient survival outcomes. In this study, we took

advantage of public RNA-seq datasets and analyzed the expression

profiles of all GGT family genes in prostate cancers. We also

investigated the androgen receptor (AR) modulation of GGT

family gene expression in prostate cancer cells. Our results

indicate that GGT6 expression is modulated by AR signaling

activity and GGT7 expression is highly increased in treatment-

induced neuroendocrinal progression.
Results

GGT family genes were aberrantly
expressed in primary prostate cancers

We used the TCGA-PRAD dataset to examine the expression

profiles in primary prostate cancers. Gene expression levels were

compared in two comparisons, case-matched pair (52 cases) and

group cohort (501 tumors). The predominant isoforms in prostate

tissues were GGT5/6/7 genes while the GGT1 gene was expressed at

a moderate level. In contrast, the light-chain-only isoform

GGTLC1/2/3 genes were expressed at a very low level. Compared

to benign tissues, the GGT1 gene was significantly upregulated

while GGT6/7 genes were significantly downregulated in case-

matched pair comparison (Figure 1A). Similar results were also

observed in group cohort comparisons for these genes, except that

GGT5 and GGTLC1 expression levels were significantly higher in

tumors compared to benign tissues (Figure 1B). Genetic alterations

in these genes were only seen in 1-2.6% of cases with very few

mutations (Supplementary Figure S1, Supplementary Table S1).

We then analyzed the association of GGT gene expression with

clinicopathological parameters. GGT5 gene expression was

significantly higher in T3 diseases while GGT7 expression was

significantly lower in T3 diseases compared to T2 diseases

(Figure 1C). The expression levels of GGT7 and GGTLC1 genes

were significantly reduced in patients with lymph node invasion

(Figure 1D). Interestingly, GGT6 expression was dramatically

reduced in cases with distal metastasis, indicating a potential

metastatic suppressor (Figure 1E). In cases with post-surgical
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residual tumors, multiple GGT isoform genes (GGT1/GGT7/

GGTLC1/GGTLC2) were expressed at a significantly lower level

compared to cases without residue tumors (Figure 1F). GGT5 gene

expression was significantly correlated with increasing Gleason

scores while GGT6 expression was significantly lower in Gleason

9 cases compared to Gleason 6 cases (Figure 1G). ROC analysis

revealed that GGT6 gene expression exerted a strong factor in

distinguishing tumor tissues from benign tissues with an AUC value

of 0.835 (Figure 1H).
GGT family genes were distinctly
associated with multiple
molecular signatures

We then analyzed GGT family gene expression patterns with

molecular signatures. GGT1 expression was highly expressed in ERG-
Frontiers in Oncology 03
fusion positive cases (Figure 2A) while GGT5 expression was

significantly higher in FLI1-fusion cases (Figure 2B). In contrast,

GGT6 expression was reduced in almost all cases except FLI1 fusion

patients (Figure 2C), whereas GGT7 expression was significantly

downregulated in cases with either ERG- or ETV1-fusion but

significantly upregulated in patients with SPOPmutations (Figure 2D).
GGT5/GGT6/GGT7 expression was
associated with disease progression

We next analyzed the association of GGT expression with

patient survival outcomes, including overall survival, disease-

specific survival, and progression-free interval. Kaplan-Meyer

curve analysis revealed that GGT5/GGT7 expression was

associated with a worse outcome in progression-free intervals

(Figures 3A, B) while GGT6 expression exhibited a favorite
FIGURE 1

GGT family genes are dysregulated in prostate cancers. Case-matched pair-wise approach (A) or group cohort comparison (B) were used to
compare gene expression levels between benign and cancer tissues using the TCGA-PRAD dataset. Gene expressions were also compared in clinical
subgroups, including clinical stage (C), lymph node invasion (D), distal metastasis (E), post-surgery residual tumor (F), and Gleason scores (G). The
asterisks indicate a significant difference compared to the control group. *p < 0.05; **p < 0.01, ***p < 0.001. (H) ROC analysis was conducted to
determine the prediction potentials in distinguishing normal and tumor tissues. ns; no significance.
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association with progression-free interval (Figure 3C). GGT1

expression had no significant association with survival outcomes

(Figure 3D). Meanwhile, there was no significant association

between the expression of all GGT family genes and overall or

disease-specific survival outcomes.
GGT6 expression was reversely correlated
with DNA methylation

We examined the correlation of gene expression levels with

promoter DNA methylation levels. Our results showed very strong

negative correlations between the expression levels of GGT1/GGT5/

GGT6 genes, and their DNA methylation levels in prostate cancer

tissues (Table 1). While the GGT6 gene exerted the strongest
Frontiers in Oncology 04
negative correlation (co-efficient > -0.8), GGT7 expression only

showed a weak correlation with DNA methylation. We also

compared the DNA methylation levels between benign and

cancer tissues for each gene (Figure 4). Consistent with GGT6

downregulation and the strong negative correlation, the GGT6

promoter showed a significantly higher methylation level in

cancer tissue compared to benign tissues (Figure 4A). GGT7

methylation level had a moderate increase, which was still in line

with a moderate downregulation of GGT7 expression (Figure 4B).

However, GGT1 methylation had no significant alteration

(Figure 4C) and GGT5 methylation was significantly elevated in

cancer tissues (Figure 4D), which is not in line with the

upregulation of GGT5 expression in cancer tissues. These data

indicate a diversity of regulatory mechanisms for the GGT

family genes.
FIGURE 3

Kaplan-Meier survival analysis was conducted to analyze the association of GGT family genes (A: GGT5; B: GGT7; C: GGT6; D: GGT1, as indicated)
with patient progression-free interval.
FIGURE 2

GGT family gene expression levels are changed in subgroups with specific molecular signatures in prostate cancers. Gene expression of GGT1 (A),
GGT5 (B), GGT6 (C), and GGT7 (D) in the TCGA-PRAD patients. The asterisks indicate a significant difference compared to the benign group. *p <
0.05; ***p < 0.001, ****p < 0.0001.
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GGT6 expression was modulated by
androgen receptor signaling in
CRPC patients

We analyzed the expression profiles in castration-resistant

prostate cancers (CRPC) using the SU2C/PCF RNA-seq dataset.

Similar to the TCGA dataset derived from primary prostate cancers,

genetic alterations in CRPC tumors were also within 1.6-4% of the

GGT family genes (Supplementary Figure S2, Supplementary Table

S1). There was no identical mutation between these two cohorts on

each GGT gene. Among these GGT genes, GGT6 was the only one

that exerted a significant upregulation in deceased patients

compared to alive ones that were alive (Figure 5A), which

contrasted with its expression profile in primary cancers with a

downregulated expression in cancer tissues (Figure 1A).

Interestingly, GGT6 expression was suppressed in patients

receiving Abiraterone or Enzalutamide treatment (Figure 5B),

which was reversed when patients were off-treatment (Figure 5C).
Frontiers in Oncology 05
This data strongly indicates an AR-dependent modulation of

GGT6 expression.

We then analyzed GGT expression in prostate cancer cells after

androgen treatment. LNCaP cells were treated with DHT for 4 h

significantly increased GGT6 expression and a moderate increase of

GGT1 expression without statistical significance (Figure 5D).

Consistently, castration of the animals bearing the LuCaP35

xenograft tumors significantly reduced GGT6 expression

(Figure 5E). AR gene silencing in LNCaP cells resulted in a

significant reduction of GGT6 expression (Figure 5F). These data

demonstrated that AR activity is involved in GGT6 expression in

prostate cancers.
GGT7 expression was upregulated in
NEPC tumors

Finally, we analyzed the correlation of GGT family expression

profiles with AR activity score or neuroendocrinal progression score

(NEPC score) in CRPC tumors. GGT1 expression was positively

correlated with the AR score but negatively correlated with the

NEPC score, while GGT5/GGT6 genes only showed a very weak

correlation with the AR score but not with the NEPC score

(Table 2). In contrast, GGT7 expression was negatively correlated

with AR score but positively correlated with NEPC score in CRPC

patients (Table 2). Indeed, GGT1 expression levels were

significantly lower in tumors with treatment-induced NEPC (t-

NEPC) features and small cell carcinomas (SCC) compared to

CRPC-adenocarcinomas (CRPC-Adeno). On the other hand,

GGT7 expression levels were significantly higher in t-NEPC and

SCC tissues compared to CRPC-Adeno tumors (Figure 6A). In
FIGURE 4

Promoter DNA methylation. DNA methylation at the b-value was compared between benign and cancer tissues for GGT6 (A), GGT7 (B), GGT1 (C),
and GGT5 (D). The asterisks indicate a significant difference compared to the benign group. *p < 0.05, ****p < 0.0001. ns; no significance.
TABLE 1 Correlation of GGT gene expression with DNA Methylation.

Gene Spearman r p value Pearson r p value R2

GGT1 -0.61 2.21E-51 -0.53 1.30E-37 0.28

GGT5 -0.4 3.70E-20 -0.4 8.78E-21 0.16

GGT6 -0.84 8.60E-133 -0.8 6.34E-112 0.64

GGT7 -0.26 2.27E-09 -0.32 1.39E-13 0.1

GGTLC1 0.02 6.14E-01 0.01 8.26E-01 0

GGTLC2 -0.02 7.11E-01 -0.02 6.79E-01 0
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T

FIGURE 5

(A–C) GGT family gene expression in CRPC patients. Gene expression was compared based on patient survival status (A), anti-AR therapy (B), ARSI
status (C), or in response to androgen treatment (D), Castration (E), and AR silencing (F). The asterisk indicates a significant difference between the
two groups. *p < 0.05, **p < 0.01.
ABLE 2 Correlation of GGT gene expression with AR/NEPC scores.

AR score Spearman r p value Pearson r p value R2

GGT1 0.22 2.88E-04 0.33 6.36E-08 0.11

GGT5 -0.27 7.03E-06 -0.14 0.0256 0.02

GGT6 -0.19 1.57E-03 -0.11 n.s. 0.01

GGT7 -0.32 1.68E-07 -0.35 5.74E-09 0.12

NEPC score

GGT1 -0.41 3.75E-12 -0.43 1.17E-11 0.16

GGT5 -0.07 n.s. -0.13 0.033 0.02

GGT6 -0.04 n.s. -0.04 n.s. 0

GGT7 0.27 6.22E-06 0.35 6.23E-09 0.12
F
rontiers in Oncology
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ns; no significance.
Bold values indicates a strong correlation.
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supporting these data, the NEPC cell line NCI-H660 expressed the

highest level of GGT7 expression among all prostate cancer cell

lines (Figure 6B). These results indicate that GGT7 expression is

upregulated in NEPC tumors, representing a potential novel

biomarker for neuroendocrinal progression.
Discussion

Despite prostate cancer as the second leading cause of cancer

deaths in men worldwide, diagnosis and prognosis methods remain

limited without curative treatments (11, 12). Most prostate cancer

patients with distal metastasis receive androgen deprivation therapy

followed by anti-AR treatment once the tumor relapses at the

castration-resistant stage (CRPC) (12, 13). About 20-25% of

CRPC patients progress into the neuroendocrinal stage (NEPC)

after AR antagonist therapy (12). Currently, there is no adequate

treatment for NEPC patients other than traditional chemotherapy.

Therefore, it is urgent to develop useful biomarkers for monitoring

NEPC progression and treatment selection.

In this study, we surveyed the GGT gene family for their

expression profiles in primary prostate cancers and treatment-

resistant prostate cancers. RNA-seq data from the TCGA-PRAD

dataset were derived from primary prostate cancers and the SU2C/

PCF dataset was derived from CRPC patients (14). Our results

showed that GGT1/5/6/7 genes are the predominant isoforms while

GGTLC1/2/3 is expressed at a very low level in prostate tissues,

although there are some outliers with higher levels of GGTLC2 in

primary prostate cancers. Further analysis revealed that these outliers

with higher GGTLC2 expression were Gleason score 7 non-metastatic

cases at T2-T3 stages. Compared to case-matched benign tissues,

most cases of cancer tissues expressed higher GGT1/GGT5 genes but

lower GGT6/GGT7 genes, of which GGT6 expression showed a

dramatic reduction in cancer tissues. ROC analysis indicated GGT6

as a reliable marker for prostate cancer diagnosis (AUC = 0.835).

Unlike GGT1/GGT5 with confirmed enzymatic activity towards GSH

and LTC4, the enzymatic activity of GGT6/GGT7 and GGTLC1/2/3

proteins is not confirmed yet (1, 6). Therefore, the clinical significance
Frontiers in Oncology 07
and potential mechanistic role in cancer progression of their

alterations at the mRNA level remain further investigated.

The GGT6 gene is the least homolog away from GGT1

compared to GGT5/GGT7 (1). Its expression pattern at the

protein level is unknown, however, GGT6 mRNA level was

recently found to correlate with disease progression and patient

outcomes in oral squamous cell carcinoma (15), papillary renal cell

carcinoma (16), glioblastoma (17), hepatocellular carcinoma (18),

and head-neck squamous cell carcinoma (19). In this study, we were

the first to report that GGT6 expression was sharply downregulated

in primary prostate cancers, which might be due to enhanced

promoter DNA methylation. In addition, GGT6 expression was

suppressed during anti-AR treatment, which was reversed after

finishing the treatment in CRPC patients. Further analysis in cell

culture and xenograft models demonstrated that GGT6 expression

was modulated at the transcription level by AR signal activity in

prostate cancer. CRPC patients who died early expressed higher

GGT6 mRNA levels compared to alive patients. The clinical and

biochemica l s ignificance of th is a l tera t ion i s under

further investigation.

The GGT7 gene is the newest member of the GGT family and is

expressed at the highest level in human brain tissue followed by the

thyroid gland (1, 20). GGT7 expression is downregulated in

glioblastoma (20) but upregulated in liver cancers (18). In this

study, we found that GGT7 was slightly downregulated in primary

prostate cancer tissues with lymph node invasion and post-surgery

residue tumors. However, GGT7 expression was higher in patients

with SPOP mutation than others, and GGT7high patients had worse

progress-free survival. In CRPC patients, GGT7 expression was

negatively correlated with AR score but positively with NEPC score.

However, androgen treatment or anti-AR therapy had no effect on

GGT7 expression at the mRNA level. Interestingly, GGT7

expression was significantly higher in CRPC patients with

neuroendocrinal features and small-cell carcinomas. Meanwhile,

the only NEPC cell line H660 is expressing a very high level of

GGT7 mRNA. These results strongly suggest that GGT7 might play

an important role in NEPC progression or serve as a biomarker for

NEPC diagnosis.
FIGURE 6

GGT1/GGT7 expression was altered in t-NEPC cancers. Gene expression was compared among different patient groups (A) and prostate cell lines
(B) as indicated. The asterisk indicates a significant difference compared to the CRPC group. Student’s t-test, *p < 0.05, **p < 0.01.
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In conclusion, GGT1/GGT5 expression was upregulated but

GGT6/GGT7 expression was downregulated in primary prostate

cancers. Due to a sharp reduction, GGT6 expression exhibited a

superb indication for prostate cancer diagnosis. GGT6 expression in

CRPC patients was modulated by AR signal activity but GGT7

expression is a potential NEPC biomarker.
Materials and methods

Gene expression profiles and genetic
alteration in prostate cancers and cell lines

The Cancer Genome Atlas program (TCGA-PRAD) RNAseq

dataset was used to survey the gene expression profiles at the mRNA

level in primary prostate cancer, as described in our recent

publications (21–29). Data statistical analysis and visualization

were conducted on the XIANTAO online platform (https://

www.xiantaozi.com/). Gene expression levels were compared

using two approaches, case-matched pair comparison (52 cases)

and group cohort comparison (500 patient cases) with 52 benign

samples. Patients were also stratified into subgroups based on

multiple clinicopathological parameters to analyze gene

expression differences. Comparison of gene expression levels in

subgroups stratified by molecular signatures (distinct gene fusion

and common mutations) was conducted using the TCGA-PRAD

dataset on the UALCAN platform (https://ualcan.path.uab.edu/).

Gene expression data in prostate cell lines were downloaded from

the Cancer Cell Line Encyclopedia dataset (30, 31) on the

cBioportal platform.

Genetic alterations of the GGT family genes were analyzed

using the whole genomic sequencing dataset derived from the

TCGA-Firehose Legacy program which has 501 tumor samples

from primary prostate cancers and the SU2C/PCF program which

has 444 CRPC patient samples. Structural deletion, amplification,

and mutation data were downloaded and visualized on the

cBioportal platform (https://www.cbioportal.org/).
Correlation analysis of gene expression
with promoter DNA methylation

The correlations between the gene expression level of GGT

family genes and promoter methylation were analyzed using the

TCGA-PRAD sequencing dataset on the cBioportal platform. We

used two statistical approaches, Spearman and Pearson coefficients,

for the correlation analysis. In addition, promoter DNA

methylation level (b-value) was analyzed on the UALCAN

platform, as described (32, 33). Different b-value cut-off was

considered to indicate hyper-methylation [b-value: 0.7 - 0.5] or

hypo-methylation [b-value: 0.3 - 0.25].
Patient survival outcome assessment

Three survival outcomes, including overall survival, disease-

specific survival, and progression-free interval, were assessed using
Frontiers in Oncology 08
the Kaplan-Meier curve approach with the TCGA-PRAD dataset on

the XIANTAO platform. Patients were stratified using the

minimum p-value cut-off approach (34). The results were

visualized on the XIANTAO platform with the survminer

package and ggplot2 package of the R package (version 4.2.1).
Gene expression analysis in CRPC patients

Gene expression at the mRNA levels in CRPC patients was

analyzed using the SU2C/PCF RNA-seq dataset downloaded from

the cBioportal platform. Patients were divided into different

subgroups based on survival status and treatment history with

anti-AR therapy for comparison. Correlations between gene

expression levels and AR score or NEPC score were also

assessed in both categories, Spearman and Pearson coefficients.
Androgen modulation of gene expression
in prostate cancer cell line and
xenograft models

Human prostate cancer LNCaP cells were seeded in

RPMI1640 media. After serum starvation overnight LNCaP cells

were treated with 5-a-dihydrotestosterone (DHT, 0.1 µM) for 4 h

in media supplied with charcoal-stripped fetal bovine serum

(cFBS) (35). Total cellular RNAs were extracted using a

QIAGEN RNeasy kit (Valencia, CA) for GeneChip assay

(human U133 plus 2.0). The results were downloaded from

NCBI GEO profile GDS3111.

To evaluate the effect of castration on gene expression, human

prostate cancer LuCaP35 xenograft models were established

subcutaneously in NOD/SCID mice (36). After castration or sham

operation, xenograft tumors were harvested for RNA extraction using

the QIAGEN RNeasy Mini Kit (Valencia, CA) for GeneChip assays

using the Affymetrix human genome U133 Plus 2.0 array. The results

were downloaded from the NCBI GEO profile GDS4120.

To confirm the involvement in androgen modulation of gene

expression, AR expression was silenced in LNCaP cells with a small-

hairpin RNA lentivirus or a nontargeting control siRNA (37). After

three days, total cellular RNAs were prepared using the QIAGEN

RNeasy Mini kit (Valencia, CA) for gene chip assay using the

Affymetrix human U133 Plus 2.0 microarrays. The results were

downloaded from NCBI GEO profile GDS4113.
Statistical analysis

Gene expression at the mRNA levels was used as Log2 [TPM +

1]) value and presented as the MEAN ± the SEM (standard error of

the mean). ANOVA analyses were conducted for multiple group

comparisons. A student t-test was performed to determine the

significance of the differences between the two groups. The results

were visualized using the R package (version 4.2.1) and GraphPad

software (version 9.1.0).
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