
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nam N. Phan,
The University of Texas Health Science
Center, United States

REVIEWED BY

Zhang Juan,
Tangshan People’s Hospital, China
Rong Niu,
Third Affiliated Hospital of Soochow
University, China

*CORRESPONDENCE

Zhuo Yang

1069103476@qq.com

Lijuan Li

18372561138@163.com

RECEIVED 25 October 2024

ACCEPTED 30 January 2025

PUBLISHED 18 February 2025

CITATION

Wen X, Tu H, Zhao B, Zhou W, Yang Z and
Li L (2025) Identification of benign and
malignant breast nodules on ultrasound:
comparison of multiple deep learning
models and model interpretation.
Front. Oncol. 15:1517278.
doi: 10.3389/fonc.2025.1517278

COPYRIGHT

© 2025 Wen, Tu, Zhao, Zhou, Yang and Li. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 18 February 2025

DOI 10.3389/fonc.2025.1517278
Identification of benign and
malignant breast nodules on
ultrasound: comparison of
multiple deep learning models
and model interpretation
Xi Wen1, Hao Tu1, Bingyang Zhao2, Wenbo Zhou3, Zhuo Yang1*

and Lijuan Li1*

1Department of Ultrasound, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture
(Enshi Clinical College of Wuhan University), Enshi, China, 2Department of Neurology, China-Japan
Union Hospital of Jilin University, Changchun, China, 3Department of Stomatology, China-Japan
Union Hospital of Jilin University, Changchun, China
Background and Purpose: Deep learning (DL) algorithms generally require full

supervision of annotating the region of interest (ROI), a process that is both

labor-intensive and susceptible to bias. We aimed to develop a weakly supervised

algorithm to differentiate between benign and malignant breast tumors in

ultrasound images without image annotation.

Methods: We developed and validated the models using two publicly available

datasets: breast ultrasound image (BUSI) and GDPH&SYSUCC breast ultrasound

datasets. After removing the poor quality images, a total of 3049 images were

included, divided into two classes: benign (N = 1320 images) and malignant (N =

1729 images). Weakly-supervised DL algorithms were implemented with four

networks (DenseNet121, ResNet50, EffientNetb0, and Vision Transformer) and

trained using 2136 unannotated breast ultrasound images. 609 and 304 images

were used for validation and test sets, respectively. Diagnostic performances

were calculated as the area under the receiver operating characteristic curve

(AUC). Using the class activation map to interpret the prediction results of weakly

supervised DL algorithms.

Results: The DenseNet121 model, utilizing complete image inputs without ROI

annotations, demonstrated superior diagnostic performance in distinguishing

between benign and malignant breast nodules when compared to ResNet50,

EfficientNetb0, and Vision Transformer models. DenseNet121 achieved the

highest AUC, with values of 0.94 on the validation set and 0.93 on the test set,

significantly surpassing the performance of the other models across both

datasets (all P < 0.05).
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Conclusion: The weakly supervised DenseNet121 model developed in this study

demonstrated feasibility for ultrasound diagnosis of breast tumor and showed

good capabilities in differential diagnosis. This model may help radiologists,

especially novice doctors, to improve the accuracy of breast tumor diagnosis

using ultrasound.
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Introduction

Ultrasound (US) is widely used in the clinical diagnosis of breast

lesions, particularly for differentiating between benign and

malignant breast nodules (1, 2). However, breast ultrasound

diagnosis is inherently limited by inter-observer variability,

especially among non-experts (3–6). This variability often leads to

higher false-positive or false-negative rates, resulting in unnecessary

biopsies and surgeries or a delay in treatment (5). To mitigate these

issues, deep learning (DL) techniques have been progressively

introduced into breast ultrasound diagnosis (7).

Traditional deep learning approaches generally rely on a fully

supervised learning paradigm, requiring image annotation, which

typically involves manual delineation of regions of interest (ROIs)

corresponding to the lesions (8, 9). Even with the implementation of

automatic ROI segmentation methods, manual verification of the

segmentation results is still necessary. Given that deep learning is a

data-driven technique, the image annotation process is labor-

intensive and time-consuming, the potential for subjective bias

introduced by human judgment, which may affect the model’s

performance (9).

Recent studies have explored deep learning methods that eliminate

the need for ROI annotation by directly inputting the entire image for

training and diagnostic prediction (10–14). The previous study has

shown that the weakly supervised DL algorithm provided excellent

diagnostic performance that was not inferior to the fully supervised DL

algorithm with manual and automated annotation (12). In this

approach, the model learns and classifies based on the global features

of the full ultrasound image, thereby eliminating the dependency on

manual annotation. This may streamline data preparation and

diminish subjective biases, potentially enhancing model training

efficiency and clinical generalizability.

However, studies based on deep learning with weak supervision

in breast ultrasound imaging remains limited. Therefore, this study

aims to compare several deep learning models that directly input

unsegmented whole breast ultrasound images to differentiate

between benign and malignant nodules, and to analyze the

interpretability of the prediction results.
02
Materials and methods

Dataset

The breast ultrasound image data used in our study comes from

two publicly available datasets: breast ultrasound image (BUSI)

[Available online: https://scholar.cu.edu.eg/?q=afahmy/pages/datasetm

(access on 1 July 2022)] and GDPH&SYSUCC breast ultrasound

[Available online: https://github.com/yuhaomo/HoVerTrans

(access on 11 January 2023)] datasets.

The BUSI dataset is categorized into three classes: benign (N =

487 images), malignant (N = 210 images), and normal (N = 133

images). BUSI dataset images were taken from women between the

ages of 25 and 75 years; hence, the dataset is preferred for studies

involving early breast cancer detection in women below 40 years of

age (15). The dataset was collected in 2018 from 600 female

patients. The dataset consists of 780 images, each with an average

size of 500 × 500 pixels. The dataset images are PNG files.

Representative images from the dataset are shown in Figure 1.

The GDPH&SYSUCC breast ultrasound dataset is divided into two

categories: benign (N = 886 images) and malignant (N = 1519 images)

(14). Images were collected from two medical centers: 1) Department of

Ultrasound, Guangdong Provincial People’s Hospital (GDPH,

Guangzhou, Guangdong, China) and 2) Department of Ultrasound,

Sun Yat-sen University Cancer Prevention and Control Centre

(SYSUCC, Guangzhou, Guangdong, China). Images and their

corresponding BI-RADS scores were exported from a picture

archiving and communication system (PACS). Acquisition devices

included Hitachi Ascendus (Japan), Myriad DC-80 (China), Toshiba

Aplio 500 (Japan), and Sonic Aixplorer (France). All images were

classified as benign or malignant based on biopsy or post-operative

pathology reports. The average image size was 844 × 627 pixels, ranging

from 278 × 215 to 1,280 × 800 pixels. The images in the dataset are in

PNG format and of different sizes. Representative images from this

dataset are shown in Figure 2.

The BUSI and GDPH&SYSUCC datasets were combined to form

amixed dataset. Benign images from both datasets were aggregated to

establish a mixed benign image class, and a similar procedure was
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applied to malignant images. Following the exclusion of low-quality

images, a total of 3049 images were retained for the models

construction and validation. The mixed dataset was divided into

benign (N = 1320 images) and malignant (N = 1729 images) classes,

then split into training, validation, and test sets in a 7:2:1

ratio (Figure 3).
Preprocessing

The preprocessing of the data involved resizing and normalizing

the dataset images. The images in both datasets utilized in this study

had different pixel sizes from their corresponding sources. Therefore,

we resized them to use them as input in our proposed method. Each

image was resized to 224 × 224 pixels. Their pixel values were

normalized to the range of [0, 1] by dividing the maximum intensity

value. Besides, we performed spatial transformation-based

augmentations (horizontal flip, color jitter, sharpening, salt-and

pepper, gamma correction, random rotation, and height shift) to

equalize the size of the images in each class.
Frontiers in Oncology 03
Deep classification models

For deep classifiers, we employed Vision Transformer (ViT) and

three representative convolutional neural networks (CNN) that have

achieved state-of-the-art performance in various computer vision tasks:

ResNet50, EfficientNetb0, and DenseNet121 (Figure 3). Weights were

initialized randomly, and all models were trained from scratch, without

pretraining. The entire process, from data preprocessing to model

building and interpretation, was implemented in the Medical Open

Network for Artificial Intelligence (MONAI), a Pytorch-based open-

source framework for deep learning in healthcare imaging (16). We

selected DenseNet121, ResNet50, EfficientNetB0, and ViT to represent

both traditional CNNs and emerging transformer-based models,

aiming to explore their performance in breast ultrasound image

classification. DenseNet121: Chosen for its efficient feature reuse

through dense connections, making it well-suited for extracting

subtle features in small medical datasets. ResNet50: Selected for its

residual learning capability, which addresses the degradation problem

in deep networks and enables robust feature extraction. EfficientNetB0:

Included for its computational efficiency and balanced optimization of
FIGURE 2

Representative images from GDPH&SYSUCC dataset: (A) Malignant; (B) Benign.
FIGURE 1

Representative images from BUSI dataset: (A) Benign; (B) Malignant; (C) Normal.
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network depth, width, and resolution, which are beneficial for resource-

constrained environments. Vision Transformer: Added to explore the

potential of transformer-based models in capturing global contextual

information, offering a contrast to CNN architectures. This selection

ensures a comprehensive comparison of diverse architectures to

identify the most effective approach for breast ultrasound

image classification.
Implementation details

We trained our models for 50 epochs using the Adam optimizer

with a learning rate of 0.00001. A batch size of 16 and exponential

decay were used for training in the ViTmodel. GELUwas utilized as an

activation function with an L2 regularizer for the ViT model. In CNNs,

ReLu was utilized with an L2 regularizer. For experiments involving

comparison, the same parameter settings were utilized to avoid bias in

the results. Each model was modified so that its last classifier layer

would be a sigmoid layer to be able to perform two-label classification.
Reader study

A reader study was conducted on the test set, wherein three

radiologists independently assessed the malignant and benign

breast lesions using breast ultrasound images. The participating

radiologists, designated as Reader 1 (XW), Reader 2 (ZY), and

Reader 3 (HT), possessed 2, 5, and 13 years of experience in breast

ultrasound, respectively. All readers were blinded to any

clinicopathologic information, including model performance and

the pathological results associated with the images.
Evaluation metrics

Metrics including accuracy, area under the receiver operating

curve (AUC), F1-score, recall, and precision were used to assess the

performance of our model. For differential diagnosis, we used area

under the receiver operating characteristics curve (AUC) as the
Frontiers in Oncology 04
primary metric for comparing the algorithm performance, and the

DeLong test of significance for comparing the AUC of two

correlated receiver operating characteristics curves (ROCs).
Model interpretation

According to the evaluation metrics, the optimal model would be

selected for model interpretation. To allow an easier interpretation of

image feature extraction, we derived activation maps using the

gradient-weighted class activation map (Grad-CAM) technique (17).
Results

Model performance

For the validation set, the DenseNet121 model (AUC 0.94, 95%

CI 0.92 - 0.96) achieved higher performances in the differential

diagnosis between benign and malignant breast masses than

ResNet50, EfficientNetb0, and ViT (ResNet50: AUC 0.87, 95% CI

0.84 - 0.90; EfficientNetb0: AUC 0.76, 95% CI 0.72 - 0.80; ViT: AUC

0.78, 95% CI 0.74 - 0.81) (Figures 4, 5). Delong’s test was performed

to compare the AUC, showing that the difference between

DenseNet121 and other models is significant (all P <0.001). The

accuracy, F1 score, precision, and recall of DenseNet121 in the

validation set was 0.85, 0.85, 0.89, and 0.82, respectively (Figure 4).

The accuracy, F1 score, precision, and recall of ResNet50 in the

validation set was 0.79, 0.81, 0.77, and 0.86, respectively (Figure 4).

The accuracy, F1 score, precision, and recall of EfficientNetb0 in the

validation set was 0.70, 0.74, 0.68, and 0.82, respectively (Figure 4).

The accuracy, F1 score, precision, and recall of ViT in the validation

set was 0.63, 0.74, 0.59, and 0.98, respectively (Figure 4).

For the test set, the DenseNet121 model (AUC 0.93, 95% CI 0.90 -

0.96) achieved higher performances in the differential diagnosis

between benign and malignant breast masses than ResNet50,

EfficientNetb0, and ViT (ResNet50: AUC 0.88, 95% CI 0.84 - 0.92;

EfficientNetb0: AUC 0.81, 95% CI 0.75 - 0.85; ViT: AUC 0.79, 95% CI

0.74 - 0.84) (Figure 4, 5). Delong’s test was performed to compare the
FIGURE 3

Research flowchart of this study.
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AUC, showing that the difference between DenseNet121 and other

models is significant (all P <0.05). The accuracy, F1 score, precision,

and recall of DenseNet121 in the test set was 0.84, 0.85, 0.89, and 0.82,

respectively (Figure 4). The accuracy, F1 score, precision, and recall of

ResNet50 in the test set was 0.80, 0.83, 0.82, and 0.84, respectively

(Figure 4). The accuracy, F1 score, precision, and recall of

EfficientNetb0 in the test set was 0.73, 0.79, 0.74, and 0.84,

respectively (Figure 4). The accuracy, F1 score, precision, and recall

of ViT in the test set was 0.70, 0.79, 0.66, and 0.99,

respectively (Figure 4).
Performance of different readers

Figure 6 compares the diagnostic accuracy of the DenseNet121

models with ultrasound physicians of varying experience in
Frontiers in Oncology 05
predicting breast nodule benignity or malignancy. The performance

of the DenseNet121 model (AUC 0.93, 95% CI 0.90 - 0.96) in

predicting breast lesions benignity or malignancy outperformed the

reader 1 (AUC 0.74, 95% CI 0.69 - 0.79) and reader 2 (AUC 0.82, 95%

CI 0.77 - 0.86). The reader 3 (AUC 0.90, 95% CI 0.87 - 0.94) and the

DenseNet121 model showed similar performance.
Discussion

In this study, we demonstrated that the DenseNet121 model,

using full-image input without ROI annotations, achieved superior

diagnostic performance in differentiating between benign and

malignant breast nodules compared to ResNet50, EfficientNetb0,

and ViT. Specifically, the DenseNet121 model showed the highest

AUC (0.94 in the validation set and 0.93 in the test set), significantly
FIGURE 5

Receiver operating characteristics (ROC) curves of different DL models in both validation (A) and test (B) sets.
FIGURE 4

Heatmaps of the diagnostic performance metrics between different DL models in both validation and test sets.
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outperforming the other models in both validation and test datasets

(all P < 0.05). The DenseNet121 model demonstrated comparable

performance with experienced readers in breast ultrasound

diagnosis. These findings suggest that DenseNet121 model

utilizing full-image input are effective for breast ultrasound

diagnosis, may reducing the need for time-consuming manual

ROI annotation while maintaining high diagnostic accuracy.

Ultrasound (US) is the preferred diagnostic modality for breast

lesions owing to its simplicity and non-invasive nature.
Frontiers in Oncology 06
Nonetheless, the assessment of breast lesions using US is limited

by interobserver variability and frequently depends on the

subjective experience of the radiologist (3–6). Due to the excellent

performance of deep learning on images, the integration of deep

learning with medical imaging is receiving increasing attention

from medical practitioners (7). Most DL models currently in

clinical practice are trained in a supervised manner, requiring

humans to annotate images by drawing the ROI lesion (8, 9).

Even with automated ROI segmentation, manual verification
FIGURE 6

Heatmaps of the diagnostic performance metrics between the DenseNet121 model and ultrasound physicians with different experience levels in the
test set.
FIGURE 7

Interpretation of the weakly supervised DenseNet121 model using the gradient-weighted class activation map (Grad-CAM).
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remains essential. The removal of ROI annotation could be

advantageous, as conventional methods that depend on manual

or automated segmentation necessitate substantial human

involvement and may introduce variability into the training data.

Furthermore, the characterization of the tumor lesion’s edges is

critical for accurately distinguishing between benign and malignant

lesions. The segmentation of ROI may lead to the omission of this

essential edge information. Consequently, further study is necessary

to explore the role of weakly supervised deep learning algorithms

that process the entire image without ROI segmentation in

differentiating between benign and malignant ultrasound

breast lesions.

Previous studies have demonstrated that the weakly-supervised

DL algorithms were feasible for US diagnosis of breast cancer with

well-performing localization and differential diagnosis (12, 18, 19).

Consistent with these findings, our study showed that the weakly-

supervised DL algorithm, which circumvents the need for ROI

annotation by utilizing the entire ultrasound image as input, is

effective in distinguishing between benign and malignant breast

lesions. Thus, this method is promising as an efficient and cost-

effective tool for assisting radiologists, especially novice radiologists,

in breast tumor diagnosis. In large-scale breast cancer screening

programs, the weakly-supervised DL algorithms alleviate the

workload by automating the initial diagnostic process for

extensive image datasets, thereby assisting radiologists in the

rapid exclusion of non-suspicious lesions (20). Furthermore, the

weakly-supervised DL algorithms may be integrated into computer-

aided diagnosis (CAD) systems to analyze patients’ ultrasound

images in real time, offering preliminary assessments of benign or

malignant characteristics concurrent with the radiologist’s

examination. Radiologists can utilize the model’s predictions as a

reference point, synthesizing them with their own clinical expertise

to formulate a comprehensive evaluation, thereby enhancing the

accuracy and efficiency of diagnostic processes. In addition, deep

learning-based interpretative techniques, including Grad-CAM and

Occlusion Sensitivity Analysis, can emphasize regions of an image

that possess significant diagnostic value, thereby prompting

radiologists to focus more intently on lesion characteristics that

are pertinent to the diagnosis of breast tumor.

Prior studies have demonstrated the efficacy of the

DenseNet121 model in differentiating between benign and

malignant breast lesions (10, 19). In our study, the DenseNet121

model also showed higher performance for differentiating between

benign and malignant breast lesions using ultrasound imaging in

both validation and test sets than other classical deep learning

models (e.g., ResNet50 and EfficientNetb0), indicating its

robustness and generalizability. Moreover, DenseNet121 model’s

precision (0.89) and recall (0.82) in the validation set, as well as

similar values in the test set, reflect its ability to accurately classify

malignant lesions while minimizing false positives and negatives,

thereby reducing the rate of unnecessary biopsies. This consistent

performance across different datasets highlights the DenseNet121

model’s potential for real-world clinical implementation, where

variability in ultrasound equipment and imaging conditions is

common. Some studies have shown that Transformer-based
Frontiers in Oncology 07
models can outperform CNNs in diagnostic tasks, particularly

when trained on large-scale datasets or using pre-trained weights

on ImageNet (21–24). The Vision Transformer architecture benefits

from its ability to capture global contextual features through

attention mechanisms, making it advantageous in tasks involving

complex patterns or large datasets. Nevertheless, in our study, the

Vision Transformer underperformed compared to DenseNet121,

factors (1): The ResNet50, and EfficientNetB0. This result may be

attributed to several Vision Transformer model is highly dependent

on extensive datasets to acquire effective global representations,

while our training dataset comprised only 2136 images. Conversely,

CNNs demonstrate greater robustness with smaller datasets due to

their efficient extraction of local features. (2) In contrast to CNNs,

which exhibit relatively low sensitivity to initialization, the Vision

Transformer architecture encompasses a substantial number of

parameters and generally gains from pre-training on extensive

datasets. Consequently, training the Vision Transformer from

scratch on our limited dataset likely hindered its performance. (3)

Breast ultrasound imaging predominantly depends on texture and

edge information for the prediction of malignancy. CNNs are more

adept at capturing these local features. In contrast, the global

attention mechanism of Vision Transformers may not fully

leverage these patterns in this context. Future work may explore

transfer learning with pre-trained Transformer models, data

augmentation, or hybrid architectures like Swin Transformer to

better leverage the strengths of Transformers in breast

ultrasound diagnosis.

Given that the majority of deep learning neural networks

function as “black boxes”, this study employs Grad-CAM to

enhance the interpretability of the DenseNet121 model (Figure 7).

Grad-CAM serves not only as a critical interpretative tool for the

automated classification of ultrasound breast lesions but also

contributes to improve the clinical applicability of the model.

Grad-CAM shows the regions within ultrasound images that

most significantly influence the classification outcome, thereby

enhancing the transparency of the neural networks’ complex

decision-making processes for radiologists. This increased

transparency aids radiologists in comprehending the model’s

rationale, thereby mitigating blind reliance on machine learning

algorithms and fostering greater acceptance among radiologists. In

instances where breast lesions present with indistinct boundaries or

subtle characteristics, radiologists may encounter challenges in

establishing definitive diagnoses. Grad-CAM generates heatmaps

that emphasize regions of diagnostic importance, thereby

facilitating the rapid identification of features deemed critical by

the model. This information can be integrated with the radiologist’s

expertise, fostering a more comprehensive and reasonable decision-

making process. Grad-CAM serves as a valuable tool for radiologists

in evaluating potential inaccuracies in the model’s predictions.

When the highlighted areas do not align with established

characteristics of breast lesions, radiologists are prompted to

critically assess the reliability of the model’s output. This feedback

mechanism aids in mitigating misjudgments arising from image

noise or extraneous features, thereby reducing the risk of

diagnostic errors.
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Limitations

pt?>Our study has many limitations. (1) While the DenseNet121

model demonstrated good performance on the validation and test sets

across diverse imaging conditions, its clinical reliability and

generalizability are constrained by the limited dataset size and the

absence of independent external validation. Future research

should employ larger, multi-institutional datasets from various

ultrasound devices to more effectively validate the robustness and

generalizability of the DenseNet121 model. (2) Although our study

highlights the efficiency gained by eliminating ROI annotations, a direct

comparison of the time and labor savings achieved by full-image input

versus region-based methods was not conducted. Future studies should

aim to quantify these practical advantages. (3) Treatment options vary

according to the type of pathology in benign and malignant breast

lesions. The lack of specific pathological types prevents further prediction

of the pathological types of benign and malignant breast lesions. Future

studies should focus on this aspect. (4) Due to the retrospective nature of

our study, themodel was built and evaluated based on retrospective data,

and its clinical reliability still needs to be validated with prospective data.
Conclusion

This study developed and validated a deep learning algorithm

that uses full-image input without ROI annotation to differentiate

between benign and malignant breast nodules in breast ultrasound

images. The weakly supervised DenseNet121 model exhibited

superior diagnostic performance compared to other models.

Thus, this method is promising as an efficient and less labor-

intensive tool for assisting radiologists, especially novice

radiologists, in breast tumor diagnosis.
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