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Introduction: Accurate differentiation of benign and malignant pulmonary

nodules in ultrasound remains a clinical challenge due to insufficient

diagnostic precision. We propose the Deep Cross-Entropy Fusion (DCEF)

model to enhance classification accuracy.

Methods: A retrospective dataset of 135 patients (27 benign, 68 malignant

training; 11 benign, 29 malignant testing) was analyzed. Manually annotated

ultrasound ROIs were preprocessed and input into DCEF, which integrates

ResNet, DenseNet, VGG, and InceptionV3 via entropy-based fusion.

Performance was evaluated using AUC, accuracy, sensitivity, specificity,

precision, and F1-score.

Results: DCEF achieved an AUC of 0.873 (training) and 0.792 (testing),

outperforming traditional methods. Test metrics included 71.5% accuracy,

70.69% sensitivity, 70.58% specificity, 72.55% precision, and 71.13% F1-score,

demonstrating robust diagnostic capability.

Discussion: DCEF’s multi-architecture fusion enhances diagnostic reliability for

ultrasound-based nodule assessment. While promising, validation in larger multi-

center cohorts is needed to address single-center data limitations. Future work

will explore next-generation architectures and multi-modal integration.
KEYWORDS
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1 Introduction

Lung cancer, one of the most lethal forms of cancer worldwide,

presenting a daunting challenge to public health systems across the

globe (1). This disease’s insidious nature often allows it to progress

undetected until it has reached an advanced stage, largely due to its

tendency to develop without obvious or early symptoms. This silent

progression makes early diagnosis crucial for improving patient

outcomes, as detecting lung cancer in its early stages can vastly

increase the chances of successful treatment.

Early lung cancer detection frequently involves identifying

pulmonary nodules, small, rounded growths in the lungs. These

nodules can be detected through imaging techniques and often

serve as the first visible signs of potential lung cancer. However, it’s

important to note that not all pulmonary nodules are cancerous;

many are benign and pose no immediate health risk (2). Accurately

distinguishing between benign and malignant nodules is crucial for

timely clinical decisions and patient outcomes (3). Traditional

imaging techniques often struggle to differentiate between these

two types due to their overlapping characteristics.

Various imaging techniques have been employed for the detection

and characterization of pulmonary nodules. In particular, computed

tomography (CT) scans have revolutionized lung cancer screening

programs due to their high sensitivity and specificity (4). CT scans can

detect even small nodules that may be invisible on conventional chest

X-rays. However, despite the advantages of CT scans in lung cancer

screening, there are notable limitations. One significant drawback is the

exposure to ionizing radiation, which carries potential health risks,

especially for patients who require frequent monitoring or follow-up

scans. Additionally, CT scans are expensive and may not be readily

available in all healthcare settings, particularly in regions with limited

medical infrastructure (5). These factors highlight the need for

alternative imaging methods that can complement or, in some cases,

replace CT scans in certain contexts.

Ultrasound imaging, on the other hand, offers several advantages

over CT scans. It is non-invasive, does not involve ionizing radiation,

and is relatively inexpensive. Ultrasound imaging provides real-time

visualization of the lungs and surrounding structures, making it a

valuable tool for image-guided interventions, such as percutaneous

biopsies. Prior studies have demonstrated that ultrasound-guided

biopsies are particularly effective for nodules larger than 3 cm,

enhancing procedural accuracy and safety (6, 7). Research by

Sabirovna and Raykhona (6) has shown that ultrasound is a reliable

technique for guiding interventions in medium-to-large nodules,

particularly in cases where CT imaging is not feasible due to

accessibility or radiation concerns. Additionally, Brown et al. (7)

emphasize that ultrasound-guided procedures are most beneficial for

nodules exceeding 3 cm, as real-time imaging improves biopsy precision

and reduces procedural risks. These findings reinforce the clinical utility

of ultrasound in nodule evaluation and interventional guidance.

In recent years, advancements in artificial intelligence (AI) and

deep learning have begun to revolutionize medical imaging (8). The

integration of computer-aided detection (CAD) systems with imaging

technologies like ultrasound has opened new avenues for improving

the accuracy of nodule classification (9). Deep learning techniques,
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such as convolutional neural networks (CNNs), have shown great

promise in processing complex image data and identifying subtle

patterns that may be missed by human eyes. These technologies

enable the extraction of advanced features from ultrasound images,

allowing for the construction of deep models that can automatically

analyze and classify pulmonary nodules with a high degree of accuracy.

However, despite these advancements in deep CNNs for

pulmonary nodule classification, several limitations persist. One of

the primary challenges faced by these models is the diminishing

accuracy as network depth increases, often due to issues like the

vanishing gradient problem (10). This leads to difficulty in effectively

training very deep networks, which in turn hinders their ability to

generalize well to new data (11). Furthermore, various architectures,

such as AlexNet (12), VGGNet (13), ResNet (14), and DenseNet (15),

differ significantly in key aspects like network depth, filter size, and

activation functions (16). These architectural variations directly

influence each model’s capacity to capture the complex patterns, and

intricate relationships present in medical images (17). While shallow

networks may struggle with more detailed feature extraction (13),

deeper architectures, though capable of capturing finer details, often

require careful design to avoid overfitting and performance

degradation (11). These limitations highlight the need for a novel

deep learning approach tailored to the unique characteristics of

pulmonary nodule ultrasound images, enabling the capture of

intricate features and addressing challenges like diminishing

accuracy, overfitting, and the vanishing gradient problem.

Therefore, to address these limitations, this study proposes a

novel deep learning model (DCEF) incorporating deep cross-

entropy fusion function. By leveraging the strengths of multiple

deep neural networks, our proposed model aims to to overcome the

limitations of existing approaches and enhance the classification

accuracy of pulmonary nodules in grayscale ultrasound images.
2 Materials and methods

2.1 Patients

A retrospective collection was conducted on 135 patients who

underwent percutaneous pulmonary nodule biopsy under

ultrasound guidance in Affiliated People’s Hospital of Jiangsu

University from August 2021 to September 2023. Among them,

there were 38 cases of benign nodules and 97 cases of malignant

nodules, with an age range of 44 to 92 years and an average age of

69.87 ± 9.25 years. Inclusion criteria: 1) Routine ultrasound

examination was performed before surgery in our hospital; 2) The

nature of the nodules was confirmed by pathological examination

after pulmonary needle biopsy; 3) The ultrasound images collected

met the criteria for clarity. Exclusion criteria: 1) Incomplete or

unclear image data; 2) Unclear pathological results; 3) Presence of

other tumors. We collected comprehensive clinical, imaging, and

pathological data from patients, including age, gender, lesion

diameter, lesion location, pathological type, and presence of

distant metastasis (4). The pulmonary nodules in this study

ranged from approximately 1 cm to over 7 cm, with malignant
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nodules averaging 5.04 ± 2.42 cm and benign nodules averaging

3.33 ± 2.19 cm, as detailed in Table 1. Given that ultrasound is

particularly effective for evaluating medium-to-large nodules, our

dataset aligns with previous findings regarding its clinical utility in

guided interventions. This study received approval from the Ethics

Committee of Affiliated People’s Hospital of Jiangsu University,

and all patients provided informed consent.
2.2 Image annotation

In this study, we implemented a meticulously structured

annotation process to ensure precise delineation and standardization

of Regions of Interest (ROIs) within ultrasound images. All images

were initially stored in JPG format and subsequently converted to Nii

format using dedicated medical imaging software to maintain

consistency across all cases. The ITK-SNAP software was utilized for

precise manual segmentation, allowing us to delineate the ROIs along

the lesion boundaries, ensuring the focus remained on diagnostically

significant regions, as illustrated in Figure 1.
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A total of 203 ROIs were carefully annotated across 135 patient

cases, ensuring that the dataset captured the full spectrum of lesion

morphology and variability. These included 57 ROIs from benign

nodules and 146 ROIs from malignant nodules, providing a

well-balanced representation of the key diagnostic categories.

Importantly, the size distribution of the annotated ROIs varied

between the two groups, reflecting the natural heterogeneity observed

in clinical practice. The average ROI size for benign nodules was 22.4

pixels (range: 15–30 pixels), while malignant nodules had an average

ROI size of 23.8 pixels (range: 18–35 pixels). These distinctions align

with established pathological characteristics, where malignant nodules

often exhibit irregular morphology and slightly larger segmentation

areas. To uphold the highest level of accuracy, all ROI annotations were

independently reviewed by two senior radiologists with extensive

experience in thoracic imaging, and any discrepancies were resolved

through expert consensus discussions.

To further contextualize our dataset, the study included 135

patients, comprising 94 males and 41 females, with malignant

nodules found to be significantly more prevalent among older

individuals (P < 0.001). Other demographic factors, including

gender, lesion diameter, and lesion location, did not exhibit

statistically significant differences (P > 0.05).

Histopathological evaluation of ultrasound-guided percutaneous

pulmonary nodule biopsy confirmed that 97 cases (71.9%) were

malignant, encompassing a diverse range of histological subtypes,

including adenocarcinoma, squamous cell carcinoma, lung metastasis,

small cell carcinoma, sarcomatoid carcinoma, marginal zone B-cell

lymphoma, neuroendocrine carcinoma, solitary fibrous tumor, and

fibrosarcoma. The remaining 38 cases (28.1%) were benign, diagnosed

as chronic pneumonia, granulomatous inflammation, tuberculosis,

fibrous tissue hyperplasia, and alveolar epithelial hyperplasia.

Additionally, within the 97 malignant cases, 51 patients exhibited

distant metastases, while 46 patients did not, further substantiating the

clinical heterogeneity of the dataset. Detailed patient characteristics and

nodule distributions are systematically provided in Table 1.
2.3 Experimental parameter settings

The hardware configuration for this experiment was as follows:

CPU: Intel® Core™ i7-10700 CPU @ 2.90GHz, RAM: 64G, GPU:

NVIDIA GeForce RTX 3080Ti, Operating System: 64-bit Win10. The

experiment used the cosine annealing method with adaptive learning

rate, with a maximum learning rate of T_max set to 100. During

training, the cross-entropy loss function was used for optimization, and

the stochastic gradient descent (SGD) optimizer was used with a learning

rate of 0.1, momentum parameter of 0.9, weight decay set to 5e-4, batch

sample size set to 128, and each training lasted for 100 rounds.
2.4 Data preprocessing

To ensure consistency and accuracy in model evaluation, the

dataset was divided into training (50%), validation (20%), and test

(30%) sets, with 27 benign and 68 malignant nodules in the training

and validation sets and 11 benign and 29 malignant nodules in the
TABLE 1 Survey of clinical and pathological characteristics.

Variable Malignant
nodules

Benign
nodules

P

Age 71.69±8.42 65.21±9.60 <0.001

Gender 0.544

Male 69 25

Female 28 13

Lesion diameter (cm) 5.04±2.42 3.33±2.19 0.227

Lesion location 0.039

Right upper lobe 16 13

Right middle lobe 7 1

Right lower lobe 21 9

Left upper lobe 26 12

Left lower lobe 27 3

Pathological type 0.799

Peripheral 88 35

Central 9 3

Pathological pattern

Adenocarcinoma 49

Squamous
cell carcinoma

27

Other 21

Presence of
Distant Metastasis

Yes 51

No 46
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test set. Several key preprocessing steps were implemented to

enhance data uniformity and improve model performance.

Initially, all ultrasound images were converted into a

standardized format, ensuring compatibility across different deep

learning architectures. Pixel values were normalized to bring them

within a suitable range for training, and cropping and resampling

were applied to extract the lung region while maintaining a

consistent resolution. These steps were essential to prevent biases

due to image size variations and to ensure optimal feature

extraction by the model.

Given the significant class imbalance between benign and

malignant nodules, several techniques were implemented to

enhance model robustness. Data augmentation was performed on

the minority class (benign nodules) using rotation, flipping, and

translation to artificially increase its diversity. Additionally, the

Synthetic Minority Over-sampling Technique (SMOTE) was

applied to generate synthetic benign samples, helping balance

the dataset while preserving meaningful feature distributions. To

further refine class distribution, selective undersampling was

performed on the malignant class to retain the most diagnostically

relevant cases while preventing over-representation.

To compensate for class imbalance during training, class weight

adjustments were applied to the loss function, with higher weights
Frontiers in Oncology 04
assigned to benign nodules (2:1 ratio) to prevent bias toward the

majority class. These strategies collectively enhanced the model’s

ability to generalize effectively, improving classification

performance across both benign and malignant cases.

Following preprocessing, segmentation and annotation were

performed using ITK-SNAP software, ensuring precise delineation

of lesion boundaries. A total of 203 regions of interest (ROIs) were

manually annotated, with 57 ROIs from benign nodules and 146

from malignant nodules. All annotations were independently

verified by two expert radiologists, with discrepancies resolved

through consensus discussions to maintain annotation accuracy.

These preprocessing steps ensured that the DCEF model was

trained on a balanced, high-quality dataset, allowing for robust and

reliable classification of pulmonary nodules. By optimizing input

representation, class balance, and training stability, this preprocessing

pipeline effectively supports the model’s diagnostic performance.
2.5 DCEF model architecture

The Deep Cross Entropy Fusion (DCEF) model is designed to

integrate multiple deep learning architectures, leveraging the

strengths of CNN-based feature extraction and Transformer-based
FIGURE 1

Ultrasound-Guided Puncture of Pulmonary Nodules (a) A 67-year-old male patient with left upper peripheral lung adenocarcinoma. (b) A 67-year-
old male patient with left lower lung central squamous cell carcinoma. The red areas indicate the regions of interest (ROIs) for the punctures. (c)
Gray-scale ultrasound images of the ROIs for both patients.
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attention mechanisms to enhance pulmonary nodule classification.

As illustrated in Figure 2, the model follows a multi-stream feature

extraction approach, where preprocessed ultrasound images are

encoded into matrix form and processed independently by different

sub-networks. The grids in Figure 2 represent these encoded

ultrasound matrices, allowing the model to systematically analyze

spatial and intensity variations in ultrasound images. This structured

transformation ensures compatibility across different architectures,

optimizing feature extraction and classification performance.

The DCEF model incorporates five sub-networks, each

contributing distinct feature extraction capabilities. The CNN-based

architectures (ResNet-50, DenseNet-121, VGG-16, and InceptionV3)

focus on hierarchical feature learning, capturing spatial patterns and

texture variations. Meanwhile, the Vision Transformer (ViT) processes

images using self-attention mechanisms, capturing long-range

dependencies and global context in ultrasound images. Each sub-

network extracts meaningful features independently, before their

outputs are integrated through a fusion mechanism. These features

are processed through softmax layers, and the model employs a fusion

loss function to optimize classification by dynamically weighting each

network’s contribution. This ensures that high-performing networks

have a stronger influence, improving classification robustness

and generalization.

For training and optimization, the model is trained using

stochastic gradient descent (SGD) with an initial learning rate of
Frontiers in Oncology 05
0.1, momentum of 0.9, and weight decay of 5e-4. A cosine annealing

learning rate schedule is applied over 100 epochs, ensuring efficient

convergence while preventing overfitting. The combination of

CNN-based local feature extraction and Transformer-based global

feature modeling allows the DCEF model to effectively differentiate

between benign and malignant nodules, leading to superior

classification accuracy compared to single-network models.
2.6 Experimental methods

The proposed DCEF Model integrates multiple deep learning

architectures to enhance feature extraction and classification

performance. The cross-entropy loss function is employed to

train individual sub-networks and optimize the final fused

model by minimizing the discrepancy between predicted and true

distributions. Cross-entropy loss is widely used in neural networks

for classification tasks, as it effectively guides model training by

adjusting network parameters through backpropagation and

gradient descent. The standard cross-entropy loss function is

defined as:

LCE = −on
i=1yilog

ex
T
i wj

oC
j0=1e

xTi wj0
(1)
FIGURE 2

Deep Cross Entropy Fusion (DCEF) model architecture. Multiple CNNs extract features from ultrasound images using convolutional and pooling
layers. Extracted features are fed into softmax layers for classification. Individual CNN losses are combined into a unified fusion loss for optimized
overall classification accuracy.
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where xi ∈ Rd denotes the deep feature of the ith sample, wj ∈
Rd denotes the j-th column of the weight w ∈ Rd�C , yi represents

the true label of the ith sample, and the class number is C. However,

xi Equation 1 represents only a single feature extracted by the

network, which is inherently constrained by the network’s capacity

and may not capture sufficient feature diversity. Additionally,

relying on a single neural network for feature extraction can limit

the robustness of learned representations, potentially reducing

classification accuracy. To overcome these limitations, our

proposed DCEF model integrates multiple sub-networks,

including Convolutional Neural Networks (CNNs) and Vision

Transformers (ViTs), to extract complementary feature

representations from input data. Each sub-network is trained

independently to optimize its respective architecture, and their

outputs are subsequently fused to generate a more comprehensive

and informative prediction. To ensure an effective fusion strategy,

we extend the cross-entropy loss function to incorporate multiple

sub-networks, defining the DCEF loss function (Equation 2) as:

LFCE = −oK
k=1p kon

i=1yi,klog
ex

T
i,kwj,k

oC
j0=1e

xTi,kwj0 ,k

s : t :  oK
k=1p k = 1, p k > 0

(2)

where, xi,k represents the feature extracted by the k-th neural

network, and pk denotes the weight of the k-th network. By using

this method, we can integrate the cross-entropy loss functions of

multiple sub-networks into a unified fusion loss, thereby optimizing

the overall loss. This method adaptively adjusts the weights of the

sub-networks, reducing the impact of high-loss sub-networks and

enhancing the contribution of low-loss sub-networks, thereby

reducing the overall classification loss and improving

classification accuracy.

During the encoding phase, feature extraction is performed

using a combination of CNNs and ViTs, which generate

hierarchical feature representations. These extracted features are

then processed through a Pyramid Pooling Module (PPM), which

enhances multi-scale contextual understanding. The PPM consists

of multiple parallel pooling operations with different kernel sizes

(e.g., 1×1, 2×2, 3×3, and 6×6), capturing both local and global

spatial dependencies. This hierarchical structure enables the model

to effectively learn features at multiple scales, making it more robust

to variations in tumor size, shape, and texture in ultrasound images.

The PPM module serves as a critical component in consolidating

spatially enriched feature maps before classification.

In the decoding phase, a Region of Interest (ROI) weight

enhancement mechanism is implemented to ensure that the

model focuses on diagnostically significant areas of ultrasound

images. Given the importance of distinguishing between benign

and malignant tumors, it is essential to emphasize the most relevant

regions within an image for improved classification. To achieve this,

an adaptive weight assignment strategy is introduced using the

SoftMax function, which dynamically assigns higher importance to

feature responses within the ROI. The weight for each feature

response is computed as (Equation 3) follows:
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Wi =
exp(Fi)

ojexp(Fj)
  (3)

where Fi represents the feature response at location i within the

ROI. This computed weight ensures that the most diagnostically

relevant regions receive higher attention during classification. The

final enhanced feature representation is obtained through a

weighted sum operation, where the learned weights Wi are used

to refine the feature maps (Equation 4):

Fenhanced =oiWi · Fi   (4)

By applying this ROI-focused enhancement mechanism, the

model effectively prioritizes the most informative regions of an

ultrasound image, significantly improving classification accuracy.

This ensures that the fused deep learning framework not only

leverages multi-network feature diversity but also dynamically

refines its attention toward regions that are clinically meaningful.

Therefore, the proposed DCEF model integrates multiple deep

networks, optimizes classification using fused cross-entropy loss,

and applies region-aware decoding to enhance focus on

diagnostically relevant regions, ensuring robust feature extraction

and classification.
2.7 Optimization of the proposed method

(1) By introducing the Lagrange multipliers h, x, t , we

reformulate the constrained optimization problem into an

unconstrained framework, as derived in Equations 5–15:

argminL(p ,wj,k ,h, x, t ) = −o
K

k=1

p ko
n

i=1
yilog

ex
T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k
+

< h, 1Tp − 1 > + < x, p > +
t
2
( ‖ 1Tp − 1 ‖22 + ‖ p ‖22 ) (5)

(2) Update wj,k

J(wj,k) = −oK
k=1p kon

i=1yilog
ex

T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k
(6)

The partial derivative with respect to wj,k is as follows:

J wj,k

� �
= −oK

k=1p kon
i=1yilog

ex
T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k

= −oK
k=1p kon

i=1yi xTi,kwj,k − logo
c

j0=1
ex

T
i,kwj0 ,k

 !
(7)

∂J(wj,k)

∂wj,k
= −oK

k=1pkon
i=1yi xi,k −

ex
T
i,kwj,k · xi,k

oc
j0=1e

xTi,kwj0 ,k

 !
(8)

= −oK
k=1pkon

i=1xi,k yi −
ex

T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k

 !
(9)
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(3) Update p

J(p ) = −oK
k=1p kon

i=1yilog
ex

T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k
+ h1Tp + xTp +

t
2
(

− 1Tk*1p − pT1k*1 + pT1k*11
T
k*1p + pTp)   (10)

The partial derivative with respect to p is as follows:

∂J(p )
∂p

= −on
i=1yilog

ex
T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k
+ h1k*1 + x +

t
2
( − 1k*1

− 1k*1 + 2p1k*k + 2p) (11)

Setting ∂ J(p)
∂ p = 0, we have:

p = (t(1k*k

+ I))−1 on
i=1yilog

ex
T
i,kwj,k

oc
j0=1e

xTi,kwj0 ,k
− h1k*1 − x + t1k*1

 !
(12)

(4) Update h, x, t :

h≔h + q1(1
Tp − 1) (13)

x≔x + q2p (14)

t≔t +
q3
2
( ‖ 1Tp − 1 ‖22 + ‖ p ‖22 ) (15)
2.8 Experimental evaluation metrics

To assess the performance of our deep learning model, we

employed a suite of five metrics: accuracy, sensitivity, specificity,

precision, and F1-score. These metrics provide a comprehensive

evaluation of the model’s ability to predict the correct class, identify

true positives, exclude true negatives, and maintain a balance

between precision and recall.

Accuracy measures the overall correctness of the model’s

predictions, while sensitivity and specificity evaluate its ability to

detect true positives and exclude true negatives, respectively.

Precision assesses the reliability of positive predictions, and the

F1-score provides a balanced measure of precision and recall.

Below are the formulas for the evaluation metrics, as defined

in Equations 6–20:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Sensitivity =
TP

TP + FN
(17)

Specificity =
TP

TN + FP
(18)

Precision =
TP

TP + FP
(19)
Frontiers in Oncology 07
F1 _ score =
2TP

2TP + FP + FN
(20)

where TP, TN, FP, and FN represent true positives, true

negatives, false positives, and false negatives, respectively.
3 Results

3.1 Clinical data

In this study, a total of 135 patients were included, including 94

male patients and 41 female patients. Compared with the benign

nodule group, the malignant nodule group had older patients (P<0.001,

statistically significant difference), while gender, lesion diameter, and

lesion location showed no statistical significance (P>0.05). The

pathological results after ultrasound-guided percutaneous pulmonary

nodule biopsy showed 97 cases of malignant nodules (71.9%),

including 49 cases of adenocarcinoma, 27 cases of squamous cell

carcinoma, 8 cases of lung metastasis, 7 cases of small cell

carcinoma, 2 cases of sarcomatoid carcinoma, 1 case of marginal

zone B-cell lymphoma, 1 case of neuroendocrine carcinoma, 1 case of

solitary fibrous tumor, and 1 case offibrosarcoma. There were 38 cases

of benign nodules (28.1%), including 23 cases of chronic pneumonia, 6

cases of granulomatous inflammation, 3 cases of tuberculosis, and 3

cases of fibrous tissue hyperplasia, and 3 cases of alveolar epithelial

hyperplasia. Among the malignant nodules, 51 patients had distant

metastasis, while 46 patients did not have distant metastasis. Please

refer to Table 1 for details.
3.2 Model performance analysis

In this experiment, the performance of the classification model was

analyzed and evaluated using receiver operating characteristic (ROC)

curves, as shown in Figure 3. The figure shows the ROC curves of the

training and test sets, corresponding to AUC values of 0.873 and 0.792,

respectively. By comparing the two curves in the figure, it can be seen

that the performance of the model on the training and test sets was

superior to the random classifier (AUC=0.5), confirming the

effectiveness and good generalization ability of the model.
3.3 Classification performance comparison
and analysis

Table 2 presents the experimental results of various algorithms for

pulmonary nodule classification, including XGBoost (18), DeepForest

(19), EMA (20), SSE (21), CCE (22), and the proposed DCEF model.

The DCEF model consistently outperforms all other algorithms across

precision, sensitivity, F1-score, specificity, and accuracy, achieving the

highest accuracy of 71.50%. This highlights its effectiveness in

distinguishing between benign and malignant pulmonary nodules.

The table also demonstrates significant improvements achieved

by DCEF compared to XGBoost, DeepForest, EMA, SSE, and CCE,

indicating its ability to capture relevant features and make accurate
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predictions. Additionally, the standard deviation values (e.g., ±

0.031 for DCEF’s precision) provide insights into the variability

of the results, allowing for a more comprehensive assessment of the

model’s performance.
3.4 Comparison under different neural
networks

Deep learning models have significantly transformed the field of

medical image analysis, particularly in pulmonary nodule
Frontiers in Oncology 08
classification. Convolutional Neural Networks (CNNs) have been

a dominant approach due to their ability to learn spatial hierarchies

of features, making them effective for lesion detection and

classification. More recently, Transformer models originally

developed for natural language processing, have gained

prominence in computer vision tasks due to their ability to

capture long-range dependencies and global contextual

information within images. To ensure a balanced and

comprehensive evaluation, we selected both well-established CNN

architectures and a Transformer-based model as presented in

Table 3. The CNNs incorporated in our study include VGG-16,
FIGURE 3

ROC curves for the differentiation of benign and malignant pulmonary nodules in the DCEF classification model.
TABLE 2 Experimental results of different algorithms (%).

Methods Precision Sensitivity F1-score Specificity Accuracy

XGBoost
0.6491 0.6215 0.6265 0.6541 0.6324

±0.021 ±0.019 ±0.033 ±0.025 ±0.027

DeepForest
0.6177 0.6326 0.6283 0.6023 0.6135

±0.013 ±0.008 ±0.025 ±0.027 ±0.015

EMA
0.6628 0.653 0.6575 0.6892 0.6543

±0.070 ±0.074 ±0.062 ±0.058 ±0.089

SSE
0.7082 0.6928 0.7061 0.6448 0.6882

±0.051 ±0.044 ±0.053 ±0.061 ±0.039

CCE
0.7132 0.6711 0.6933 0.6874 0.6964

±0.067 ±0.084 ±0.094 ±0.081 ±0.073

FCE
0.7255 0.7069 0.7113 0.7058 0.715

±0.031 ±0.042 ±0.027 ±0.036 ±0.062
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ResNet-18, DenseNet-121, and InceptionV3 (23), which have been

widely utilized in medical imaging research and serve as established

benchmarks for evaluating feature extraction performance.

Additionally, we included the Vision Transformer (ViT), a self-

attention-based architecture that has demonstrated strong

performance in image classification tasks by learning global

dependencies more effectively than traditional CNNs.

While the selected architectures provide a strong baseline for

evaluating our fusion strategy, we acknowledge the rapid

advancements in deep learning and the introduction of newer

architectures such as Swin Transformer, ConvNeXt, and

EfficientNet. These models have demonstrated impressive

performance in general computer vision tasks by integrating

transformer-like global dependencies with CNN-based local

feature extraction. However, their specific application in medical

imaging, particularly pulmonary nodule classification, remains an

evolving area of research. Given the need for interpretability and
Frontiers in Oncology 09
extensive clinical validation, we prioritized architectures with well-

documented performance in this domain. Our study focuses on

evaluating architectures that have been extensively validated in

pulmonary imaging, ensuring that our comparisons are aligned

with prior research in the medical community.

The classification accuracy of each model, as shown in Figure 4,

indicates that ViT outperforms traditional CNNs with an accuracy

of approximately 68%, reinforcing the effectiveness of self-attention

mechanisms in medical imaging tasks. However, our proposed

DCEF model achieves the highest accuracy, exceeding 70%,

demonstrating the advantages of leveraging multiple architectures

in a fusion strategy. In contrast, the other CNN models exhibit

accuracy levels ranging from 62% to 68%, with DenseNet-121 and

InceptionV3 performing slightly better than VGG-16 and ResNet-

18, yet still falling short of the DCEF model’s performance. These

results underscore that while established CNN architectures and

Transformer models can provide reasonable accuracy, the DCEF
FIGURE 4

Accuracy comparison of various CNNs and ViT architectures for pulmonary nodule classification.
TABLE 3 Image Prediction Error Rate (%) for Single Networks and Fusion Networks.

VGG16 ResNet18 DenseNet121 InceptionV3 ViT Error Rate(%) F1-score(%)

✓ 36.25 60.36

✓ 33.37 58.75

✓ 34.58 61.28

✓ 33.54 63.29

✓ 31.36 67.21

✓ ✓ 32.67 66.01

✓ ✓ ✓ 30.35 68.96

✓ ✓ ✓ ✓ 30.13 69.1

✓ ✓ ✓ ✓ ✓ 28.81 71.13
Bold values indicate the best (lowest) error rate and highest F1-score.
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model’s ensemble approach significantly enhances classification

performance, making it a robust framework for pulmonary

nodule analysis.

To further evaluate model performance, Figure 5 presents box

plots comparing the architectures across three critical evaluation

metrics: accuracy (ACC), balanced accuracy (BACC), and area

under the receiver operating characteristic curve (AUC-ROC).

Each box plot displays the median (green dot), interquartile range

(blue box), and variability (whiskers) of each model’s performance.

The DCEF model consistently achieves the highest median values

for ACC, BACC, and AUC-ROC, reinforcing its superiority in

pulmonary nodule classification tasks. Moreover, while ViT

demonstrates improved performance over traditional CNNs, the

DCEF model maintains higher stability and robustness across

multiple runs, confirming the benefits of combining CNN and

Transformer architectures in an ensemble learning framework.

We recognize that newer deep learning models such as Swin

Transformer, ConvNeXt, and EfficientNet have recently gained

prominence in image classification. While these architectures

have shown promise in leveraging hybrid CNN-transformer

paradigms, their specific utility in pulmonary imaging is still

under exploration. As part of our future research, we plan to

incorporate these next-generation architectures into our fusion

strategy to further assess their potential in medical imaging

applications. By integrating advanced hybrid architectures, we

aim to enhance the generalizability and robustness of our
Frontiers in Oncology 10
framework, ensuring its adaptability to evolving deep learning

methodologies in medical diagnostics.
3.5 Addressing key challenges in model
training

The DCEF model effectively mitigates diminishing accuracy,

overfitting, and the vanishing gradient problem, as demonstrated by

the experimental results in Figures 6, 7. Unlike traditional single-

model architectures, the DCEF framework integrates multiple

CNNs and a Vision Transformer (ViT) model, forming a robust

ensemble that enhances feature extraction, representation learning,

and classification performance.

3.5.1 Diminishing accuracy with increasing
network depth

As shown in Figure 6, the accuracy trends indicate that DCEF

maintains a steady increase in accuracy throughout training,

ultimately surpassing 70 percent accuracy, outperforming

individual models. This confirms that the ensemble strategy

mitigates the diminishing returns on accuracy, a common issue in

deep networks. By combining CNN-based hierarchical feature

extraction with the global context awareness of ViT, the DCEF

model achieves comprehensive feature learning, reducing the

accuracy degradation that typically affects deep networks.
FIGURE 5

5×5 cross-validation results: ACC, BACC, and AUC-ROC.
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3.5.2 Overfitting mitigation
The loss curves in Figure 7 provide strong evidence of the DCEF

model’s ability to generalize effectively. Unlike individual CNNs or

ViT, which exhibit fluctuations indicative of overfitting, the DCEF

model demonstrates a stable decline in loss, followed by

convergence. The final loss values for DCEF are lower than those

of individual networks, indicating an improved trade-off between

bias and variance. Furthermore, the close alignment between

training and test accuracies suggests that DCEF mitigates

overfitting, as it avoids large discrepancies between training and

validation performance.

3.5.3 Vanishing gradient problem
The smooth and continuous decline in loss observed in Figure 7

confirms that DCEF efficiently propagates gradients during

backpropagation, preventing stagnation in weight updates.
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The integration of residual connections from ResNet-based sub-

networks and attention mechanisms from ViT ensures that gradients

flow effectively, allowing stable convergence even in deeper layers. The

absence of abrupt gradient saturation further demonstrates the model’s

resilience to the vanishing gradient problem.
3.6 Ablation study

To gain a deeper understanding of the specific impact of each

network architecture on the experimental results, an ablation study was

conducted in this research. The ablation study assesses the contribution

of each architecture to the model performance by individually

removing or combining different networks. The results of the study

are presented in Table 2, which shows the image prediction error rates

and F1-scores for different network combinations.

The ablation study reveals that the integration of multiple

convolutional neural network architectures significantly enhances

the model’s performance. As observed from the table, the

performance improves with the addition of each network

architecture. The standalone InceptionV3 network shows the

lowest error rate among individual networks, indicating its strong

feature extraction capabilities. However, when combined with other

architectures, the ensemble model achieves the best performance,

with the lowest error rate of 28.81% and the highest F1-score

of 71.13%.

This improvement can be attributed to the complementary

strengths of the different architectures. VGG16, known for its

simplicity and depth, contributes basic feature extraction

capabilities. ResNet18, with its residual connections, helps in

alleviating the vanishing gradient problem and enables the

training of deeper networks. DenseNet121, through its dense

connectivity pattern, enhances feature propagation and reuse.

InceptionV3, with its multi-scale feature extraction, captures a

wide range of patterns in the data.

The results of the ablation study demonstrate that the proposed

DCEF model, by integrating these diverse architectures, effectively

captures a comprehensive set of features from ultrasound images.

This leads to more accurate and robust classification of pulmonary

nodules, highlighting the practical value of the DCEF model in

medical imaging applications. The study also underscores the

importance of ensemble learning in enhancing the performance

of deep learning models for critical tasks such as medical diagnosis.
4 Discussions

CNNs have emerged as a transformative tool in medical

imaging, particularly for tasks such as disease detection and

classification (24). By mimicking the human visual cortex, CNNs

extract features from input data using convolutional layers, reduce

dimensionality through pooling layers, and generate predictions

through fully connected layers (25). Recent advancements in CNN

architectures such as ResNet, DenseNet, VGG, and InceptionV3

have significantly improved their performance, allowing for more

accurate and efficient disease detection. Previous studies have
FIGURE 7

The change trend of training loss with the increase of
training epoch.
FIGURE 6

The change trend of training accuracy with the increase of
training epoch.
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demonstrated the efficacy of deep learning models in distinguishing

between benign and malignant pulmonary nodules using CT

images. For example, Heuvelmans et al. (9) developed the Lung

Cancer Prediction Convolutional Neural Network (LCP-CNN),

achieving an overall AUC of 94.5%, with high accuracy in

differentiating between benign and malignant nodules. Similarly,

Xie et al. (25) proposed a multi-view knowledge-based collaborative

(MV-KBC) deep model for classifying malignant from benign

nodules in CT images, achieving an accuracy of 91.60% and an

AUC of 0.95. Despite these advancements, there remains a

significant gap in research regarding the use of deep learning

models for differentiating between benign and malignant

pulmonary nodules using lung ultrasound images.

Recent studies, however, have suggested that lung ultrasound

images can offer significant advantages for tumor classification.

Ultrasound provides real-time, non-invasive imaging, offering

excellent soft tissue contrast, which makes it an attractive tool for

evaluating pulmonary nodules. For example, Yadav et al. (26)

developed an efficient computer-aided diagnostic (CAD) system

for thyroid tumor characterization using ultrasound images.

Additionally, Du et al. (27) proposed an ultrasound-based multi-

class prediction algorithm for ovarian tumor classification.

Furthermore, ultrasound imaging can detect subtle changes in

nodule characteristics, such as vascularity and echogenicity, which

are often challenging to discern using CT scans. These factors

suggest that deep learning models trained on lung ultrasound

images could potentially achieve comparable or even superior

performance in distinguishing benign from malignant

pulmonary nodules.

However, ultrasound imaging does have several limitations

compared to CT scans and chest X-rays, particularly when

considering the use of neural network architectures enhanced

with visual attention mechanisms. While ultrasound offers real-

time and non-invasive imaging with exceptional soft tissue contrast,

it has lower spatial resolution and limited depth penetration

compared to CT. These limitations can make it difficult to detect

small or deeply located nodules. CT scans, on the other hand,

provide high-resolution, cross-sectional images that allow for the

detection of subtle lesions, including small nodules. Chest X-rays,

though not as detailed as CT, are widely available and offer fast

imaging, but they lack the fine resolution needed for detecting early-

stage tumors. Another challenge with ultrasound is its high operator

dependence. The quality of ultrasound images can vary significantly

based on the skill and experience of the technician performing the

scan, leading to potential inconsistencies in image quality. In

contrast, CT scans and chest X-rays are less sensitive to operator

variability, which can contribute to more consistent results across

different healthcare settings.

Furthermore, neural network architectures that utilize visual

attention mechanisms, which have shown substantial success in CT

and chest X-ray imaging, can struggle with ultrasound images.

Attention mechanisms help neural networks focus on the most

relevant regions of an image, such as tumors or other anomalies,

improving classification accuracy. However, ultrasound images are

often less uniform in quality, with greater variability in resolution
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and contrast, which may hinder the effectiveness of these attention-

based models. While attention mechanisms work well on high-

resolution, consistent images (such as those from CT or X-ray),

ultrasound images inherent limitations make it more challenging

for these models to accurately identify and focus on key features.

Despite these challenges, ultrasound remains a valuable imaging

modality due to its ability to provide real-time results, its non-

invasive nature, and its excellent soft tissue contrast. When

combined with deep learning models, such as the DCEF model

presented in this study, ultrasound can still provide valuable

diagnostic information for pulmonary nodule classification.

The DCEF model presented in this study specifically addresses

several challenges associated with ultrasound imaging for

pulmonary nodule classification. It overcomes the issues of lower

spatial resolution, limited depth penetration, and operator

dependence that can affect the quality and consistency of

ultrasound images. First, the model compensates for lower spatial

resolution by leveraging an ensemble strategy that combines

multiple CNN architectures, such as ResNet, DenseNet, VGG,

and InceptionV3. Each network captures different features from

the ultrasound images, enabling the model to aggregate these

diverse features and enhance the classification accuracy despite

the lower resolution. Second, limited depth penetration is overcome

by the model’s ability to fuse information from multiple CNNs,

allowing it to capture both superficial and deeper features of the

nodules. This multi-network approach improves the model’s ability

to identify nodules at varying depths, even when depth penetration

in ultrasound images is restricted. Lastly, operator dependence is

mitigated by the ensemble approach, as the DCEF model is less

sensitive to inconsistencies in image quality that arise from

variations in the technician’s skill. The diverse networks in the

ensemble focus on different aspects of the ultrasound images,

providing a more robust and reliable classification, even when

image quality may vary across different scans.

By leveraging an ensemble strategy that combines multiple

CNN sub-networks, the DCEF model utilizes cross-entropy loss

functions to extract a comprehensive set of features from the input

data. One of the main advantages of the DCEF approach is its ability

to aggregate predictions from multiple neural networks, resulting in

improved accuracy and robustness. The diversity achieved by fusing

different CNN architectures allows the model to capture a broader

range of patterns within ultrasound images, thereby promoting

better generalization and reducing the risk of overfitting. By

combining the strengths of multiple CNNs, the DCEF model is

able to extract richer and more informative features, offering a more

complete representation of the images. This leads to more accurate

and confident clarifications, which are critical in medical

applications where precision is paramount.

This study evaluated the effectiveness of the DCEF model in

differentiating between benign and malignant pulmonary nodules

using two-dimensional grayscale ultrasound images. The DCEF

model, composed of networks including ResNet, DenseNet, VGG,

and InceptionV3, achieved an accuracy of 71.5%, sensitivity of

70.7%, and AUC of 0.87, demonstrating strong diagnostic

performance with a high true positive rate and a low false
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positive rate. These results indicate that the DCEF model is capable

of distinguishing between benign and malignant pulmonary

nodules with a high degree of reliability. The superior

performance of DCEF can be attributed to its ability to effectively

combine the strengths of various CNN architectures, each capturing

different features of the ultrasound images.

Furthermore, the DCEF model was compared to other state-of-

the-art deep learning algorithms, such as XGBoost (18), DeepForest

(19), EMA (20), SSE (21), and CCE (22). XGBoost is a highly

scalable and efficient machine learning algorithm based on gradient

boosting trees. DeepForest utilizes deep learning techniques,

including CNNs, for image feature extraction and object

classification. EMA achieves continuous feature extraction

through an encoder-decoder architecture. SSE trains multiple

models in parallel to improve performance, and CCE combines

cross-entropy and complementary entropy into a unified training

objective, reducing prediction risks for minority classes without

requiring additional data augmentation.

From the results, the DCEF model achieved an accuracy of

71.5%, which is 1.86% higher than the CCE algorithm, a sensitivity

of 70.69%, 1.41% higher than SSE, a specificity of 70.58%, 1.66%

higher than EMA, a precision of 72.55%, 1.23% higher than CCE,

and an F1-score of 71.13%, which is 1.8% higher than SSE. These

results demonstrate significant improvements across all

performance metrics, further confirming the superiority and

practicality of the DCEF model in distinguishing between benign

and malignant pulmonary nodules.

However, several limitations should be considered in this

study. Firstly, the relatively small sample size may affect the

generalizability and robustness of the results. To validate the

findings and assess the model’s performance across a broader

range of patient populations, we will involve larger and more

diverse datasets in future research. Secondly, the current study

primarily focuses on nodules of varying sizes, but the diagnostic

potential of the DCEF model in distinguishing between smaller

nodules (≤2 cm) and larger ones (>5 cm) will also be investigated.

Nodule size is an important factor in determining malignancy, and

exploring how the model performs with different size ranges will

enhance its clinical utility. Additionally, we will explore the model’s

ability to predict disease metastasis and its application to other types

of lung pathology. By addressing these aspects, the model’s clinical

relevance and diagnostic accuracy will be further strengthened.
5 Conclusions

This study introduced the DCEF model for pulmonary nodule

classification using ultrasound imaging. By integrating multiple deep

learning architectures, including CNN-based feature extractors

(ResNet-50, DenseNet-121, VGG-16, InceptionV3) and a

Transformer-based model (ViT), the DCEF model effectively

captures both local spatial features and global contextual

relationships, enhancing classification performance. The fusion loss

mechanism optimally combines features from different sub-networks,
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ensuring superior accuracy and robustness. Experimental results,

including ablation studies, demonstrated that DCEF outperforms

conventional CNN-based methods, achieving an AUC of 0.87 and an

F1-score of 71.13%, highlighting its effectiveness in pulmonary

nodule classification.

Despite these promising results, the study is constrained by the

size of the dataset, necessitating further validation on larger, multi-

center cohorts. Future research will explore next-generation

architectures such as Swin Transformer and ConvNeXt and

investigate the integration of multi-modal imaging techniques to

enhance diagnostic precision. The proposed DCEF model provides

a robust, interpretable, and clinically relevant deep learning

framework for ultrasound-based lung cancer detection, offering

valuable insights to aid radiologists in early diagnosis and

decision-making.
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