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The integrated application of artificial intelligence (AI) and digital pathology (DP)

technology has opened new avenues for advancements in oncology and

molecular pathology. Consequently, studies in renal cell carcinoma (RCC) have

emerged, highlighting potential in histological subtype classification, molecular

aberration identification, and outcome prediction by extracting high-throughput

features. However, reviews of these studies are still rare. To address this gap, we

conducted a thorough literature review on DP and AI applications in RCC

through database searches. Notably, we found that AI models based on deep

learning achieved area under the curve (AUC) of over 0.93 in subtype

classification, 0.89-0.96 in grading of clear cell RCC, 0.70-0,89 in molecular

prediction, and over 0.78 in survival prediction. This review finally discussed the

current state of researches and potential future directions.
KEYWORDS

digital pathology, artificial intelligence, deep learning, WSI, RCC, prediction,
diagnosis, prognosis
Introduction

Renal cell carcinoma

Renal cell carcinoma (RCC) refers to a diverse group of malignant tumors originating

from the epithelial cells of the renal tubules, with an increasing incidence (1). The 2022

Fifth World Health Organization (WHO) Blue Book divided RCC into morphologically

and molecularly defined RCCs, classifying RCCs into three major subtypes: clear cell RCC

(ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC), which together

constitute over 90% of RCC cases (2). CcRCC is the most common subtype (70%-80%

of cases), which is graded using the Fuhrman classification, now replaced by the World

Health Organization/International Society of Urology (WHO/ISUP) grading system (3). In
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addition to histological classifications, the Fifth WHO update

introduced molecular-driven categorizations (4), emphasizing the

importance of molecular profiling for RCC diagnosis and prognosis.

Digital pathology, WSI, and pathomics

Digital pathology (DP) is a technique that utilizes digital

technology and computer-aided tools to convert images from

traditional glass slides into high-resolution digital formats (5).

Initially, DP focused on digital image acquisition. With the

advancements in artificial intelligence (AI), DP has now

integrated AI to further enhance its capabilities. This integration

enables advanced data storage and retrieval, while offering

automated image analysis and diagnostic support (5).

Whole-slide imaging (WSI) is a significant technology in DP that

utilizes automated microscopes to capture high-resolution detailed

images (6). It employs computer algorithms for precise stitching and

processing, enabling the quantification of features such as shape, size,

and color in pathological images (6). A randomized controlled trial

compared sixpathologists’diagnostic accuracyusing glass slides versus

WSIs for the same cases. The results showed no significant differences,

confirming diagnostic equivalence (7).

Pathomics is an emerging subject, which is the integration of

pathology and omics, aiming to utilize computational techniques to

process and interpret pathology image data (8). Through high-

throughput feature extraction, visualization, and quantification, it

aims to develop predictive models that uncover potential

biomarkers (9).

Artificial intelligence

In the medical milieu, AI employs advanced algorithms like

machine learning (ML) and deep learning (DL), to analyze complex

medical data, assist diagnosis and treatment planning, and optimize

patient outcomes (9, 10). It has been integrated with diagnostic

technologies such as X-rays, CT scans, magnetic resonance imaging,

ultrasounds, and gene sequencing, achieving satisfactory results in

predicting diagnosis, prognosis, and treatment response (9).
Abbreviations: AI, artificial intelligence; API, application programming

interface; AUC, area under the curve; ccRCC, clear cell renal cell carcinoma;

CFS, correlation feature selection; chRCC, chromophobe renal cell carcinoma;

CNN, convolutional neural network; DAG, Directed Acyclic Graph; DCNN, deep

convolutional neural network; DFS, disease free survival; DL, deep learning; DP,

digital pathology; EHPG, enhanced histogram of polar gradient; FCBF, fast

correlation-based filter selection method; FM, Fisher selection; GA, genetic

algorithm selection; GGMRF, generalized Gauss Markov random field; GNN,

Graph Neural Network; Grad CAM, Gradient weighted Class Activation

Mapping; HPG, histogram of polar gradient; IG, integrated gradient; IHC,

immunohistochemistry; ISUP, International Society of Urological Pathology;

LASSO, least absolute shrinkage and selection operator; ML, machine learning;

OS, overall survival; PFS, progression free survival; pRCC, papillary renal cell

carcinoma; RCC, Renal cell carcinoma; RF, random forest selection; ROC,

Receiver Operating Characteristic; ROI, region of interest; SGD, Stochastic

gradient descent; TMB, tumor mutation burden; WSI, whole slide imaging;

XCA, exclusive component analysis feature.
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In pathology, the application of AI covers many aspects, such as

cytological screening, morphological quantification analysis, tissue

pathology diagnosis, and prognosis assessment (11, 12). M. Giulietti

et al. (13) compared the prediction performance of AI-based and

non-AI-based predictors, with the former performing slightly

better. A. Distante et al. (14) assessed the precision, efficiency,

and objectivity of histopathological analysis, suggesting that AI can

overcome intra and interobserver variability and time consumption.

One of the bottlenecks in the applicationofWSI integratedwithAI

is interpretability, also known as black box features (15). The features

automatically extracted by the initial AI model during training are

often high dimensional and abstract. Although these features are

effective in optimizing model performance, they lack biological

significance, making it difficult to explain the relationship between

these features and prediction tasks (15). In response to the growing

demand for interpretability in medical fields, researchers primarily

focus on improving the steps of feature extraction and prediction

models to enhance this aspect (16). For example, Zhang et al. (17)

proposed a Structural PriorsGuidedNetwork (SPG-Net) that not only

achieves high segmentation accuracy but also incorporates prior

structural knowledge, making the model ’s predictions

more interpretable.

The previous reviews summarized the applications of AI and

DP in the diagnosis and prediction of pathology and RCC (18, 19).

However, they did not focus on the extracted features. This study

aimed to address this gap by providing a comprehensive overview of

methods for enhancing the interpretability of AI and mitigating its

black box nature in future research. We focused on summarizing

and analyzing the existing literature related to feature extraction

techniques in AI for RCC, offering insights into how these methods

can improve model interpretability.
Materials and methods

A literature search was performed on the PubMed and the Web

of Science database platforms in January 2024. The search was

carried out using the following terms: “((renal cell carcinoma) AND

((artificial intelligence) OR (machine learning) OR (deep

learning))).” In addition, a manual search was performed to

identify additional potentially relevant articles.

English publications were included if published between 2017

and January 2024, due to advancements in AI, particularly DL and

CNNs, which began impacting DP and improving model accuracy.

Nonpeer reviewed articles, case reports, comments, and conference

summaries were excluded. A duplicate search was performed in

Endnote software (version 20), together with the manual screening

of titles and abstracts. Literature screening and evaluation were

conducted following the PRISMA2020 checklist (20).
Results and discussion

Figure 1 provided the flow diagram for the PRISMA strategy. In

all, 1032 records were excluded, and the 28 remaining full texts were

checked for suitability.
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The text mining software programs SATI (http://sationline.cn/)

and Voyant (https://voyanttools.org/) were used to read and

analyze full records and cited references. Of the 28 records in the

study, 2 were not in the Web of Science core collection, and 26

records were included in the text mining analysis. The results of the

analyses of the keywords, authors, institutions, and citations were

shown in Supplementary Materials 1–4.

Although the results based on text mining were only objective

index statistics, and did not involve the overall scientific evaluation

of the literature, they can help us to explore the rich information of

research in this field.
AI algorithms in RCC

The current AI approaches used for classification and

prediction include supervised, weakly supervised, self-supervised,

and unsupervised learning (21). Supervised learning involves fully

labeled data, which provides broader context and clearer

relationships within the data, potentially enhancing the model’s

ability to explain its predictions. However, its scalability is limited

by the time-consuming, labor-intensive, and error-prone labeling

process (21). In weakly supervised learning, image-level (WSI-level)

labels are commonly used, which offer coarse annotations for entire

images. These methods typically provide less detailed contextual

information compared to fully supervised methods, which use

pixel-level labels or bounding boxes (22). Unsupervised learning

methods depend solely on the intrinsic properties of the data, such
Frontiers in Oncology 03
as similarity, consistency, or relationships, to uncover underlying

structures or representations, often applied in medical image

analysis Meanwhile, self-supervised learning, which falls between

supervised and unsupervised approaches, leverages unlabeled data

by creating pretext tasks that help the model learn useful

representations without explicit labels (23). A summary of AI

algorithms in RCC is provided in Table 1.
Supervised learning

In supervised learning, one of the most widely used deep

learning (DL) architectures is the Convolutional Neural Network

(CNN), which consists of multiple layers of convolutional filters

that can automatically extract features from images (24). CNNs

have demonstrated superior performance in image segmentation,

detection, and generation tasks (24). However, these methods also

require either manual annotation of gigapixel WSIs or large datasets

of WSIs with slide level labels (25). The input to a CNN is a small

patch image obtained from segmenting the WSI, focusing on local

features, such as morphological changes or different growth

patterns of tumor cells, but often failing to pay attention to

contextual background features (25). For example, Chen et al.

(25) proposed Supervised Multimodal Fusion, an interpretable

strategy for end-to-end multimodal fusion of histology images

and genomic features. This approach not only utilizes CNNs but

also incorporates other methods, such as: 1) graph CNNs for

learning cell graph features, 2) Graph Convolutional Networks
FIGURE 1

Flow chart of studies included via databases according to the PRISMA strategy.
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(GCNs) for survival outcome prediction from histology, and 3) the

Kronecker product of gated feature representations along with a

gating-based attention mechanism.
Weakly supervised learning

In weakly supervised learning, the researchers implemented

Graph Neural Network (GNN) to extract these features using

attention and integrated gradients (IG) for model interpretation

to fully exploit the contextual features of WSI (26). However, these

methods overlook the spatial interactions of local pathological

features and lack interpretability for contextual features in WSI

(26). To address these limitations, Lee et al. (27) proposed a semi-

supervised tumor environment related context learning using graph

deep learning (TEA graph), which is a GNN based method that

represents WSI through super patches and can analyze the context

of spatial interactions of histopathological features. Additionally, in

study (22), a weakly supervised clustering-constrained attention-

based multiple instance learning (CLAM) method was introduced.

CLAM utilizes attention-based learning to identify subregions of

high diagnostic value while applying instance-level clustering to

refine and constrain the feature space, eliminating the need for

pixel-level annotations, ROI extraction, or sampling.
Frontiers in Oncology 04
Unsupervised learning

Several approaches have been proposed in both unsupervised

and self-supervised learning. For instance, in study (23), an

unsupervised pretrained CNN was used as a feature extractor for

histopathology, generating all groupings through unsupervised

learning techniques such as dimensionality reduction and clustering.

In study (28), a self-supervised image search method for histology

pipelines was introduced, utilizing a Vector Quantized Variational

Autoencoder (VQVAE) trained on a large dataset to improve feature

extraction. Additionally, in study (29), a self-supervised deep learning

method, known as Resolution-Based Distillation, was proposed. This

technique distills the learned representation knowledge from a teacher

model into a student model trained at a lower resolution, while

minimizing the impact on classification performance.

Both weakly supervised and unsupervised methods face greater

challenges in interpretability compared to supervised algorithms

that use more comprehensive annotations (21). These challenges

include obtaining reliable and robust weak labels, addressing

ambiguities and uncertainties in the data, and evaluating and

interpreting results (21). Nonetheless, there is growing interest in

developing weakly supervised and unsupervised learning methods

for medical image analysis, as they can leverage rich unlabeled or

partially labeled data, thereby reducing the annotation burden.
TABLE 1 AI methods in RCC.

Ref Aims and Tasks Key AI Technologies Features and Interpretability

Lu et al. (22) Classify RCC subtypes Weakly supervised CLAM heatmaps of identifying morphological features

Faust et al. (23) Analyze the clinical and
biologic relevance of the intra
and interpatient subgroups

Unsupervised 512dimensional deep learning feature vectors
Feature activation map (FAM)

Chen et al. (25) Predict prognosis Supervised Nuclei segmentation: nuclear atypia, abundant tumor cellularity, and
other features.
Both CAMs and gradient based attribution techniques

Lee et al. (27) Predict prognosis Semi-supervised Pathological context features and interpretability through the attention
score: 1) local features: small clear tumor cells, pleomorphic tumor cells
or tumor cells with rhabdoid differentiation, tumor cells with clear to
eosinophilic cytoplasm, glomeruli or glomeruli tubules; 2) surrounding
local features: cystic changes and stromal hyalinization, solid alveolar or
papillary growth and stromal hemorrhage, necrosis and
lymphocytic infiltration

Chen et al. (28) To search and retrieve WSIs
with similar morphological
features from large repositories

Self-supervised The patches contain meaningful ROIs, and they can be visualized to
provide model interpretability

DiPalma et al. (29) Classify RCC Self-supervised Gradient weighted Class Activation Mapping (Grad CAM) visualizations

Chen et al. (30) To improve patient
risk stratification

Supervised Morphological features, including nuclear size, nuclear morphology,
mitoses, and cell concentration; molecular features.
Interpretability: attention and gradient based interpretability; a custom
visualization tool that overlays attention weights

Schulz et al. (32) Predict prognosis Supervised Histopathologic features (tumor vasculature, hemorrhage, and necrosis);
cell nuclear division, nucleoli, nuclear morphology, nuclear size,
perinuclear area.
A sliding window approach to visualize unimodal classification
WSIs; CAMs
frontiersin.org
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Model fusion techniques

Model fusion techniques are commonly used to deal with

multimodal data, including pathomics, radiomics, genomics, and

proteomics data and other clinical medical record data, as these

diverse data sources provide complementary information that can

enhance performance in prediction tasks (30). Model fusion can be

performed at different stages of an algorithm pipeline, in early

fusion, late fusion, or hybrid fusion (21, 31). Model fusion can be

achieved through ensemble learning, or multimodal deep learning

methods, which use neural networks to identify joint

representations from different data modalities (28). For example,

in study (30), a supervised multimodal fusion DL model was

designed to integrate whole-slide images and molecular profile

data using a weakly supervised multimodal deep learning

algorithm. Schulz et al. (32) developed a supervised multimodal

model that can integrate multiple medical images (WSI, CT, MRI)

and genomic data and fuses the multi-source output information

through the attention layer. Chen et al. (28) proposed an image

search method based on self-supervised learning to optimize the

histological analysis process. They enhanced the interpretability of

the model by visualizing the ROIs, providing an intuitive tool for

pathologists to evaluate the basis of model decision-making.
Application of AI in RCC

The application of AI in RCC has enhanced classification,

grading, molecular prediction, and prognosis prediction, as shown

in Figure 2. In the following sections, we summarized and

elaborated on these applications in Table 2.
AI for classification

Supervised CNN architectures and techniques are commonly

employed for the classification of RCC (33–36). The working

pipeline begins with pathologists manually annotating regions of

interest (ROIs) on the pixel level in WSIs. These ROIs are then

segmented into reasonably sized patches for classification at the

patch level. During this process, data augmentation techniques are

applied to preprocess the WSIs and address the issue of small

datasets (33, 35).

For example, in study (35), the model not only achieves whole-

slide classification but also visualizes key indicative regions and

features on the slides, thereby enhancing its explainability. To

further improve interpretability, the Gradient-weighted Class

Activation Mapping (Grad-CAM) method is utilized with (AUC)

values of 0.97 (95% CI: 0.96–0.98) for external set. E. Marostica et al.

(37) integrated VGG16, Inceptionv3, and ResNet50 with

multiomics and clinical data, and extracted features like cell

morphology to diagnose the RCC subtypes, predict patients’

survival outcomes, Malignant cells are divided into ROI to

identify malignant cells and complete the above tasks. However,

the specific features extracted were not explicitly mentioned in the
Frontiers in Oncology 05
subsequent task of linking histopathological images with genomic

data to reveal molecular morphology. Y. Yasukochi, et al. (38)

employed a deep convolutional neural network (DCNN) trained via

transfer learning on WSIs to predict the eosinophilic phenotype of

RCC in a high AI score group. They extracted features related to

clear and eosinophilic phenotypes and angiogenesis gene signatures.

The independent validation set achieved an AUC of 0.929 for

predicting clear or mixed/eosinophilic phenotypes, though

external validation results were not provided. Chen et al. (39)

extracted a total of 346 useful quantitative image features,

including shapes, sizes, textures, pixel intensity distributions, and

proximity relations in WSI for diagnosis of ccRCC patients. The

AUC value of the model was 0.970 in the test cohort, and 0.814 in

the external validation cohort.
AI for grading of ccRCC

The classic WHO/ISUP grading system for ccRCC relies on the

morphological characteristics of the nucleus, in particular on

the presence of nucleoli at different magnifications (3). Key steps

in the structured pipeline of automated grading systems based on

ML technology include identification of ROIs, segmentation of

nuclei, numerical descriptors pertaining to nuclei features, feature

selection, and classification (40–42). Most studies utilize fivefold or

tenfold cross validation techniques and image enhancement

strategies to reduce the impact of small datasets (42).

For instance (Table 2), studies (40–42), have extracted cellular

features such as cellular information included texture,

morphometry, color, intensity, histogram descriptions and

pleomorphic features. When building an automated classification

system, selecting and improving classifiers is a crucial step, and

some studies have proposed improved classifiers based on

traditional SVM, RF, such as ensemble learners (40). In studies

(33, 43, 44), classic architectures of DL, such as ResNet, Inception,

and DL algorithms improved based on classic architectures are also

used for the grading task. Chanchal et al. (43) proposed a novel

shared channel residual (SCR) block to share the information

between different layers and strengthens the local semantic

features. Satisfactory accuracy and F1 scores were obtained by

pathologists marking the tumor region ROI and extracting

nuclear morphology visualization, nucleolar protrusion and

nuclear membrane irregularities.
AI for molecular prediction

Molecular driven categorizations of RCC, such as TFE3/TFEB

rearranged RCC, and ALK rearranged RCC, have been added into

the Fifth WHO, due to the importance of molecular profiling in

RCC tumorigenesis, prevalence rates, diagnosis and prognosis (2).

However, traditional morphological diagnosis based on

microscopic pathological sections often falls short in accurately

identifying tumor molecular heterogeneity. Additionally, gene

expression analysis is not readily implemented in routine clinical
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FIGURE 2

Application of AI in RCC.
TABLE 2 AI for histology classification of RCC subtypes.

Ref Aims and Tasks Key AI Technologies Features
and Interpretability

Evaluation on
Validation set

AI for classification of RCC

Fenstermaker et al. (33) Classify ccRCC, pRCC, chRCC CNN ROIs; no features mentioned Accuracy 0.979

Abdeltawab et al. (34) Classify fat, renal parenchyma,
clear cell RCC, and clear cell
papillary RCC

Pyramidal model: three CNNs; ROIs; no features mentioned Accuracy 0.957

Zhu et al. (35) Classify ccRCC, pRCC, chRCC,
renal oncocytoma, and
normal tissue

CNNs: ResNet 18 ROIs; no features
mentioned; GradCAM

AUC 0.98
Mean F1score 0.92

Tabibu et al. (36) Classify ccRCC, pRCC, chRCC
and normal tissue

Pretrained Resnet 18 and
Resnet 34, DAGSVM
(data imbalance)

Tumor morphology features, cell
nucleus features, and other
relevant characteristics from the
histopathology images (to predict
the survival outcome)

Accuracy 0.941

(Continued)
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TABLE 2 Continued

Ref Aims and Tasks Key AI Technologies Features
and Interpretability

Evaluation on
Validation set

AI for classification of RCC

Marostica et al. (37) Classify the benign regions,
chRCC, ccRCC, and pRCC

Transfer learning on VGG16,
Inceptionv3, and ResNet50

Histopathology image regions
containing malignant cells
(identifying image patches with
malignant cells)

AUC of the best model 0.953

Ohe et al. (38) Classify clear and
eosinophilic phenotypes

Transfer learning on DCNN Cytoplasm; WHO/ISUP grade,
vascularity based architectural
category, tumor related necrosis,
three tier morphologic
immunophenotypes: desert,
noninflamed; excluded,
peritumoral immune infiltration;
and inflamed, intratumoral
immune infiltration

AUC 0.929

Chen et al. (39) Classify ccRCC and normal
renal tissues

LASSO The shapes, sizes, textures, pixel
intensity distributions and
proximity relations of the primary
and secondary objects

AUC 0.970

AI for grading of ccRCC

Fenstermaker et al. (33) Fuhrman grading CNN ROIs; no features mentioned Accuracy 0.984

Kruk et al. (40) Fuhrman grading ML; SVM classifiers:an
ensemble of classifiers; feature
selection method: FM; GA; RF;
CFS; FCBF

Numerical descriptors of nuclei:
texture, morphometry, color and
histogram descriptions

Accuracy 0.904

Tian et al. (41) Classify ccRCC into either low
or high grade

ML; classification: Ensemble;
Lasso regression; Elastic net;
Ridge; Linear SVM; RF

72 nuclei 2D histological features:
nine morphological features, 15
intensity-based features, and 48
texture-based features

Extended test set AUCROC 0.96
Accuracy 0.89

Holdbrook et al. (42) Grading: low grade (Fuhrman
grade 1 and 2) or high grade
(Fuhrman grade 3 and 4)

ML; Patch Classification:
SVMs, logistic regression and
AdaBoost; Image
Classification: SVM

The location of prominent
nucleoli: 1) histogram of polar
gradient, 2) enhanced histogram
of polar gradient 3) exclusive
component analysis feature and 4)
raw pixel intensity values

FV score: correlation with an
existing multigene assay–based
scoring system:(R = 0.59)

Chanchal et al. (43) Grading RCCGNet: a CNN block called
shared channel residual block

Visualization of nuclear
morphology, nucleolar
prominence, and nuclear
membrane
irregularities; GradCAM

F1score 0.8906
Accuracy 0.9014

Khoshdeli et al. (44) Classified six categories:
normal, fat, blood, stroma, low
grade granular tumor, and high
grade clear

CNN: a shallow and a deep
model (GoogLeNet)

Not explicitly mentioned F1score
GoogLeNet 0.99
Shallow CNN 0.92

AI for molecular prediction of RCC

Marostica et al. (37) Predict genomic aberrations:
KRAS CAN, WT1, EGFR,
VHL, et al.

Multimodal DCNN to integrate
WSIs, multiomics, and
clinical data

Histopathology image regions
containing malignant cells;
cell morphology

AUPR greater than 0.7

Chen et al. (46) Classify the EMT subtypes
(Mes and Epi: related genes by
hierarchical clustering)

Transfer learning on Inception
v3;
SGD optimization

Epi subtype: a looser arrangement,
big cell gap, nucleoli absent or
inconspicuous, pink granular
eosinophilic cytoplasm
Mes subtype: densely packed,
surrounded by arborizing
vasculature, the large
multinucleate cells with empty
cytoplasm, abundant immune

AUC 0.84, accuracy 0.749,
specificity 0.722, sensitivity0.753

(Continued)
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practice due to cost and technical challenges (45). In response, AI

technology utilizes DL algorithms to explore the correlation

between morphological features and molecular characteristics

extracted from tumor tissue images, consistently inferring

molecular tumor subtypes from conventional histology.

For example (Table 2), Q. Chen et al. (46) developed an EMT

gene signature that was used to classify ccRCC into epithelial and

mesenchymal subtypes through DCNN, but the sample size used in

that study was relatively small, and the neural network was trained

on a single data set. Acosta et al. (47) developed a DL model to
Frontiers in Oncology 08
identify mutations in BAP1, PBRM1, and SETD2, achieving

commendable performance. Cheng et al. (48) designed differential

image features that are closely related to the size and roundness of

the nucleus. Through in-depth study and analysis of these features,

a variety of ML models have shown good diagnostic performance in

distinguishing TFE3 Xp11.2 translocation-associated RCC from

other types of RCC.

The use of AI technology to analyze pathological sections,

extract features, and predict molecular subtypes offers

pathologists a new perspective (47). However, this field is still in
TABLE 2 Continued

Ref Aims and Tasks Key AI Technologies Features
and Interpretability

Evaluation on
Validation set

AI for molecular prediction of RCC

infiltration
CAM for visualization

Acosta et al. (47) BAP1, PBRM1, and SETD2
in ccRCC

DL, VGG19 Nuclear Feature: 36 features
quantifying aspects of nuclear
size, shape, color, and texture;
area of nuclear channel intensity;
Haralick feature etc.

BAP1 AUC 0.77-0.84

Cheng et al. (48) TFE3 Xp11.2 translocation
in RCC

ML models (logistic regression,
SVM with linear kernel, SVM
with Gaussian kernel, and RF)

Nucleus and image level feature:
52 differential image features
(related to the size and roundness
of nuclei)

AUC 0.886

AI for prognosis prediction of RCC

Tabibu et al. (36) Predict survival outcome
of ccRCC

ML: LassoCox model Tumor regions detected by the
CNN: 13 tumor shape features
and 6 nuclei shape features

Association between combined
image features and survival
outcome (P < 0.01)

Marostica et al. (37) Predict OS CNNs coupled with multitask
logistic regression

GradCAM visualization Distinguish longer term survivors
from shorter term survivors
(logrank test P = 0.02)

Wessels et al. (50) Predict 5yOS in ccRCC Multivariable logistic
regression; univariable Cox
regression; CNNs

Features in the CNN prediction
model: the morphology of the
nucleus and nucleolus,
accompanied by
inflammatory reactions

In univariable Cox regression, the
CNN prediction model showed a
hazard ratio of 3.69 (95%CI: 2.60–
5.23, P < 0.01)

Gui et al. (51) Predict ccRCC recurrence DL based WSIs analysis Manually annotate the tissue
regions and map the tumor area
on WSIs

AUC at 3, 5, and 7 years of OS
prediction: 0·787; 0·780; 0·823

Cheng et al. (52) Predict prognosis ML: a lasso regularized Cox
proportional hazards model

150 patient level features; ten
types of cell level features:
characterizing nucleus size, shape,
texture, and distance to neighbors;
lengths of the major and minor
axes of cell nucleus and the ratio
of major axis length to minor axis
length, mean pixel values

Lasso Cox risk index was an
independent prognostic factor (P
= 2.31e-4, hazard ratio = 2.26); the
survival curves stratified by the
lasso Cox risk index (logrank test
P = 0.014)

Cheng et al. (53) Predict the prognosis of pRCC ML: lasso regularized
Cox regression

Topological features in renal
tumor microenvironment;
morphological and
intensity features

AUC of 0.78

Chen et al. (54) Predict DFS ML-based pathomics
signature (MLPS)

Nucleus parameters and intensity
parameters such as Nucleus
Circularity, Nucleus Min caliper,
Nucleus Hematoxylin OD mean,
Nucleus Hematoxylin OD min
and Cell Eosin OD

The AUC at 1, 3, 5, and 10 years
of DFS prediction: 0.895, 0.90,
0.885 and 0.859
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its early stages, and more data and in-depth studies are needed to

validate the accuracy and reliability of AI’s association with RCC

molecular characteristics.
AI for prognosis prediction

Accurate prognostic predictions are crucial for clinical decision-

making and evaluating therapeutic effects in patients with renal cell

carcinoma (RCC), leading researchers to focus on developing

clinical risk models (49). In prognostic prediction tasks,

regression models in machine learning, such as Cox regression,

Lasso-regularized Cox regression, and logistic regression (which is

also employed for classification tasks), are commonly utilized (36).

The typical workflow involves first extracting relevant features from

WSIs, followed by using machine learning classifiers for risk scoring

and classification (sometimes for feature transformation or further

analysis rather than direct classification). Finally, survival outcomes

are predicted using regression models (36, 50).

For example, F. Wessels et al. (50) established a univariate

logistic regression model based on CNN prediction model and a

multivariate logistic regression model combining CNNs prediction

and clinicopathological parameters (we only showed univariate

logistic regression results in Table 2). The results in the validation

group showed that the AUROC of both models was 0.88. Gui et al.

(51) combined the WSI score with a score based on six single

nucleotide polymorphisms (SNPs) and the Leibovich score based

on clinical pathological risk factors, to construct a multimodal

recurrence scoring system. They found that the multimodal

recurrence scoring system had higher predictive accuracy than

single modality scores and clinical pathological risk factors, and

could more accurately predict the recurrence free interval (RFI) for

localized renal cell carcinoma patients. Cheng et al. (52) extracted

nucleus features and topological features in the renal tumor

microenvironment and eigengenes from functional genomics data

to predict ccRCC prognosis. This team conducted another study

(53) to predict patient prognosis in pRCC by extracting topological

features included the histogram of cooccurrence of nucleus patterns

and bag of edge histogram (BOEH) features spatial arrangement of

different cell patterns in the tumor microenvironment. The author

mentioned that the prediction effect of the integrated model is

better than that of the model considering a single factor (52) and the

proposed topological features were superior to traditional clinical

features and cell morphology and intensity features in predicting

patient outcomes (53). The group led by Shanghai Jiao Tong

University School of Medicine (54) used QuPath digital pathology

software (55) (a commonly used digital pathological analysis

software) to carry out cell and nuclear segmentation and detected

pathological signatures as machine learning based pathomics

signature (MLPS) to predict the clinical outcomes of ccRCC

patients. There are a total of 43 different pathological features,

mainly nuclear and intensity parameters, used in the MLPS

classification system, and satisfactory survival prediction based on

MLPS classification has been obtained.
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Conclusions and future prospects

This article summarized relevant literatures on the application of

AI and DP in RCC and outlined the methods currently employed to

enhance interpretability, which is especially critical in themedicalfield.

Visualization techniques are often used to visually highlight

meaningful features and regions recognizable by pathologists to

increase interpretability (23, 43). Features extracted based on WSI

include but are not limited to color, texture, shape features, topology,

etc. Tumor cell morphological (36, 37), and tumormicroenvironment

features (25, 27, 39) are common in RCC researches. The prediction

tasks based on the above extracted features can achieve satisfactory

results, while studies that do not provide extracted features often need

to increase credibility by improving the interpretability of the

algorithm (33, 36).

Although great progress has been made in the application of AI

technology to the medical field, many challenges remain. A conflict is

seen between the limitations of computing resources, the extent of

original researchmaterials, and the requirements for computingpower

and size of the data set for the use of robust AImodels (56). Therefore,

improving computing power and upgrading scanning equipment are

issues that computer engineering should continue to address.

Although the use of large databases has made up somewhat for the

problemof insufficient data set in a single research center, the following

issues still exist. 1. Extracting meaningful information from huge

databases is still an arduous task. 2. The curse of dimensionality for

high-throughput sequencing data leads to serious overfitting

problems. 3. The quality of these data cannot be fully guaranteed,

and the lack of multicenter external validation affects research

reliability. The application of AI to the medical field also involves

ethical issues, the optimizing of workflow, acceptance by pathologists,

providing real assistance clinically, and delineating responsibilities for

the resolution of clinical problems that need to be addressed.

Targeted therapy, chemotherapy, and immunotherapy are

important adjuvants to surgical intervention in RCC (57). Therefore,

the diagnosis and prognosis prediction of RCC based on clinical data,

imaging data, pathological characteristics, and genes information are

worth studying further. However, based on the findings of this review,

researches on RCC primarily focus on three major histological

subtypes, effectively identifying molecular aberrations and accurately

predicting prognosis remain key challenges for future studies. Given

the rarity of cases with specific molecular subtypes, the necessity for

multicenter and collaborative studies is particularly pronounced.

Furthermore, the integration of multimodal data from pathology,

radiomics, genomics, and proteomics (58), along with the

application of advanced AI technologies such as Large Language

Models (59) is expected to make significant contributions to this field.

Our study has some limitations. The number of collected

literature is limited, and only English articles and reviews on Web

of Science and PubMed database are included, without articles of

other languages or types. Our follow up plan is to develop

systematic research to find more scientific and unified valuable

feature extraction methods to break through the bottleneck

of interpretability.
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