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Background: Microvascular invasion (MVI) is a key prognostic factor in solitary

hepatocellular carcinoma (HCC), significantly affecting treatment decisions and

outcomes. Early prediction of MVI is crucial for enhancing clinical

decision-making.

Objectives: This study aimed to develop and evaluate four predictive models for

MVI: one based on clinical indicators, one on MRI assessments, one using

radiomics, and a combined model integrating all data across multiple

medical centers.

Methods: The study included patients with solitary HCC from three centers

(Mengchao Hepatobiliary Hospital, The Second Hospital of Nanping, and Datian

County General Hospital). The dataset was divided into an internal training set,

validation set, and two external validation sets. Predictive models were built using

clinical indicators, MRI, radiomics, and a combination of these. Model

performance was assessed through ROC curves, calibration curves, and

decision curve analysis (DCA). Lasso regression identified significant features,

and SHAP analysis interpreted the model predictions.

Results: A total of 319 patients were analyzed: 199 from the internal center, 67

from Nanping, and 53 from Datian. The combined model, which integrated

clinical, MRI, and radiomics features, showed superior performance, with an AUC

of 0.95(95%CI:0.92-0.98) in the internal training set, 0.92(95%CI:0.83-1.00) in

the internal validation set, 0.96(95%CI:0.92-1.00) in Nanping, and 0.94(95%

CI:0.88-0.99) in Datian. Calibration curves confirmed the model’s accuracy,

and NRI/IDI analyses highlighted its advantage over individual models. Key
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predictive indicators included pseudocapsule, peritumoral enhancement, and

wavelet-based MRI features.

Conclusion: This multi-center study demonstrates the effectiveness of

combining clinical, MRI, and radiomics data in predicting MVI in solitary HCC,

with robust results across different medical centers. These models have potential

to improve patient management and treatment planning.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) remains the most common

form of primary liver cancer and a major contributor to cancer-

related mortality globally (1). Its incidence continues to rise,

particularly in regions with high prevalence of hepatitis B and C

viruses, as well as among patients with chronic liver disease and

cirrhosis (2, 3). Among the many prognostic factors linked to HCC,

MVI has emerged as a crucial determinant of patient outcomes (4, 5).

MVI is defined as the presence of tumor cells within the small vessels

of the liver surrounding the tumor (6, 7), and its presence is

associated with higher recurrence rates, metastasis, and decreased

overall survival (8, 9).

Traditional methods for predicting MVI rely heavily on

histopathological analysis and conventional MRI assessments

modalities such as ultrasound and computed tomography (CT)

(10). While these techniques are essential in clinical practice, they

are limited by subjectivity, inter-observer variability, and their

inability to fully capture the heterogeneity of HCC (11).

Furthermore, the majority of these methods are dependent on

post-operative pathology (12), restricting their utility in pre-

surgical decision-making. As a result, there is an urgent need for

non-invasive, accurate, and reliable methods to predict MVI

preoperatively (13).

Recent advances in radiomics have shown great promise in

extracting high-dimensional features from MRI assessments data,

offering an opportunity to enhance the predictive accuracy of MVI

assessments (14). Despite these advancements, most existing studies

have focused on single-center datasets and individual data

modalities, often ignoring the potential of integrating clinical,

MRI assessments, and radiomics features (15). Such integration

could provide a more holistic view of the tumor’s biological

behavior and improve predictive performance. Moreover, many

current machine learning and deep learning models, particularly

those applied to radiomics, lack interpretability, which hinders their

adoption in clinical settings (16).

In this multi-center study, we aim to address these gaps by

integrating data from multiple centers to build a more robust and
02
generalizable predictive model for MVI in solitary HCC. This study

utilizes clinical, MRI assessments, and radiomics data from three

medical centers, allowing us to assess the consistency and accuracy

of our predictive models across diverse populations. Additionally,

we employ a Transformer model to process the high-dimensional

radiomics data, as this model excels at capturing complex

relationships within large datasets. To improve model

interpretability, we utilize SHAP (SHapley Additive exPlanations)

analysis, which allows for a detailed examination of how individual

features contribute to the model’s predictions.

By developing and validating a combined model that

incorporates clinical, MRI assessments, and radiomics data across

multiple centers, this study seeks to establish a comprehensive and

reliable framework for predicting MVI in solitary HCC. The

findings from this multi-center study have the potential to

improve clinical decision-making, personalize treatment

strategies, and enhance patient outcomes across different

healthcare settings.
2 Materials and methods

2.1 Study design and population

This retrospective study was approved by the hospital’s ethics

committee (No. 2020-010-01), and the requirement for written

informed consent was waived as no patient-identifiable information

was used. The study was conducted in accordance with the ethical

principles outlined in the Declaration of Helsinki. A total of 632

patients (2018.01-2023.12) met the initial inclusion criteria; however,

313 patients were excluded based on the following criteria. The

inclusion criteria were: (a) histologically confirmed solitary

hepatocellular carcinoma (HCC) following hepatectomy, and (b)

availability of abdominal contrast-enhanced MRI and complete

clinical data within one month prior to surgery. Exclusion criteria

were: (a) prior treatments for HCC before hepatectomy, (b) multiple

HCC lesions, (c) presence of macrovascular invasion or extrahepatic

metastasis, and (d) poor image quality (Figure 1).
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2.2 Serological biomarker collection

Comprehensive serological data were retrospectively collected for

all patients prior to surgery. Within one week before the surgery, the

patient fasted for more than eight hours, and blood samples were

collected. The biomarkers included key indicators of liver function,

coagulation status, and tumor markers: alanine aminotransferase

(ALT), aspartate aminotransferase (AST), total bilirubin (TBIL),

direct bilirubin (DBIL), indirect bilirubin (IBIL), alkaline

phosphatase (ALP), gamma-glutamyl transferase (GGT),

prothrombin time (PT), activated partial thromboplastin time

(APTT), international normalized ratio (INR), albumin (ALB),

alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA),

carbohydrate antigen 19-9 (CA199), and carbohydrate antigen 125

(CA125). These biomarkers were measured using standardized

laboratory assays as part of the preoperative assessment to evaluate

liver function, coagulation status, and tumor burden. The collected

data were then integrated with imaging and pathological findings for

further analysis.
2.3 Pathological diagnosis of MVI

The d i agnos i s o f MVI was de te rmined through

histopathological examination of resected tumor specimens using

the seven-point sampling method as a reference. MVI was defined
Frontiers in Oncology 03
as the presence of cancer cells within the microvasculature,

including small vessels in the tumor capsule or the surrounding

liver tissue, as observed under a microscope. The assessment was

performed independently by two experienced pathologists at each

center. In cases where discrepancies in the diagnosis occurred, a

third senior pathologist was consulted, and the final diagnosis was

reached through consensus. This process ensured the accuracy and

reliability of MVI detection across all cases.
2.4 MRI assessments data

2.4.1 MRI evaluation
MRI assessments were performed using scanners with varying

field strengths (Mengchao: Simens Verio 3.0T. Nanping: Philips

Achieva 1.5T. Datian: GE Mr355 1.5T) across the participating

centers. Sequences included T1-weighted images (pre-contrast,

arterial, portal venous, and delayed phases) and T2-weighted

images. The imaging protocols were standardized across centers,

with the following parameters: slice thickness of 5 mm, inter-slice

gap of 1 mm, field of view (FOV) of 380 mm × 380 mm, and matrix

size of 512 × 512. These parameters provided detailed visualization

of the tumor’s characteristics and vascularity. Two experienced

radiologists independently reviewed the images and recorded the

following parameters: tumor diameter, MRI LI-RADS classification,

presence of intratumoral necrosis, pseudocapsule formation, liver
FIGURE 1

The patient inclusion flowchart.
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cirrhosis, smoothness of the tumor margin, and peritumoral

enhancement (17). Any discrepancies in the assessment were

resolved through discussion to ensure consistency in

data collection.

2.4.2 Radiomics feature extraction
Radiomics features were extracted using 3D Slicer software

(version 4.1.1). Two senior radiologists independently delineated

the regions of interest (ROIs) for each tumor. While 3D Slicer

provides a robust platform for radiomics feature extraction, it has

certain limitations, such as its reliance on manual delineation,

which introduces variability, and the lack of native support for

some advanced preprocessing techniques. These limitations were

mitigated in our study through stringent quality control, inter- and

intra-observer agreement assessments, and feature standardization.

To evaluate the reliability of the extracted features, the inter- and

intra-observer agreement was quantitatively assessed using

intraclass correlation coefficients (ICCs).

2.4.3 Inter-observer agreement
The ICCs for radiomics features extracted by the two

radiologists were calculated. Features with ICC values greater

than 0.75, indicating excellent agreement, were retained for

further analysis.

2.4.4 Intra-observer agreement
To assess intra-observer consistency, one radiologist repeated

the ROI delineation and feature extraction one month after the

initial analysis. The ICCs between the two rounds of feature

extraction were calculated, and only features with high intra-

observer agreement (ICC > 0.75) were included in the

subsequent analyses.

By ensuring that only features demonstrating high inter- and

intra-observer agreement were retained, this rigorous process

enhanced the reliability and reproducibility of the radiomics data

used in the study.

2.4.5 Data preprocessing
Prior to model construction, radiomics features underwent

normalization to ensure comparability across different scales. Z-

score normalization was applied to standardize the features by

centering them around a mean of 0 and scaling to a standard

deviation of 1. Initial feature selection was conducted using variance

thresholds to eliminate low-variance features, ensuring that only

informative features were retained. Variance threshold filtering was

chosen as it is a straightforward and efficient method for removing

features with minimal information. Compared to alternative

methods like principal component analysis (PCA) or recursive

feature elimination (RFE), this approach balances computational

efficiency and interpretability, making it particularly suitable for

clinical data. Subsequent LASSO regression was used to refine the

feature set further. Additionally, correlation analysis was performed

to identify and remove highly correlated features, thereby

reducing redundancy.
Frontiers in Oncology 04
2.5 Model construction

2.5.1 Radiomics model
A Transformer model was first constructed to process the high-

dimensional radiomics features. This model architecture included

multiple self-attention layers, allowing it to effectively capture

complex relationships within the data. The model was trained

using a dataset split into training and validation groups,

optimizing parameters such as learning rate, batch size, and the

number of epochs through grid search methods.

2.5.2 Feature selection using Lasso
To enhance model interpretability and identify the most

significant predictors of MVI, Lasso regression was applied post-

training. This technique performed regularization, effectively

shrinking coefficients of less important features to zero, thereby

facilitating dimensionality reduction. The resulting significant

features were analyzed to identify key indicators associated with

MVI, which provided insights into the underlying biological

processes.

2.5.3 Clinical indicator model
In addition to the radiomics model, a clinical indicator model

was developed using Lasso regression for feature selection based on

serum biomarkers and clinical data. Significant predictors identified

through this method were integrated into a logistic regression

model to assess their predictive capability.

2.5.4 MRI assessment model
For the MRI assessment model, relevant indicators such as

tumor size, edge characteristics, and LI-RADS classification were

extracted and evaluated. LASSO regression was employed to

construct this model. LASSO was chosen because of its ability to

perform variable selection and regularization simultaneously,

ensuring that the most relevant predictors were retained while

reducing the risk of overfitting.

2.5.5 Combined model construction
To construct a comprehensive predictive model, we employed a

Transformer-based approach to integrate clinical, imaging, and

radiomics features. The Transformer architecture included

multiple self-attention layers with a multi-head attention

mechanism and feed-forward neural networks. The Transformer

model was specifically chosen for its ability to capture complex,

non-linear interactions between features, making it highly suited for

integrating high-dimensional, heterogeneous datasets. Compared to

traditional machine learning models, such as logistic regression or

random forests, the Transformer excels at modeling dependencies

between diverse modalities. Unlike convolutional neural networks

(CNNs), which are effective for spatial data, the Transformer is

more versatile in handling non-image data types like clinical and

radiomics features. This versatility was crucial for our study, as it

involved combining imaging and non-imaging data into a unified

predictive framework. Positional encoding was incorporated to
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retain feature order. Inputs were normalized and converted into a

unified feature matrix, treating each feature as an independent

token. The model was trained using Adam optimizer (learning rate

= 0.001) with binary cross-entropy loss. Dropout (rate = 0.2) was

used for regularization. Hyperparameters, such as the number of

attention heads, Transformer layers, learning rate, dropout rate, and

batch size, were optimized via grid search. The area under the

receiver operating characteristic curve (AUC) on the validation set

was used as the primary metric for evaluation. The final model used

8 attention heads, 4 Transformer layers, a learning rate of 0.001, a

dropout rate of 0.2, and a batch size of 32, which provided the

highest AUC on the validation set. The output layer provided binary

classification, and SHAP analysis was used for interpretability,

enabling the model to capture complex interactions among the

diverse input features. Key clinical biomarkers (e.g., ALT, AST,

AFP, ALB), MRI features (e.g., tumor size, LI-RADS classification,

necrosis, pseudocapsule, liver cirrhosis, tumor margin smoothness,

peritumoral enhancement), and radiomics features were combined

to form a unified feature set.
2.6 SHAP Analysis

Following model construction, SHAP analysis was performed to

interpret the contributions of individual features to model

predictions. SHAP values were calculated for each feature, with

visualizations including waterfall plots, swarm plots, and force plots

created to illustrate feature importance and their impact on MVI

predictions (18).
2.7 Statistical analysis

The continuous data are presented as mean ± standard

deviation, and categorical data are presented as percentages.
Frontiers in Oncology 05
When variance homogeneity and normal distribution are

satisfied, continuous data are analyzed using multivariate analysis

or independent two-sample t-tests. Otherwise, the Kruskal-Wallis

test or Mann-Whitney U test is used. Categorical data are analyzed

using the chi-square test. The predictive efficiency between different

models is assessed by plotting ROC curves, calculating the AUC and

the corresponding 95% confidence intervals for each model, and

using the Delong test for AUC comparison. Sensitivity, specificity,

positive predictive value, negative predictive value, accuracy, and

the corresponding 95% confidence intervals for each model are

calculated. Calibration curves for each model are plotted, and the

corresponding Hosmer-Lemeshow test and Brier score are

calculated. Clinical decision curves (DCA) for each model are

drawn, and the corresponding Net Reclassification Improvement

(NRI) and Integrated Discrimination Improvement (IDI) are

calculated. All comparisons are conducted using two-sided tests,

with P < 0.05 considered statistically significant. Radiomics features

were extracted using 3D Slicer software (version 4.11.20210226).

Statistical analyses were conducted using R (version 4.1.1) and

Python (version 3.6.5), with relevant packages including Scikit-

learn (version 0.24.2) for machine learning, SHAP (version 0.39.0)

for interpretability, and Matplotlib (version 3.3.4) for visualization.
3 Results

3.1 Patient characteristics

A total of 319 patients were included in this multi-center study,

with 199 patients from the internal center and 120 patients from

two external centers (67 from Nanping Hospital and 53 from

Datian Hospital). Among the total cohort, 267 (83.7%) were male,

and 52 (16.3%) were female, with a mean age of 57.4 ± 11.1 years.

There were no significant differences in age across the internal and

external cohorts (p = 0.83) (Table 1).
TABLE 1 Basic characteristics in all patients.

Total Internal Training Internal Testing Nanping hospital Datian hospital P-value

MVI

non-MVI 153 (48.0%) 78 (49.1%) 17 (42.5%) 29 (43.3%) 29 (54.7%) 0.55

MVI 166 (52.0%) 81 (50.9%) 23 (57.5%) 38 (56.7%) 24 (45.3%)

Diameter(cm) 3.4 ± 2.0 3.3 ± 2.0 3.3 ± 1.9 3.5 ± 2.0 3.5 ± 1.9 0.88

Age(years) 57.4 ± 11.1 57.1 ± 10.7 57.6 ± 13.7 58.5 ± 11.8 56.9 ± 9.7 0.83

ALT(U/L) 36.0 ± 25.9 34.2 ± 21.2 44.5 ± 44.3 35.5 ± 24.2 35.5 ± 21.5 0.16

AST(U/L) 36.2 ± 28.7 35.5 ± 25.5 39.1 ± 42.2 34.5 ± 29.6 38.2 ± 24.1 0.8

TBIL(umol/L) 14.9 ± 7.8 14.9 ± 7.9 13.2 ± 5.8 15.3 ± 9.1 15.3 ± 7.2 0.55

DBIL(umol/L) 5.3 ± 3.2 5.5 ± 3.2 5.0 ± 2.8 5.7 ± 2.9 4.6 ± 4.0 0.2

IBIL(umol/L) 9.5 ± 5.3 9.4 ± 5.4 8.2 ± 3.7 9.6 ± 6.4 10.7 ± 4.4 0.17

ALP(U/L) 89.7 ± 38.8 88.4 ± 33.3 93.5 ± 62.8 84.9 ± 22.3 96.7 ± 46.6 0.35

(Continued)
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Patients were divided into four groups: internal training set (n =

159), internal validation set (n = 40), Nanping hospital (n = 67), and

Datian hospital (n = 53). The incidence of MVI was 52.0% (n =

166), with no statistically significant differences in MVI status
Frontiers in Oncology 06
between the internal and external groups (p = 0.55). Tumor

characteristics, including diameter, liver function markers (ALT,

AST), and other clinical parameters, were similar across

groups (Table 1).
TABLE 1 Continued

Total Internal Training Internal Testing Nanping hospital Datian hospital P-value

MVI

GGT(U/L) 65.3 ± 95.3 68.0 ± 114.2 59.4 ± 78.5 61.1 ± 63.3 67.0 ± 78.2 0.94

PT(s) 13.4 ± 1.1 13.5 ± 1.1 13.3 ± 0.8 13.0 ± 0.6 13.8 ± 1.4 < 0.001

APTT(s) 35.7 ± 3.0 35.8 ± 3.1 35.8 ± 3.5 35.2 ± 3.5 36.3 ± 1.6 0.34

INR 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 < 0.001

ALB(g/L) 42.8 ± 4.3 42.1 ± 3.9 43.4 ± 4.3 46.4 ± 2.5 39.9 ± 4.2 < 0.001

AFP(ug/L) 1107.8 ± 6022.3 1289.4 ± 6494.5 176.7 ± 519.1 1151.8 ± 7336.0 1209.7 ± 4934.2 0.77

CEA(ng/ml) 2.8 ± 2.0 2.8 ± 2.1 2.3 ± 1.2 3.0 ± 2.5 2.9 ± 1.7 0.43

CA199(U/ml) 19.6 ± 18.2 20.2 ± 18.0 17.8 ± 19.4 17.3 ± 15.5 22.4 ± 20.6 0.42

CA125(U/ml) 23.3 ± 90.9 23.2 ± 91.1 15.1 ± 16.4 12.4 ± 8.1 43.5 ± 156.1 0.27

LIRADS

4 30 (9.4%) 16 (10.1%) 2 (5.0%) 7 (10.4%) 5 (9.4%) 0.83

5 289 (90.6%) 143 (89.9%) 38 (95.0%) 60 (89.6%) 48 (90.6%)

Sex

Female 52 (16.3%) 23 (14.5%) 8 (20.0%) 12 (17.9%) 9 (17.0%) 0.79

Male 267 (83.7%) 136 (85.5%) 32 (80.0%) 55 (82.1%) 44 (83.0%)

Margin

smooth 301 (94.4%) 151 (95.0%) 37 (92.5%) 65 (97.0%) 48 (90.6%) 0.43

coarse 18 (5.6%) 8 (5.0%) 3 (7.5%) 2 (3.0%) 5 (9.4%)

Tumor necrosis

no 302 (94.7%) 150 (94.3%) 39 (97.5%) 64 (95.5%) 49 (92.5%) 0.81

yes 17 (5.3%) 9 (5.7%) 1 (2.5%) 3 (4.5%) 4 (7.5%)

Pseudocapsule

no 96 (30.1%) 49 (30.8%) 11 (27.5%) 21 (31.3%) 15 (28.3%) 0.97

yes 223 (69.9%) 110 (69.2%) 29 (72.5%) 46 (68.7%) 38 (71.7%)

Peritumoral enhancement

no 174 (54.5%) 87 (54.7%) 21 (52.5%) 29 (43.3%) 37 (69.8%) 0.036

yes 145 (45.5%) 72 (45.3%) 19 (47.5%) 38 (56.7%) 16 (30.2%)

Cirrhosis

no 159 (49.8%) 68 (42.8%) 27 (67.5%) 35 (52.2%) 29 (54.7%) 0.031

yes 160 (50.2%) 91 (57.2%) 13 (32.5%) 32 (47.8%) 24 (45.3%)

Family history

no 260 (81.5%) 129 (81.1%) 32 (80.0%) 59 (88.1%) 40 (75.5%) 0.33

yes 59 (18.5%) 30 (18.9%) 8 (20.0%) 8 (11.9%) 13 (24.5%)
ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; TBIL, Total Bilirubin; DBIL, Direct Bilirubin; IBIL, Indirect Bilirubin; ALP, Alkaline Phosphatase; GGT, Gamma-Glutamyl
Transferase; PT, Prothrombin Time; APTT, Activated Partial Thromboplastin Time; INR, International Normalized Ratio; ALB, Albumin; AFP, Alpha-Fetoprotein; CEA, Carcinoembryonic
Antigen; CA199, Carbohydrate Antigen 19-9; CA125, Carbohydrate Antigen 125; LI-RADS, Liver Imaging Reporting and Data System.
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3.2 MVI and clinical features

Patients were further categorized by MVI status. In the internal

training set, the MVI-positive group had a significantly larger tumor

diameter (4.0 ± 2.2 cm) compared to the non-MVI group (2.6 ±

1.6 cm, p < 0.001) (Supplementary Table 1). The presence of cirrhosis

was more common in the MVI-positive group (77.8%) compared to

the non-MVI group (60.3%, p = 0.025) (Supplementary Table 1).

Additionally, coarse tumor margins were observed more frequently in

the MVI-positive group (75.3%) compared to the non-MVI group

(14.1%, p < 0.001), indicating a strong association between margin

characteristics and MVI (Supplementary Table 1). Other baseline

characteristics, such as liver function tests (ALT, AST, TBIL, ALP),

AFP levels, and the presence of a pseudocapsule, were not significantly

different between the MVI and non-MVI groups (Table 1).
3.3 External validation

The external validation sets showed similar trends. In Nanping

hospital, the MVI-positive rate was 56.7%, and in Datian hospital, it

was 45.3%, with no significant differences in MVI incidence

between the internal and external cohorts (p = 0.55) (Table 1).

Tumor diameter, age, and other clinical features were consistent

across the internal and external validation cohorts, demonstrating

the robustness of the model across different centers.
3.4 ROC curves and AUC

The combined model outperformed the individual clinical,

MRI, and radiomics models across both the internal and external

validation sets (Figure 2). In the internal training set, the combined

model achieved the highest AUC of 0.94, while in the internal

validation set, it achieved an AUC of 0.90. In the external validation
Frontiers in Oncology 07
sets, the combined model continued to excel, with AUCs of 0.96 in

Nanping hospital and 0.94 in Datian hospital.

Compared to the individual models, the combined model

consistently showed superior predictive power, demonstrating the

value of integrating clinical, MRI assessments, and radiomics

features. Statistical comparisons using DeLong’s test confirmed

that the AUC of the combined model was significantly higher

than the clinical model (p < 0.001), MRI model (p = 0.002), and

radiomics model (p = 0.003) in the internal training set. Similar

statistically significant differences were observed across the internal

test set and external validation datasets. Detailed performance

metrics, including sensitivity, specificity, and accuracy, are

presented in Table 2.
3.5 Calibration curves (Hosmer-Lemeshow
test and Brier score)

The calibration curves for the combined model across all

datasets, including both internal and external validation cohorts,

demonstrated a strong alignment between predicted probabilities

and actual outcomes (Figure 3). The Hosmer-Lemeshow test

indicated good calibration with no significant deviations from a

perfect fit. In the internal training set, the p-value was 0.516, and in

the internal validation set, it was 0.294. In the external validation

sets, the p-values were 0.248 for Nanping hospital and 0.375 for

Datian hospital, further supporting the model’s well-calibrated

nature. In terms of Brier score, the combined model consistently

showed superior predictive accuracy across all cohorts. The Brier

scores were lowest for the combined model compared to the

individual clinical, MRI, and radiomics models, reflecting its

superior probabilistic prediction accuracy. Specifically, the Brier

score was 0.095 in the internal training set, 0.082 in the internal

validation set, 0.062 in Nanping hospital set, and 0.057 in Datian

hospital set (Table 2).
FIGURE 2

Receiver operating characteristic (ROC) curves for predictive models across different cohorts. (A) Training set: Combined model (AUC = 0.95), Clinical
model (AUC = 0.72), MRI model (AUC = 0.86), Radiomics model (AUC = 0.85). (B) Internal validation set: Combined model (AUC = 0.92), Clinical model
(AUC = 0.77), MRI model (AUC = 0.88), Radiomics model (AUC = 0.72). (C) External validation set 1: Combined model (AUC = 0.96), Clinical model (AUC
= 0.66), MRI model (AUC = 0.78), Radiomics model (AUC = 0.81). (D) External validation set 2: Combined model (AUC = 0.94), Clinical model (AUC =
0.81), MRI model (AUC = 0.89), Radiomics model (AUC = 0.85).
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TABLE 2 Training and test set AUC/Hosmer-Lemeshow/Brier/Sensitivity/Specificity/PPV/NPV/accuracy.

Sensitivity
(95%CI)

Specificity
(95%CI)

Positive predict
value (95%CI)

Negative predict
value (95%CI)

Accuracy
(95%CI)

0.75 (0.657, 0.843) 0.579 (0.468, 0.690) 0.663 (0.568, 0.758) 0.677 (0.563, 0.791) 0.669 (0.596, 0.742)

0.786 (0.698, 0.873) 0.842 (0.760, 0.924) 0.846 (0.766, 0.926) 0.780 (0.691, 0.870) 0.813 (0.752, 0.873)

0.821 (0.740, 0.903) 0.75 (0.653, 0.847) 0.784 (0.698, 0.870) 0.792 (0.698, 0.885) 0.788 (0.724, 0.851)

0.893 (0.827, 0.959) 0.868 (0.792, 0.944) 0.882 (0.814, 0.951) 0.880 (0.806, 0.954) 0.881 (0.831, 0.931)

0.70 (0.499, 0.901) 0.684 (0.475, 0.893) 0.70 (0.499, 0.901) 0.684 (0.475, 0.893) 0.692 (0.547, 0.837)

0.70 (0.499, 0.901) 0.947 (0.847, 1.0) 0.933 (0.807, 1.0) 0.75 (0.577, 0.923) 0.821 (0.700, 0.941)

0.75 (0.560, 0.940) 0.684 (0.475, 0.893) 0.714 (0.521, 0.907) 0.722 (0.515, 0.929) 0.718 (0.577, 0.859)

0.75 (0.560, 0.940) 0.842 (0.678, 1.0) 0.833 (0.661, 1.0) 0.762 (0.580, 0.944) 0.795 (0.668, 0.922)

0.700 (0.500, 0.850) 0.655 (0.520, 0.811) 0.710 (0.510,0.857) 0.655 (0.455,0.758) 0.642 (0.488,0.758)

0.750 (0.620,0.902) 0.755 (0.645,0.864) 0.940 (0.814,1.00) 0.761 (0.588, 0.934) 0.802 (0.702,0.920)

0.750 (0.620,0.902) 0.755 (0.645,0.864) 0.725 (0.511,0.857) 0.732 (0.521,0.934) 0.727 (0.547,0.869)

0.805 (0.700,0.950) 0.775 (0.675,0.880) 0.855 (0.682,0.966) 0.768 (0.591,0.924) 0.800 (0.655, 0.950)

0.650 (0.485,0.800) 0.585 (0.478,0.700) 0.688 (0.500, 0.869) 0.668 (0.574,0.829) 0.584 (0.458,0.827)

0.705 (0.520,0.866) 0.844 (0.750, 0.935) 0.824 (0.752,0.955) 0.752 (0.628,0.921) 0.811 (0.701,0.992)

0.705 (0.520,0.866) 0.775 (0.662,0.858) 0.700 (0.515,0.868) 0.699 (0.578,0.842) 0.733 (0.604,0.900)

0.805 (0.700,0.920) 0.869 (0.758, 0.954) 0.838 (0.627,0.995) 0.770 (0.613,0.922) 0.852 (0.714,0.988)

Jian
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.15

112
6
0

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
8

AUC
95%CI Hosmer-

Lemeshow
Brier
scoreLower Upper

Internal
Training set

Clinical 0.73 0.66 0.81 0.814 0.212

MRI 0.85 0.79 0.91 0.244 0.148

Radiomics 0.83 0.76 0.89 0.604 0.159

Combined 0.94 0.91 0.97 0.516 0.095

Internal
Test set

Clinical 0.65 0.48 0.81 0.467 0.202

MRI 0.83 0.78 0.9 0.66 0.175

Radiomics 0.79 0.63 0.92 0.382 0.22

Combined 0.9 0.79 0.98 0.294 0.082

Nanpin
hospital

Clinical 0.66 0.51 0.8 0.531 0.251

MRI 0.78 0.66 0.91 0.626 0.264

Radiomics 0.81 0.7 0.93 0.157 0.159

Combined 0.96 0.92 1 0.248 0.062

Datian
hospital

Clinical 0.81 0.71 0.91 0.566 0.315

MRI 0.89 0.81 0.98 0.342 0.324

Radiomics 0.85 0.75 0.95 0.189 0.189

Combined 0.94 0.88 0.99 0.375 0.057
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3.6 Decision curve analysis (DCA)

DCA demonstrated that the combined model offered the

greatest clinical benefit across a wide range of threshold

probabilities compared to the individual models (Figure 4). This

suggests the combined model ’s predictions have better

clinical applicability.
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3.6.1 NRI and IDI
Net Reclassification Improvement (NRI) and Integrated

Discrimination Improvement (IDI) analyses showed that the

combined model significantly outperformed the other models in

reclassifying patients at risk of MVI (Table 3).
3.7 Lasso regression for feature selection

Lasso regression was applied to identify the most important

features in the combined model (Figure 5). The Lasso regression in

clinical, MRI and radiomics were showed in Supplementary

Figures 1–3. Key selected features included pseudocapsule,

peritumoral enhancement, and wavelet-based radiomics

indicators (For graphical aesthetics, abbreviate the names as follows:

‘pseudocapsule’: ‘PCapsule’,

‘Peritumoral_enhancement’: ‘PEnhancement’,

‘T1Arterywavelet_HHHglszmHighGrayLevelZoneEmphasis’:

‘T1A_HHH_GLZoneEmp’,

‘T1AArterywavelet_HHHglszmLowGrayLevelZoneEmphasis’:

‘T1A_HHH_LGZoneEmp’,

‘T1Portalwavelet_LHLglcmImc1’: ‘T1P_LHL_Imc1’,

‘T1Portalwavelet_LHLglszmGrayLevelNonUniformityNormalized’

: ‘T1P_LHL_GLNonUnif’,

‘T1Portalwavelet_LHHfirstorderMedian’: ‘T1P_LHH_Median’,

‘T1Portalwavelet_HLLfirstorderMean’: ‘T1P_HLL_Mean’,

‘T1Portalwavelet_HLHfirstorderMedian’: ‘T1P_HLH_Median’,

‘T1Pwavelet_HHHfirstorderKurtosis’: ‘T1P_HHH_Kurtosis’,

‘T1Scan_sigma_1_5_mm_3DglszmSmallAreaLowGrayLevel

Emphasis’: ‘T1S_SAL_GLZ’,

‘T1 Scan wavelet_HHLfirstorderMedian’: ‘T1S_HHL_Median’,
FIGURE 3

Calibration curves for predictive models. (A) Calibration curve for the clinical model. (B) Calibration curve for the MRI model. (C) Calibration curve
for the radiomics model. (D) Calibration curve for the combined model. The calibration curves demonstrate the agreement between the predicted
probabilities and observed outcomes for the four models. The combined model (D) shows the closest alignment with the ideal diagonal line across
all datasets, indicating superior calibration compared to the clinical, MRI, and radiomics models.
FIGURE 4

Decision curve analysis (DCA). The DCA curves illustrate the clinical
net benefit of the clinical, MRI, radiomics, and combined models
across a range of high-risk thresholds. The combined model
consistently shows the highest net benefit across different
thresholds, indicating superior clinical applicability compared to the
individual models (clinical, MRI, radiomics). The “All” and “None” lines
represent the extremes where all patients or no patients are
assumed to be at risk.
TABLE 3 NRI and IDI of combined model VS other models.

NRI
Z

value
P

value
IDI

Z
value

P
value

Clinical 0.388 5.135 <0.001 0.412 5.747 <0.001

MRI 0.102 2.124 0.035 0.181 2.652 0.018

Radiomics 0.184 3.122 0.002 0.232 3.256 0.001
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‘T1 Scan wave le t_HHLglszmSmal lAreaEmphas i s ’ :

‘T1S_HHL_SAEmphasis’,

‘T1delayoriginalfirstorderKurtosis’: ‘T1Delay_Kurtosis’,

‘T1delaywavelet_LHLfirstorderMedian’: ‘T1Delay_LHL_Median’,

‘T2log_sigma_0_5_mm_3DgldmDependenceVariance ’ :

‘T2Log_DepVariance’,

‘T2wavelet_LLLngtdmBusyness’: ‘T2Wavelet_Busyness’). The

sort of importance showed in Figure 6.
3.7.1 Swarm plot
This plot illustrated the distribution of SHAP values for each

feature, highlighting the direction and magnitude of their influence

on the model’s predictions, showed in Figure 7.
Frontiers in Oncology 10
3.7.2 Force plot
This visualization provided a clear representation of how each

feature contributed positively or negatively to individual predictions

for MVI (Figure 8).

3.7.3 Waterfall plot
The waterfall plot depicted the cumulative effect of the significant

features on the predicted probabilities, allowing for an intuitive

understanding of the model’s decision-making process (Figure 9).

3.7.4 Dependence plot
The dependence plot showcased the relationship between

selected features and their SHAP values, indicating how variations

in feature values influenced model predictions (Figure 10).
FIGURE 6

Feature importance ranking. This figure presents the sorted features based on their importance in predicting MVI. The features are ranked according
to their contribution to the model’s predictive performance, with the most significant features, such as pseudocapsule and peritumoral
enhancement, displayed at the top. These results highlight the key indicators driving the predictions in the combined model.
FIGURE 5

Lasso regression for feature selection. (A) Lasso coefficient paths for combined features. (B) Lasso coefficients after selection, indicating the most important
features for predicting MVI. (C) Mean squared error (MSE) path from cross-validation (LassoCV), showing the optimal feature selection process. This figure
illustrates the Lasso regression process, highlighting how important predictive features were identified and refined to enhance model performance.
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4 Discussion

In this multi-center study, we evaluated the predictive capability

of a novel integrated model that combines clinical indicators, MRI

assessments, and radiomics features across multiple medical centers

to predict MVI in solitary hepatocellular carcinoma (HCC). Our

results demonstrated that the combined model consistently

outperformed individual models (clinical, MRI, and radiomics) in
Frontiers in Oncology 11
both internal and external validation sets, achieving the highest

AUC across all datasets. This reinforces the value of integrating

multimodal data in predicting MVI, aligning with previous studies

that emphasize the enhanced predictive power of combining clinical

and MRI assessments features. Notably, the multi-center design

strengthens the generalizability of our findings.

One of the major strengths of our study is the inclusion of

external validation cohorts, which helps mitigate the limitations
FIGURE 7

SHAP summary plot. This figure illustrates the SHAP (SHapley Additive exPlanations) summary plot, showcasing the impact of each feature on the
model’s predictions. The features are ordered by their importance, with the color gradient indicating whether the feature value is high (red) or low
(blue). The plot highlights how individual features influence the prediction of MVI, providing insights into the model’s decision-making process.
FIGURE 8

SHAP force plot. (A) Correct prediction: The SHAP force plot shows how individual features contribute to a correct prediction of MVI. Features in red
push the prediction toward MVI, while features in blue push away from it. (B) Incorrect prediction: This SHAP force plot illustrates the contributions
of individual features in a case where the model’s prediction of MVI was incorrect, highlighting the feature influences that led to the misclassification.
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often associated with single-center studies. The strong performance

of the combined model in external validation sets highlights its

robustness and potential applicability in diverse clinical settings.

Importantly, features such as pseudocapsule and peritumoral

enhancement consistently emerged as significant predictors of

MVI, supporting their established roles in tumor invasiveness and

vascular proliferation, as indicated in prior research (19, 20).

The clinical implications of our findings are significant,

particularly in improving preoperative assessment and treatment

planning for HCC patients. By accurately predicting MVI, our

model could guide personalized treatment strategies, including

decisions regarding surgical resection and adjuvant therapies,

ultimately improving patient outcomes. Furthermore, the
Frontiers in Oncology 12
integration of advanced radiomics into standard diagnostic

protocols could enhance the precision of preoperative

risk stratification.

Mechanistically, the association between specific MRI

assessment features and MVI observed in our study is consistent

with findings from previous research. For example, features such as

peritumoral enhancement and pseudocapsule presence, which were

identified as significant predictors of MVI in our model, have also

been reported in other studies to be linked to tumor invasiveness

and angiogenesis (21). These features are believed to reflect

increased vascular permeability and the formation of a fibrous

capsule, both of which are associated with more aggressive

tumor behavior.
FIGURE 9

SHAP waterfall plot. (A) Accurate prediction: The waterfall plot illustrates how each feature contributes to the accurate prediction of MVI. Features
pushing the prediction toward MVI are displayed in red, while those pushing it away are in blue. (B) Incorrect prediction: In this case, the waterfall
plot shows how the combination of features led to an incorrect prediction, highlighting the cumulative influence of each feature in
the misclassification.
FIGURE 10

SHAP dependence plot. (A) Accurate prediction: The dependence plot shows how the value of a specific feature correlates with the SHAP value (the
impact on the prediction) in a case where the model made a correct prediction. It demonstrates how changes in the feature’s value influence the
prediction toward or away from MVI. (B) Incorrect prediction: This dependence plot illustrates a scenario where the feature’s value led to an
incorrect prediction. It shows how this feature’s contribution may have misled the model, resulting in an inaccurate classification.
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However, our findings regarding certain radiomics features,

such as texture and shape parameters, differ from some previous

studies. For instance, while several studies have highlighted the

predictive power of first-order statistics such as entropy and

skewness in identifying MVI (22, 23), our analysis found that

higher-order texture features and wavelet-based features played a

more prominent role. This discrepancy may be due to differences in

cohort characteristics or the use of a more advanced machine

learning model, such as the Transformer architecture, which may

be better suited to capture complex, non-linear interactions between

radiomic features and MVI (24).

Additionally, our study’s use of multi-center data may explain

some differences from single-center studies. The heterogeneity of

data across multiple centers can introduce variability that is more

reflective of real-world clinical scenarios, potentially leading to

different patterns of feature importance. For example, previous

single-center studies may not have fully accounted for the

influence of different imaging protocols and patient populations,

which our model has been trained to manage (17). This makes our

model more generalizable, though further prospective validation is

necessary to confirm these findings.

While our study offers several strengths, such as the use of

multi-center data and advanced modeling techniques, it also has

important limitations. Although external validation strengthens the

generalizability of our results, the relatively modest sample size,

despite being multi-centered, may affect the broader applicability of

the findings. Future studies with larger and more diverse cohorts are

needed to further validate the model across different populations.

Additionally, while our study integrates clinical indicators, MRI

assessments, and radiomics, it does not introduce entirely new

methodologies or groundbreaking theories. The approach follows

established techniques and, as such, does not represent a major

theoretical advancement in the field. The combination of these

established techniques, however, provides incremental

improvements in prediction accuracy, which we believe can still

offer significant clinical value. Another limitation is the

retrospective design, which may introduce inherent biases. While

we have addressed potential bias due to imbalanced data using

SMOTE to ensure balanced class distribution during model

training, this remains a potential limitation. Future research

should adopt prospective designs to mitigate this issue and

further enhance the robustness of the model. Furthermore, while

MRI assessments are a valuable modality in this study, they may not

be universally available in all clinical settings, limiting the general

applicability of the model. Expanding the model to incorporate

other imaging modalities, such as CT or PET, and integrating novel

biomarkers could further enhance its predictive power and

applicability. Despite these limitations, our findings underscore

the need for integrating advanced computational techniques, such

as radiomics and machine learning, into oncological research. The

use of multi-center data in this study serves as a foundation for

future research, encouraging the exploration of additional data

sources and modalities to further improve prediction models

for MVI.
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Future research should aim to refine the model by incorporating

molecular and genetic data, which could provide deeper insights

into the biological mechanisms driving MVI. Additionally, clinical

trials should focus on validating the model’s performance in real-

world clinical settings and across diverse patient populations to

ensure its utility in clinical practice.

In conclusion, this multi-center study demonstrates the

effectiveness of an integrated approach that combines clinical,

MRI assessments, and radiomics features to predict MVI in

solitary HCC. The strong performance of the combined model

in both internal and external validation sets highlights its

potential for improving clinical decision-making and patient

outcomes. As radiomics and machine learning techniques

continue to evolve, their integration into routine clinical

practice holds promise for enhancing the accuracy and utility

of cancer prediction models, ultimately leading to better patient

management strategies.
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