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Objective: To investigate the predictive value of radiomics models based on

intra-tumoral ecological diversity (iTED) and temporal characteristics for

assessing microvascular invasion (MVI) in patients with hepatocellular

carcinoma (HCC).

Material and Methods: We retrospectively analyzed the data of 398 HCC

patients who underwent dynamic contrast-enhanced MRI with Gd-EOB-DTPA

(training set: 318; testing set: 80). The tumors were segmented into five distinct

habitats using case-level clustering and a Gaussian mixture model was used to

determine the optimal clusters based on the Bayesian information criterion to

produce an iTED feature vector for each patient, which was used to assess intra-

tumoral heterogeneity. Radiomics models were developed using iTED features

from the arterial phase (AP), portal venous phase (PVP), and hepatobiliary phase

(HBP), referred to as MiTED-AP, MiTED-PVP, and MiTED-HBP, respectively. Additionally,

temporal features were derived by subtracting the PVP features from the AP

features, creating a delta-radiomics model (MDelta). Conventional radiomics

features were also extracted from the AP, PVP, and HBP images, resulting in

three models: MCVT-AP, MCVT-PVP, and MCVT-HBP. A clinical-radiological model (CR

model) was constructed, and two fusion models were generated by combining

the radiomics or/and CR models using a stacking algorithm (fusion_R and

fusion_CR). Model performance was evaluated using AUC, accuracy, sensitivity,

and specificity.

Results: The MDelta model demonstrated higher sensitivity compared to the

MCVT-AP and MCVT-PVP models. No significant differences in performance were

observed across different imaging phases for either conventional radiomics (p =

0.096–0.420) or iTED features (p = 0.106–0.744). Similarly, for images from the

same phase, we found no significant differences between the performance of
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conventional radiomics and iTED features (AP: p = 0.158; PVP: p = 0.844; HBP:

p = 0.157). The fusion_R and fusion_CR models enhanced MVI discrimination,

achieving AUCs of 0.823 (95% CI: 0.816–0.831) and 0.830 (95% CI: 0.824–

0.835), respectively.

Conclusion: Delta radiomics features are temporal and predictive of MVI,

providing additional predictive information for MVI beyond conventional AP

and PVP features. The iTED features provide an alternative perspective in

interpreting tumor characteristics and hold the potential to replace

conventional radiomics features to some extent for MVI prediction.
KEYWORDS

intra-tumoral heterogeneity, temporal features, microvascular invasion, radiomics,
ensemble learning
Introduction

Hepatocellular carcinoma (HCC) is the most common form of

primary liver cancer, ranking sixth in global incidence and third in

mortality rate (1). Although surgical resection and liver

transplantation have been shown to be effective for HCC, the

high recurrence rate remains a major factor contributing to poor

overall survival (2). Microvascular invasion (MVI), characterized by

the presence of cancer cell clusters within endothelial-lined vascular

spaces visible under microscopy (3), is an important predictor of

recurrence and reduced survival in HCC patients (4, 5) and also

plays a key role in determining treatment strategies (6). Currently,

MVI is typically diagnosed through the examination of

postoperative surgical specimens. However, needle biopsies often

have low diagnostic yields and pose a risk of tumor implantation,

making the preoperative and noninvasive assessment of MVI

particularly challenging.

Radiomics, which provides important insights into tumor

heterogeneity and the tumor microenvironment (7), offers potential

for the preoperative identification of MVI. In recent years, radiomics

models based on dynamic contrast-enhanced MRI have gained

attention for their potential to predict MVI (8, 9). Multi-sequence

and multi-parameter radiomics models have demonstrated superior

predictive capabilities compared to models based on single-sequence

imaging (8). Gadolinium ethoxybenzyl diethylenetriamine

pentaacetic acid-enhanced MRI (Gd-EOB-DTPA MRI) is

commonly used to improve the detection and characterization of

HCC in clinical practice (10–12), and it has shown utility in

evaluating tumor features related to MVI (13, 14).Thus, images

captured during the hepatobiliary phase (HBP) are particularly

valuable for defining tumor boundaries (15).

Delta radiomics involves the evaluation of relative changes in

radiomic features over time (16, 17). HCC typically exhibits arterial

phase (AP) hyperenhancement followed by washout in the portal

venous phase (PVP). Therefore, changes in radiomic features

derived from dynamic contrast-enhanced imaging can serve as
02
important predictive biomarkers for MVI (18). Previous studies

have primarily focused on individual imaging phases, often

neglecting the temporal characteristics of the tumor (19, 20). In

this study, we utilized deltaradiomics by subtracting PVP features

from AP features to capture temporal variations that could enhance

the prediction of MVI.

Previous studies mainly extracted radiomic features from the

entire tumor without adequately addressing inter-tumoral

heterogeneity (21). However, we believe that radiomic habitat

analysis, which uses clustering methods to identify similar voxel

groupings and describe environmental habitats based on ecological

and biodiversity principles (22), could provide a more detailed

understanding of the heterogeneous nature of HCC. Given the

highly heterogeneous nature of HCC, the quantitative

characterization of distinct intra-tumoral habitats may offer

valuable predictive information for MVI. In this study, we applied

radiomic habitat analysis on AP, PVP, and HBP images from Gd-

EOB-DTPA MRI to investigate the potential of intra-tumoral

habitat characteristics in predicting MVI.
Materials and methods

Study population

This study included 312 HCC patients from Hunan Provincial

People’s Hospital/The First Affiliated Hospital of Hunan Normal

University (referred to as dataset A) and 86 patients from the Third

Affiliated Hospital of Sun Yat-sen University (referred to as dataset

B) between February 2018 and October 2023. Institutional review

board approval was obtained from each participating center. The

inclusion criteria were: (1) a solitary tumor, (2) pathologically

confirmed HCC following surgical resection, (3) available

information on MVI status and grade, and (4) preoperative Gd-

EOB-DTPAMRI conducted within two weeks prior to surgery. The

exclusion criteria were: (1) macrovascular invasion, (2) prior HCC
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treatment before MRI (e.g., radiofrequency ablation, microwave

ablation, or transcatheter arterial chemoembolization), (3) tumors

larger than 10 cm in maximum diameter (as previous studies

(23–25) have shown a greater likelihood of MVI in such cases),

(4) inadequate MRI quality, and (5) missing pathological or clinical

data. The two datasets were combined to form a total cohort of 398

patients. A randomly selected 20% of this cohort was designated as a

fixed test set, and the remaining 80% of the cases were used for 5-

fold cross-validation. Clinical data, including variables such as age,

gender, etiology, cirrhosis, MVI status, and pathological

differentiation, were extracted from electronic medical records

and are summarized in Table 1.
Imaging protocol

For dataset A, MRI scans were performed using 1.5T or 3.0T

MRI machines from GE (Signal Greator, Premier), Philips

(Achieva, Ingenia), and Siemens (Magnetom Trio, Magnetom
Frontiers in Oncology 03
Prisma, Vida). For dataset B, MRI scans were conducted using

1.5T or 3.0T MRI systems from GE (Optima MR360, Signa Excite,

Discovery MR750, Signa Architect), Philips (Achieva), Siemens

(Magnetom Prisma), and United Imaging (uMR790). All patients

underwent fat-saturated T1-weighted pre-contrast scans, followed

by scans in the AP, PVP, and HBP. AP images were acquired 20-30

seconds after gadolinium contrast injection, PVP images 60-70

seconds post-injection, and HBP images were taken 20-30

minutes after contrast administration.
Assessment of radiological features

Two experienced radiologists, each with over ten years of

experience in MRI diagnostics, independently and blindly

assessed the radiological features of the tumors. A consensus was

reached regarding the following six characteristics: (1) tumor size,

(2) non-smooth tumor margin, (3) radiological capsules (26), (4)

intratumoral artery (27), (5) arterial peritumoral enhancement (28),

and (6) peritumoral hypointensity on HBP (29).
Image preprocessing and
feature extraction

Primary tumors from the HBP images were manually delineated

by a senior radiologist, Yuli Zeng, with over 15 years of experience,

using the ITK-SNAP 3.4 software platform (www.itksnap.org). The

AP and PVP images were then registered to the HBP images, which

served as reference images. To correct for low-frequency intensity

nonuniformity, N4 bias field correction (30) was applied to all

images. All images were resampled to an isotropic voxel size of 1 × 1

× 1 mm3 using B-spline interpolation, while the delineated tumor

masks were resampled using nearest neighbor interpolation.

For each sequence (i.e., AP, PVP, and HBP), 105 radiomics

features were extracted from the original images using the

PyRadiomics package (31). These features included 14 shape

features and 91 texture features. Additionally, texture features

were extracted using wavelet filters (HHH, HHL, HLH, HLL,

LHH, LHL, LLH, LLL) and Laplacian of Gaussian filters with

sigmas of 2.0, 3.0, 4.0 and 5.0, which resulted in a comprehensive

set of 1197 features for each sequence.
Delta radiomics features

The images of HCC patients typical ly exhibit AP

hyperenhancement followed by washout in the PVP (16). To

assess radiomic changes during dynamic contrast enhancement,

the features from the AP images were compared to those from the

PVP images using the following Equation 1:

FDelta = FAP − FPVP (1)

Where FDelta represents the change in features between AP

images and PVP images, which is time-related and predictive to
TABLE 1 Clinical and radiologic information of HCC cohorts.

Characteristics
Training
(N = 318)

Testing
(N = 80)

P
valueb

Patient demographics

Age (year) 56 (22–80) 55 (25–74) 0.993

Gender
M
F

271
47

67
13

0.878

Etiology

HBV infectiona 160 (50) 49 (61) 0.104

Radiological features

Tumor size (cm) 4.24 ± 2.14 4.04 ± 2.04 0.435

Nonsmooth tumor
margin (present)a

189 (59) 44 (55) 0.553

Enhancing capsule (present)a 226 (71) 52 (65) 0.357

Intertumoral artery (present)a 82 (26) 23 (29) 0.692

Arterial peritumoral
enhancement (present)a

108 (34) 23 (29) 0.451

Peritumoral hypointensity on
HBP (present)a

103 (32) 20 (25) 0.253

Pathological parameters

Degree of differentiationa 0.367

well 24 (7) 4 (5)

moderate 238 (75) 64 (80)

poor 56 (18) 12 (15)

Cirrhosis (stage of fibrosis 4)a 120 (38) 36 (45) 0.288

MVIa 132 (42) 33 (41) 1.000
HBV, hepatitis B virus; MVI, microvascular invasion; HBP, hepatobiliary phase.
aData are numbers of patients, and data in parentheses are percentages.
bThe p-value for categorical variables were calculated using the chi-square test, while those for
continuous variables were calculated using the Mann-Whitney U test.
frontiersin.org

http://www.itksnap.org
https://doi.org/10.3389/fonc.2025.1510071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2025.1510071
MVI, FAP represents the features extracted from AP images, and

FPVP refers to the features generated from the PVP images.
Intra-tumoral subregion partitioning and
ecological diversity feature generation

Radiomics offers detailed insights into tumor phenotypes and

the tumor microenvironment (32). To capture intra-tumoral

heterogeneity, we performed intra-tumoral habitat partitioning in

two steps: case-based clustering and subregion feature extraction.

Case-based clustering was conducted independently for each tumor

using the k-means algorithm with squared Euclidean distances

between voxel intensities. The number of clusters was set to five

due to the small tumor volumes in this study. The clustering process

is performed using the in-house nnFAE software. In the subregion

feature extraction step, radiomics features, including histogram,

GLCM, GLRLM, NGTDM, GLSZM and GLDM, were extracted

from each subregion without applying additional filters.

Subsequently, we applied a Gaussian mixture model to perform

unsupervised clustering of radiomic features across all tumor habitats.

Theoptimal number of clusters, representing thediversity of the tumor

ecosystem, was determined using the Bayesian Information Criterion

(BIC) (33), which generated an intra-tumoral ecological diversity

(iTED) feature vector for each patient, which could then be used for

further analysis. Each iTED feature reflects the optimal number of

clusters corresponding to specific radiomic features. For example, the

iTED_entropy feature represents the optimal number of clusters for

assessing tumor heterogeneity, using traditional entropy as a metric.

While conventional entropy measures the unpredictability or

variability of image values, iTED_entropy quantifies the complexity

of intra-tumoral heterogeneity by evaluating entropy at the cluster

level. This iTED feature vector provides a novel approach to tumor

characterization, potentially offering new insights into tumor behavior

and structure (34).

The generation of the conventional radiomics features, delta

radiomics features and iTED features is shown in Figure 1. To

address potential variability in the radiomics features caused by

differences in imaging protocols across the two centers, the ComBat

harmonization method (35) was applied.
Feature stability assessment

To preselect features with high stability, we simulated

delineation perturbations based on the training cohort.

Morphological operations, including dilation and erosion, were

applied slice-by-slice using a circular structural element with

distances of 1 mm and 2 mm. This process generated four

distinct VOIs, labeled D1, D2, E1, and E2. To assess feature

stability, we used the inter-class correlation coefficient (ICC) (36),

classifying features as having high (ICC ≥ 0.75), moderate (0.75 >

ICC ≥ 0.50), or low (ICC < 0.50) stability. Following established

guidelines (37), we applied the ICC (2,1) model as defined by Shrout

and Fleiss (38) and calculated the ICC using the Pingouin statistical

library (https://github.com/raphaelvallat/pingouin).
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ICC was calculated for all five ROIs, including the original ROI,

and the dilated (1 mm and 2 mm) and eroded (1 mm and 2 mm)

ROIs. Only first-order and textural features were evaluated for

stability, with features having an ICC greater than 0.75 selected for

the next stage of the feature selection pipeline. Shape-related

features, however, were directly retained and included in the

pipeline without undergoing stability evaluation.
Feature selection

For both conventional radiomic features and delta radiomics

features, the selection process began with retaining features that

showed significant differences between patients with and without

MVI, as determined by the Mann–Whitney U-test. Next, we

selected features that achieved an Area Under the Curve (AUC)

greater than 0.60 in univariate logistic regression analysis. To

further refine the feature set, the minimum redundancy and

maximum relevancy (mRMR) method was applied to eliminate

redundant and irrelevant features. Finally, the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm was used to

reduce the feature set to only the most predictive features. For

conventional radiomic features, this process resulted in the selection

of 18 features from AP images, 13 from PVP images, and 10 from

HBP images. For delta radiomics features, 14 features were retained

for model development.

For the iTED features, we first applied z-score normalization to

standardize the features and removed those with minimal variance.

Next, features with an AUC greater than 0.55 in univariate logistic

regression were retained. The LASSO algorithm was then applied,

leaving 4 features from AP images, 4 from PVP images, and 9 from

HBP images for further analysis.

The details of the selected features and their corresponding ICC

values are provided in Supplementary Tables S1-S7 of the

Supplementary Material.
Prediction model construction and
statistical analysis

Differences in clinical and radiological characteristics between the

training and test cohorts were assessed using the Mann-Whitney U

test for continuous variables and the chi-square test for categorical

variables. In the training dataset, five-fold cross-validation with

stratified sampling was performed to ensure consistent category

proportions. A random forest (RF) model was constructed to

classify patients with or without MVI, and Bayesian optimization

(39) was applied to fine-tune the model’s hyperparameters.

Ultimately, eight model types were constructed using (1) A clinical-

radiological model (CR model) using demographic, pathological, and

radiological features, (2) conventional radiomic features from AP

images (MCVT-AP), (3) conventional radiomic features from

PVP images (MCVT-PVP), (4) conventional radiomic features from

HBP images (MCVT-HBP), (5) delta radiomics features (MDelta), (6)

iTED features from AP images (MiTED-AP), (7) iTED features from

PVP images (MiTED-PVP), and (8) iTED features from HBP images
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(MiTED-HBP). Then, we developed a fusion_R model to combine the

predictions from the above seven radiomics models using a stacking

algorithm (40). Furthermore, we constructed a fusion_CRmodel, which

combines the radiomics models with the CR model. The workflow of

developing the fusion model by stacking algorithm is shown in Figure 2.

The performance of the models in predicting MVI was

evaluated using the Area Under the Receiver Operating

Characteristic Curve (AUC) with 95% confidence intervals, as

well as accuracy (ACC), sensitivity, and specificity. Delong’s test

was employed to compare the AUCs of different models, with

statistical significance set at p < 0.05.
Frontiers in Oncology 05
Results

Performance of the CR model

A total of 398 HCC patients were included in the study, with

318 patients in the training dataset (mean age 56 years; 271 males,

47 females) and 80 patients in the testing dataset (mean age 55

years; 67 males, 13 females). As shown in Table 1, the two sets were

well-balanced as there were no statistically significant differences in

clinical-radiological characteristics either between the training and

testing sets or within each set (p = 0.104-1.000).
FIGURE 1

Schematic shows the workflow of the generation of conventional radiomics features, delta radiomics features and ecological diversity features.
(A) Conventional radiomics features. (B) Delta radiomics features. (C) Ecological diversity features.
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Univariate analysis identified one demographic factor (HBV

infection), four radiological factors (tumor size, nonsmooth tumor

margin, arterial peritumoral enhancement, and peritumoral

hypointensity on HBP), and two pathological factors (degree of

differentiation and cirrhosis, stage 4 fibrosis) as being associated with

MVI in the training set. Multivariable analysis (Table 2) revealed that

tumor size (OR = 1.20, 95% CI: 1.06–1.36, p < 0.001), nonsmooth
Frontiers in Oncology 06
tumormargin (OR = 2.84, 95%CI: 1.63–5.06, p < 0.001), and cirrhosis

(stage 4 fibrosis) (OR = 2.02, 95% CI: 1.19–3.50, p = 0.01) were

significant predictors of MVI and were incorporated into the

clinical-radiological (CR) model. The CR model achieved an AUC of

0.784 (95% CI: 0.766–0.802) in the training dataset, 0.722 (95% CI:

0.661–0.784) in the validationdataset, and0.677 (95%CI: 0.610–0.744)

in the testing dataset.
Performance of models based on
conventional radiomics features

The performance of models based on conventional radiomics

features is presented in Table 3. The MCVT-AP model achieved an

AUC of 0.723 (95% CI: 0.655–0.789) in the testing cohort,

demonstrating superior diagnostic performance compared to the

MCVT-PVP model (AUC = 0.672, 95% CI: 0.611–0.734) and the

MCVT-HBP model (AUC = 0.620, 95% CI: 0.601–0.639). The higher

signal contrast within and between tumors on AP images, due to

significant enhancement, likely contributed to this improved

performance. Conversely, the MCVT-HBP model exhibited lower

sensitivity (0.496), likely due to the minimal signal variation

observed in HCC lesions during the HBP phase. Figure 3

illustrates the mean receiver operating characteristic (ROC)
TABLE 2 Stepwise multivariable logistic regression analysis for clinical
and radiological variables.

Variable b OR (95% CI) P value

HBV infection 0.41 1.51 (0.83-2.78) 0.18

Tumor size 0.18 1.20 (1.06-1.36) < 0.001*

Nonsmooth tumor margin 1.05 2.84 (1.63-5.06) < 0.001*

Arterial peritumoral enhancement -0.04 0.96 (0.38-2.34) 0.93

Peritumoral hypointensity on HBP 0.73 2.08 (0.85-5.22) 0.11

Degree of differentiation -0.04 0.96 (0.74-1.18) 0.67

Cirrhosis (stage of fibrosis 4) 0.71 2.02 (1.19-3.50) 0.01*
These analyses were performed using the training data set (n = 318).
CI, confidence interval; OR, odds ratio; HBV, hepatitis B virus; HBP, hepatobiliary phase.
*The P value is statistically significant.
FIGURE 2

The workflow of developing the fusion model. (A) Cross-validation predictions and test set predictions generated by the based learner. (B) The
training process of fusion_R model. (C) The training process of fusion_CR model.
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curves, the probability distribution of classes, and the confusion

matrices for the MCVT-AP, MCVT-PVP, and MCVT-HBP models.
Performance of models based on delta
radiomics features

The performance of the MDelta model is summarized in Table 4.

The MDelta model achieved an AUC of 0.707 (95% CI: 0.678–0.735),

outperforming the MCVT-PVP model (AUC = 0.672, 95% CI: 0.611–

0.734) but falling short of the MCVT-AP model (AUC = 0.723, 95%

CI: 0.655–0.789). Importantly, the MDelta model exhibited a higher

sensitivity (0.672, 95% CI: 0.590–0.753) compared to the MCVT-AP

model (0.635, 95% CI: 0.508–0.763) and the MCVT-PVP model

(0.520, 95% CI: 0.448–0.593), suggesting that delta radiomics

features, which capture time-related changes, provide valuable

predictive information for MVI beyond what is offered by AP and

PVP features alone.
Performance of models based on iTED
radiomics features

As shown in Table 5, the MiTED-HBP model (AUC = 0.727, 95%

CI: 0.706–0.749) outperformed the MiTED-AP model (AUC = 0.613,

95% CI: 0.575–0.651) and the MiTED-PVP model (AUC = 0.691, 95%

CI: 0.676–0.707). Interestingly, the performance of the iTED

models in different phases was the opposite of that observed in

the conventional radiomics models. However, the sensitivity of the

iTED models was relatively low (Sensitivity = 0.460–0.545) in the

testing cohort. Representative MRI images are displayed in Figure 4.

MVI-positive HCC cases were found to have a higher proportion of

habitat-4 in the tumor center. Figure 5 provides a visual assessment

of clustering effectiveness while emphasizing intra-tumor

heterogeneity. In the figure, habitat-1 represents regions with high

enhancement; habitat-2 corresponds to areas with medium to

medium-high enhancement; habitat-3 includes regions with low

or no enhancement; habitat-4 highlights areas of cystic
Frontiers in Oncology 07
degeneration and necrosis; and habitat-5 encompasses regions

with medium-low enhancement.
Performance of the fusion model

As shown in Table 6, the fusion_R model demonstrated

excellent discriminatory performance, achieving an AUC of 0.823

(95% CI: 0.816–0.831) and an accuracy of 0.775 (95% CI: 0.753–

0.796) in the testing cohort. The fusion_R model outperformed the

base classifiers (MCVT-AP, MCVT-PVP, MCVT-HBP, MDelta, MiTED-AP,

MiTED-PVP, and MiTED-HBP) across nearly all evaluation metrics in

both the validation and testing cohorts. Figures 6a, b shows the

ROC and precision-recall (PR) curves for the fusion_R model

alongside the best-performing conventional radiomics model

(MCVT-AP), delta radiomics model (MDelta), and iTED model

(MiTED-HBP).

The performance of the fusion_R model was comparable to that

of the fusion_CR model (AUC = 0.823 vs. AUC = 0.830, p = 0.718),

suggesting that while clinical-radiological features had predictive

value, their contribution to enhancing the radiomics-based

prediction was minimal. The ROC and PR curves for the

fusion_R and fusion_CR models are displayed in Figures 6c, d.

Additionally, we applied sigmoid calibration to the fusion_R and

fusion_CR models. However, the calibration resulted in no

significant improvement in performance, with the fusion_R

model showing a slight change (pre: 0.823 vs. post: 0.825) and the

fusion_CR model exhibiting minimal variation (pre: 0.830 vs. post:

0.828). Supplementary Figure S1 in the Supplementary Material

presents the model calibration curves both before and

after calibration.
Comparison of performance between
different models

The p values of the Delong test between the different models are

shown in Figure 7. The fusion model significantly improved MVI
TABLE 3 The performance of models based on conventional radiomics features.

Model AUC ACC Sensitivity Specificity

MCVT-AP

Training

0.884 (0.865, 0.903) 0.813 (0.781, 0.845) 0.806 (0.714, 0.899) 0.817 (0.723, 0.911)

MCVT-PVP 0.870 (0.829, 0.910) 0.806 (0.754, 0.857) 0.795 (0.733, 0.858) 0.813 (0.709, 0.917)

MCVT-HBP 0.885 (0.865, 0.905) 0.810 (0.770, 0.849) 0.830 (0.751, 0.907) 0.796 (0.691, 0.900)

MCVT-AP

Validation

0.766 (0.705, 0.826) 0.719 (0.637, 0.802) 0.689 (0.530, 0.848) 0.741 (0.600, 0.881)

MCVT-PVP 0.733 (0.660, 0.806) 0.707 (0.634, 0.780) 0.644 (0.447, 0.841) 0.752 (0.638, 0.867)

MCVT-HBP 0.749 (0.701, 0.797) 0.675 (0.610, 0.741) 0.688 (0.557, 0.820) 0.665 (0.518, 0.812)

MCVT-AP

Testing

0.723 (0.655, 0.789) 0.692 (0.629, 0.755) 0.635 (0.508, 0.763) 0.731 (0.612, 0.850)

MCVT-PVP 0.672 (0.611, 0.734) 0.655 (0.622, 0.687) 0.520 (0.448, 0.593) 0.748 (0.691, 0.805)

MCVT-HBP 0.620 (0.601, 0.639) 0.595 (0.542, 0.647) 0.496 (0.382, 0.611) 0.663 (0.524, 0.802)
The results were reported as the mean of cross-validation with a 95% confidence interval (CI).
AUC, area under ROC curve; ACC, Accuracy.
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discrimination compared to every other model (p = 0.000–0.050)

except the MCVT-AP model (fusion_R: p = 0.101, fusion_CR: p =

0.054). No significant differences were found in the performance of

images from different phases, whether using conventional
Frontiers in Oncology 08
radiomics features (p = 0.096–0.420) or iTED features (p = 0.106–

0.744). Additionally, for images from the same phase, there was no

significant difference in performance between conventional

radiomics features and iTED features (p = 0.158 for AP images,

p = 0.844 for PVP images, and p = 0.157 for HBP images). These

findings suggest that, although the predictive power of iTED

features is not as strong as conventional radiomics features, iTED

features have the potential to replace conventional radiomics

features to some extent.
Discussion

In this study, we developed and validated seven radiomics

models (MCVT-AP, MCVT-PVP, MCVT-HBP, MDelta, MiTED-AP, MiTED-

PVP, and MiTED-HBP) as well as a CR model. Additionally, two fusion

models were constructed by combining radiomics models and/or

the CR model using a stacking algorithm. Our findings
FIGURE 3

The mean ROC curves, the probability distribution of classes and the confusion matrixes of MCVT-AP, MCVT-PVP, and MCVT-HBP model. (a–c), the mean
ROC curves of MCVT-AP (a), MCVT-PVP (b), and MCVT-HBP (c) model, where the shaded region indicates 95% confidence intervals. (d–f) depict the
probability distribution of classes for the MCVT-AP (d), MCVT-PVP (e), and MCVT-HBP (f) model. Presented here is the model from one of the folds that is
closest to the cross-validation mean. (g-i) depict the confusion matrixes for the MCVT-AP (g), MCVT-PVP (h), and MCVT-HBP (i) model. Presented here is
the model from one of the folds that is closest to the cross-validation mean.
TABLE 4 The performance of models based on delta radiomics features.

AUC ACC Sensitivity Specificity

Training
0.923
(0.911,
0.935)

0.837
(0.825,
0.849)

0.896
(0.843, 0.948)

0.795
(0.742, 0.849)

Validation
0.840
(0.688,
0.875)

0.723
(0.602,
0.843)

0.718
(0.605, 0.831)

0.724
(0.465, 0.982)

Testing
0.707
(0.678,
0.735)

0.650
(0.615,
0.684)

0.672
(0.590, 0.753)

0.633
(0.547, 0.720)
The results were reported as the mean of cross-validation with a 95% confidence interval (CI).
AUC, area under ROC curve; ACC, Accuracy.
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demonstrated that both iTED features and temporal delta radiomics

features exhibit substantial predictive power for MVI in HCC.

Gd-EOB-DTPA-enhanced MRI is highly effective in detecting

and characterizing focal liver lesions, particularly small-size HCC.

After the uptake of Gd-EOB-DTPA contrast, normal functioning

hepatocytes exhibit significant enhancement, resulting in high

signal intensity during the HBP. In contrast, lesions with

impaired or absent hepatocyte function show varying degrees of
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reduced signal intensity. This marked difference in signal between

tumor tissues and the surrounding liver parenchyma is more

pronounced in HBP images compared to conventional contrast

agents, making tumor boundaries easier to delineate (15).

Additionally, key radiological features associated with MVI, such

as tumor margin, capsule formation, tumor size, and peritumoral

hypointensity, are more clearly visualized in HBP images (41). Our

findings align with a previous study, which reported AUC and
TABLE 5 The performance of models based on iTED features.

Model AUC ACC Sensitivity Specificity

MiTED-AP

Training

0.699 (0.668, 0.730) 0.644 (0.618, 0.670) 0.649 (0.624, 0.675) 0.640 (0.593, 0.686)

MiTED-PVP 0.822 (0.804, 0.840) 0.740 (0.719, 0.762) 0.820 (0.772, 0.867) 0.684 (0.615, 0.753)

MiTED-HBP 0.883 (0.868, 0.897) 0.800 (0.781, 0.819) 0.818 (0.738, 0.898) 0.787 (0.721, 0.854)

MiTED-AP

Validation

0.639 (0.536, 0.742) 0.600 (0.500, 0.700) 0.606 (0.507, 0.705) 0.596 (0.460, 0.731)

MiTED-PVP 0.719 (0.645, 0.793) 0.632 (0.578, 0.686) 0.696 (0.640, 0.752) 0.585 (0.497, 0.673)

MiTED-HBP 0.781 (0.740, 0.824) 0.707 (0.633, 0.781) 0.734 (0.670, 0.798) 0.687 (0.589, 0.785)

MiTED-AP

Testing

0.613 (0.575, 0.651) 0.587 (0.558, 0.616) 0.460 (0.363, 0.557) 0.676 (0.637, 0.715)

MiTED-PVP 0.691 (0.676, 0.707) 0.677 (0.657, 0.697) 0.545 (0.429, 0.660) 0.769 (0.677, 0.862)

MiTED-HBP 0.727 (0.706, 0.749) 0.690 (0.673, 0.707) 0.496 (0.463, 0.530) 0.825 (0.786, 0.864)
The results were reported as the mean of cross-validation with a 95% confidence interval (CI).
AUC, area under ROC curve; ACC, Accuracy.
FIGURE 4

Representative MRI images of two MVI-negative (a, b) as well as two MVI-positive HCCs (c, d).
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accuracy values of 0.62 and 0.64, respectively, for an HBP-based

model (42).

Delta radiomics analyzes variations in imaging features at

different time points, typically before and after treatment. This

approach allows for the assessment of changes in features following

specific steps in the patient’s care process, such as after therapy, at a

particular time point, or in response to a biological event (43). HCC

is predominantly supplied by the hepatic artery, which leads to

distinct enhancement patterns and signal variations, particularly

during the AP and PVP. These dynamic changes in imaging

features can serve as strong predictors of MVI, offering additional

insights beyond the static AP and PVP features. Xia et al. (18)
Frontiers in Oncology 10
applied delta radiomics to predict MVI using CT images, yielding

AUC values of 0.76 for the internal test set and 0.72 for the external

test set. Our experimental results align closely with these findings.

Recent studies have shown that tumors consist of multiple

subregions or habitats, each representing clusters of tissue with

similar structural, metabolic, or functional characteristics (44). In

our study, we accounted for this spatial heterogeneity by dividing

tumors into five habitats and extracting radiomic features from each

habitat independently. The iTED feature vectors quantified intra-

tumoral heterogeneity by determining the optimal number of

clusters for each feature. Research has highlighted the importance

of radiomic habitat analysis in evaluating MVI. For example, Zhang
FIGURE 5

Spatial habitats clustered by similar voxels using AP images are demonstrated for a 68-year-old male patient (a, b) and a 51-year-old male patient
(c, d). The habitats are defined as follows: habitat-1, regions with high enhancement; habitat-2, regions with medium to medium-high
enhancement; habitat-3, regions with low or no enhancement; habitat-4, regions of cystic degeneration and necrosis; habitat-5, regions with
medium-low enhancement.
TABLE 6 The performance of fusion_R and fusion_CR model.

Training Validation Testing

fusion_R Fusion_CR fusion_R Fusion_CR fusion_R Fusion_CR

AUC 0.876 (0.857, 0.896) 0.868 (0.851, 0.885) 0.869 (0.797, 0.942) 0.863 (0.800, 0.926) 0.823 (0.816, 0.831) 0.830 (0.824, 0.835)

ACC 0.799 (0.765, 0.834) 0.812 (0.786, 0.835) 0.801 (0.692, 0.910) 0.814 (0.737, 0.891) 0.775 (0.753, 0.796) 0.779 (0.772, 0.785)

Sensitivity 0.759 (0.716, 0.802) 0.734 (0.701, 0.768) 0.747 (0.564, 0.929) 0.732 (0.594, 0.870) 0.684 (0.627, 0.741) 0.672 (0.655, 0.689)

Specificity 0.834 (0.821, 0.848) 0.867 (0.847, 0.887) 0.838 (0.754, 0.922) 0.870 (0.760, 0.979) 0.816 (0.750, 0.882) 0.846 (0.834, 0.858)
The results were reported as the mean of cross-validation with a 95% confidence interval (CI).
AUC, area under ROC curve; ACC, Accuracy.
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FIGURE 6

The receiver operating characteristic curves (ROC curves) of (a) MCVT-AP model, MDelta model, MiTED-HBP model and the fusion_R model, (c) the
fusion_R and fusion_CR model. The precision–recall curves (PR curves) of (b) MCVT-AP model, MDelta model, MiTED-HBP model and the fusion_R
model, (d) the fusion_R and fusion_CR model.
FIGURE 7

The p-value of the Delong test between the models.
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et al. (44) demonstrated that habitat-imaging-derived quantitative

metrics from AP images were significantly associated with MVI,

and a nomogram incorporating habitat-derived metrics and tumor

size effectively identified MVI-positive HCC. Liu et al. (22)

combined habitat modeling with a deep-learning approach based

on AP, PVP, and delayed phase images to predict MVI, achieving

AUC values of 0.90 in the training set and 0.86 in the validation set.

Although their results slightly outperform ours (training: AUC =

0.90 vs. 0.88; validation: AUC = 0.86 vs. 0.78), our findings remain

consistent with the predictive power of habitat-based radiomics.

This study demonstrated that the two fusion models

significantly improved the accuracy of MVI prediction. Each of

the individual models performed exceptionally well in different

aspects. The MCVT-AP model, in particular, had a higher AUC value

in the testing cohort, indicating stronger predictive power.

However, the MiTED models displayed lower sensitivity, which

suggests a higher risk of missing MVI-positive patients. In

contrast, the MDelta model exhibited notable sensitivity, making it

more reliable in detecting MVI-positive cases. The fusion models

outperformed all other models, and the reasons for this superior

performance are twofold. First, the models were developed using

images from different contrast enhancement phases, with each

phase providing distinct yet complementary information. Second,

the use of a stacking algorithm to combine the radiomics models

and/or the CR model further enhanced predictive accuracy, reduced

the risk of overfitting, and minimized assumptions related to model

parameters (40).

Despite these promising findings, several limitations should be

acknowledged. First, being a retrospective study, this research

inherently introduced certain biases, such as variations in image

acquisition times during dynamic enhanced scanning and

differences in imaging parameters. Second, despite being manually

delineated by an experienced associate chief diagnostic physician, ROI

boundaries may still be inaccurate in cases of incomplete capsules or

unclear lesion edges due to subjective interpretation. To account for

inter-observer variability, we simulated variability using

morphological operations (dilation and erosion), though these

methods are limited in capturing actual delineation discrepancies.

Third, the fusion models were created by combining all radiomics

models, but alternative model combinations might exist that could

further enhance the models’ performance and robustness.

In conclusion, iTED features reflecting intratumoral

heterogeneity and time-related delta features demonstrated strong

predictive capabilities for the preoperative and non-invasive

prediction of MVI. The fusion_R and fusion_CR models provided

complementary strengths and exhibited superior efficacy, offering

valuable assistance in personalized clinical decision-making and

improving the prognosis of HCC patients.
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