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Multi-omics analysis identifies a
liquid-liquid phase separation-
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neck squamous cell carcinoma
Peng-Lei Zhai1,2†, Meng-Min Chen2,3,4†, Qi Wang5†,
Jing-Jun Zhao1, Xiao-Mei Tang2, Cui-Ni Lu2, Jia Liu2,
Qin-Xin Yang2, Ming-Liang Xiang6, Qing-Hai Tang7, Biao Gu1,
Shu-Ping Zhang1, Si-Ping Tang1* and Da Fu1,2*

1Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of
Chemistry and Materials Science, Hengyang Normal University, Hengyang, China, 2Department of
General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 3Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of
Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine,
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Background: Growing evidence indicates that abnormal liquid–liquid phase

separation (LLPS) can disrupt biomolecular condensates, contributing to

cancer development and progression. However, the influence of LLPS on the

prognosis of head and neck squamous cell carcinoma (HNSCC) patients and its

effects on the tumor immune microenvironment (TIME) are not yet fully

understood. Therefore, we aimed to categorize patients with HNSCC based on

LLPS-related genes and explored their multidimensional heterogeneity.

Methods: We integrated the transcriptomic data of 3,541 LLPS-related genes to

assess the LLPS patterns in 501 patients with HNSCC within The Cancer Genome

Atlas cohort. Subsequently, we explored the differences among the three LLPS

subtypes using multi-omics analysis. We also developed an LLPS-related

prognostic risk signature (LPRS) to facilitate personalized and integrative

assessments and then screened and validated potential therapeutic small

molecule compounds targeting HNSCC via experimental analyses.

Result: By analyzing the expression profiles of 85 scaffolds, 355 regulators, and

3,101 clients of LLPS in HNSCC, we identified three distinct LLPS subtypes: LS1,

LS2, and LS3. We confirmed notable differences among these subtypes in terms

of prognosis, functional enrichment, genomic alterations, TIME patterns, and

responses to immunotherapy. Additionally, we developed the LPRS, a prognostic

signature for personalized integrative assessments, which demonstrated strong

predictive capability for HNSCC prognosis across multiple cohorts. The LPRS also
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showed significant correlations with the clinicopathological features and TIME

patterns in HNSCC patients. Furthermore, the LPRS effectively predicted

responses to immune checkpoint inhibitor therapy and facilitated the

screening of potential small-molecule compounds for treating HNSCC patients.

Conclusion: This study presents a new classification system for HNSCC patients

grounded in LLPS. The LPRS developed in this research offers improved

personalized prognosis and could optimize immunotherapy strategies

for HNSCC.
KEYWORDS

liquid-liquid phase separation, genomic alterations, tumor immune microenvironment,
immunotherapy, drug prediction
Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth

most prevalent cancer globally and the most common malignancy

in the head and neck region, primarily arising from the mucosal

epithelium of the oral cavity, pharynx, and larynx (1). HNSCC

significantly contributes to cancer-related morbidity and mortality,

with risk factors including tobacco use, alcohol consumption, and

human papillomavirus (HPV) infection (2). Over 70% of HNSCC

cases are diagnosed at a locally or regionally advanced stage, and

10% present with distant metastases (3). The 5-year overall survival

(OS) rate for locally advanced HNSCC remains under 50%, and it

drops to just 5% for recurrent or metastatic cases (4). Thus,

identifying biomarkers that can improve patient prognosis and

facilitate targeted treatment is critical.

Liquid–liquid phase separation (LLPS) occurs when biological

macromolecules, such as proteins or nucleic acids, form droplet-like

condensates without an enclosing membrane through weak

multivalent interactions (5). LLPS underlies the formation of various

membraneless organelles, including stress granules, processing bodies,

and nuclear speckles (6). This process allows cells to efficiently conduct

biological activities by compartmentalizing specific macromolecules

within membraneless spaces, facilitating functions such as chromatin

remodeling and regulation of gene transcription and translation (7).

Research indicates that LLPS plays a significant role in the

development and treatment of human diseases, including cancer (8).

For instance, in colon cancer, the phase-separated DDX21 protein

activates MCM5, which triggers epithelial–mesenchymal transition

(EMT) signaling and promotes metastasis.

However, disrupting phase separation reduces MCM5 activation,

thereby hindering metastasis (9). Similarly, interfering with the phase

separation of YAP, a key protein in tumor progression, can suppress

cancer cell proliferation and enhance immune responses (10). It is

important to note that a significant portion of the malignant

properties of tumors is linked to intrinsically disordered domains

(IDRs) in proteins (11), which are regulated by LLPS (12, 13). Recent
02
studies have shown that CYTOR interacts with FOSL1 to form phase-

separated condensates, which can activate FOSL1-dependent super-

enhancers (SEs) to promote tumorigenesis and metastasis in head

and neck squamous cell carcinoma (HNSCC) (14). LLPS also

interacts with factors related to the cytoskeleton, intercellular

adhesion molecules, and matrix degradation, affecting tumor cell

morphology and migratory abilities. By influencing the phase

separation process of these factors, tumor cells may acquire

enhanced migration and invasion capabilities, thereby promoting

metastasis (15). Additionally, LLPS subtypes may impact immune

therapy responses. For example, in bladder cancer, LLPS subtypes

have been identified with distinct immune features, which could

guide targeted therapies (16). These findings underscore the potential

role of LLPS in cancer. Understanding how LLPS influences cancer

can deepen our insight into its underlying pathological mechanisms

and aid in prognosis and selecting personalized treatments. However,

in the context of HNSCC, research on the link between LLPS and

distant metastasis remains limited.

Therefore, in this study, we utilized The Cancer Genome Atlas

(TCGA) dataset to categorize patients with HNSCC based on LLPS-

related genes and explored their multidimensional heterogeneity.

We also evaluated the prognostic significance of these LLPS-related

genes in HNSCC, developing the LLPS-related prognostic signature

(LPRS). Finally, we assessed the potential of this signature to predict

patient outcomes and responsiveness to immune checkpoint

inhibitor (ICI) therapy (Figure 1).
Materials and methods

Data acquisition and processing

RNA sequencing (RNA-seq) data and clinical information for

HNSCC patients were sourced from the TCGA (https://

portal.gdc.cancer.gov/), Gene Expression Omnibus (GEO, http://

www.ncbi.nlm.nih.gov/geo/), and International Cancer Genome
frontiersin.org
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Consortium (ICGC; https://dcc.icgc.org/) databases. Additionally,

RNA-seq data for 366 normal tissues were retrieved from the

Genotype-Tissue Express ion (GTEx) Porta l (ht tps : / /

gtexportal.org/home/). Patients who had incomplete survival data,

an OS of less than 30 days, or lacked a definitive histopathological

diagnosis were excluded from the study. Three cohorts were

compiled for analysis: TCGA-HNSC (N = 501), GSE41613 (N =

97), and ICGC-HNSC (N = 161).

The DrLLPS database (http://llps.biocuckoo.cn/) was used as a

comprehensive resource for LLPS-related proteins, documenting

150 scaffolds, 987 regulators, and 8144 clients, all experimentally

identified in various eukaryotic species. Our study focused

specifically on Homo sapiens, retaining 3,633 LLPS-related genes

after excluding those identified in other species. Of these, 3,541

LLPS-related genes (comprising 85 scaffolds, 355 regulators, and
Frontiers in Oncology 03
3,101 clients) with available expression data from the TCGA cohort

were selected for further analysis. Furthermore, all expression data

were normalized to log2 (FPKM+1) to ensure consistency

across multiple databases. For the GSE41613 cohort, the

“normalizeBetweenArrays” function from the R package

“limma” was employed for background correction and

quantitative normalization.
Determination of LLPS subtypes in
HNSCC patients

The expression data for LLPS-related genes were analyzed to

identify differentially expressed genes (DEGs) between HNSCC and

normal tissues (|log2FC|>0.5, P<0.05). These DEGs were then
FIGURE 1

The overall flow diagram of this study.
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subjected to univariate Cox regression to identify LLPS-related

prognostic DEGs. Functional annotation was carried out using

Gene Ontology (GO) and KEGG pathway analysis with the

“clusterProfiler” R package. The prognostic DEGs were clustered

using a consensus clustering algorithm to define LLPS subtypes in

HNSCC patients. To confirm the reliability of the clustering, the t-

distributed stochastic neighbor embedding (tSNE) algorithm was

applied. Kaplan-Meier survival curves were employed to the assess

survival differences across the LLPS subtypes. Additionally, single-

sample gene set enrichment analysis was used to quantify the

enrichment of markers for each LLPS subtype, using gene sets

from the MSigDB database.
Genomic alteration analysis of
LLPS subtypes

We obtained Mutation Annotation Format (MAF) files from

the TCGA database to analyze and visualize the gene mutation

profiles of various LLPS subtypes using the “maftools” R package. In

addition, copy number alteration (CNA) data for HNSCC patients

were also retrieved from the TCGA database. To identify significant

genomic amplifications or deletions, the CNA data were formatted

into “.seg” files for analysis with the GISTIC2.0 module. The

relevant marker file was downloaded from the official TCGA

website (https://gdc.cancer.gov/about-data/gdc-data-processing/

gdc-reference-files). The analysis was then carried out using the

GISTIC tool, accessible on the GenePattern platform (https://

cloud.genepattern.org/) (17).
Evaluation of tumor immune
microenvironment and
immunotherapy responses

The immune score, stromal score, ESTIMATE score, and tumor

purity for HNSCC patients were computed using the ESTIMATE

algorithm via the “estimate” R package (18). Additionally, the

enrichment scores for 28 immune features were calculated

through single-sample Gene Set Enrichment Analysis (ssGSEA)

(19). Based on the median ssGSEA Z-scores, patients were

categorized into high- or low-immunity subtypes. The

CIBERSORT algorithm was employed to assess the composition

of 22 immune cell types (20). To gauge the effectiveness of anti-PD1

and anti-CTLA4 therapies in HNSCC patients, the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm (accessible at http://

tide.dfci.harvard.edu/) was utilized.
Construction and evaluation of LPRS

To identify hub genes linked to the prognosis of LLPS subtypes, a

protein–protein interaction (PPI) network was constructed using the

STRING database (https://www.string-db.org/) for LLPS-subtype-
Frontiers in Oncology 04
related DEGs (21). This network was then imported into

Cytoscape version 3.8 (https://cytoscape.org/) for hub gene

analysis (22). PPIs were analyzed using the degree algorithm

within the cytoHubba plugin, and hub genes were identified

based on their degree scores. A total of 26 LLPS-subtype-related

hub genes were identified.

To develop the LLPS-related prognostic signature, least absolute

shrinkage and selection operator (LASSO) regression analysis was

conducted using the “glmnet” R package, with the model optimized

by selecting the minimum l through ten-fold cross-validation. The

LASSO algorithm was employed to enhance the model’s accuracy

and robustness. The LPRS was then calculated as follows:

LPRS =o
n

i=1
xi*coefi

Here, xi represents the expression levels of the selected hub

genes and coefi corresponds to the respective LASSO coefficient.

The prognostic value of the LPRS was assessed using Kaplan-Meier

survival curves and log-rank tests across all cohorts. Additionally,

receiver operating characteristic (ROC) curves were employed to

evaluate the predictive accuracy of LPRS for 1-year, 3-year, and 5-

year OS in HNSCC patients.
LPRS impact across independent ICI
therapy cohorts

To validate the role of LPRS in predicting ICI treatment response,

our study used the R package “IMvigor210CoreBiologies” to obtain

the IMvigor210 cohort, aiming to study the atezolizumab response to

anti-PDL1 in metastatic urothelial carcinoma (23). The gene

expression profiles of the cohorts were converted into the log2
(FPKM+1) format for better comparability. The LPRS was

calculated for each patient to assess its correlation with the ICI

treatment response.
Cell culture and transient transfection

Human head and neck squamous cell carcinoma (HNSCC) cell

lines, FaDu (RRID: CVCL_1218) andDetroit562 (RRID: CVCL_1171),

were sourced from the Cell Bank of the Chinese Academy of Sciences.

Additionally, Cal27 (RRID: CVCL_1107) and HN6 (RRID:

CVCL_8129) cell lines were acquired from Bioegene (Shanghai,

China). All mentioned cell lines underwent authentication via STR

profiling. The cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM, catalog number: MA0212, MeilunBio, Shanghai,

China) supplemented with 10% Fetal Bovine Serum (FBS, catalog

number: S1001-500, BIOAGRIO, Brazil) and 1% Penicillin/

Streptomycin (P/S, catalog number: C100C5, NCM Biotech, Suzhou,

China), and were maintained at 37°C in an atmosphere containing 5%

CO2. To ensure the absence of mycoplasma contamination, all cell lines

were routinely treated with mycoplasma removal agents (Biosharp,

catalog number: BL591B, Hefei, China). Transfection of NT5E siRNA
frontiersin.org
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(Genechem, Shanghai, China) was performed using Lipofectamine

2000 (Invitrogen, catalog number: 11668030, Carlsbad, CA). The target

sequence of NT5E siRNA was GGGTGTATACTGTGAGATCAA

(NT5E-si).
RNA extraction and real-time
quantitative PCR

RNA primers were synthesized by Sangon Biotech (Shanghai,

China). Total RNA from cells and tissues was extracted using the

FastPure® Cell/Tissue Total RNA Isolation Kit V2 (Vazyme

Biotech, catalog number: RC101-01, Nanjing, China). Reverse

transcription was performed using the HiScript III All-in-one RT

SuperMix for qPCR (Vazyme Biotech, catalog number:R333-01,

Nanjing, China). RT-qPCR detection of NT5E expression levels was

performed according to the instructions of the ChamQ SYBR qPCR

Master Mix (Vazyme Biotech, catalog number: Q711-02, Nanjing,

China). The primers used are listed in Supplementary Table S1.
Fluorescence recovery after
photobleaching assay

FRAP experiments were performed using a Zeiss LSM900

confocal microscope at 37°C with 5% CO2. A 488 nm laser at

30% maximum power was used to bleach the fluorescence signal

within a region of 1–2 µm diameter for 10 seconds. Fluorescence

recovery was monitored at a rate of 2 seconds per frame. For image

acquisition, intensities were corrected for global photobleaching by

subtracting background signals and adjusting for fluorescence from

a nearby unbleached droplet.
Cell viability assay

The evaluation of cell proliferation ability and the IC50 of drugs

were conducted using the Cell Counting Kit-8 (CCK-8; MeilunBio,

catalog number: MA0218-1, Dalian, China). Cells in the logarithmic

growth phase were digested with 0.25% trypsin. A single-cell

suspension was prepared in medium containing 10% Fetal Bovine

Serum (FBS). Cells were seeded at a working density of 5000 cells

per well in a 96-well plate and cultured at 37°C in a humidified

atmosphere with 5% CO2 until adhesion. Subsequently, at different

time points, the supernatant was discarded, and each well was

supplemented with 10 mL of CCK-8 solution and 90 mL of culture

medium. The absorbance at 450 nm was measured after 2 hours.
Colony formation assay

Cells were seeded at a density of 500 cells per well in a 6-well

plate and maintained in normal medium for two weeks, with

medium replaced every two days. Subsequently, the cells were
Frontiers in Oncology 05
fixed and stained with 0.1% crystal violet at room temperature for

30 minutes. The colonies were photographed, and their numbers

were quantified using ImageJ software.
Wound healing assay for cell migration

Cells were seeded in a 6-well plate, and the migration assay was

performed when cells reached approximately 90% confluency. After

treatment with serum-free medium for 24 hours, a scratch was

created in each well using a sterile 200 mL pipette tip. The wound

closure was photographed with a microscope camera every 24

hours. The wound area at 0, 24, and 48 hours was calculated

using ImageJ, and the cell migration rate was determined by

subtracting the wound area from the original area.

Migration rate = 1 - Wound area after migration/Wound area at

0 hours
Screening of compounds sensitive to high
LPRS HNSCC

The data processing and analysis process are as follows:
1. The gene expression matrix after drug treatment and drug

sensitivity values (AUC) were obtained from the Cancer

Therapeutics Response Portal (CTRP v.2.0, https://portals.

broadinstitute.org/ctrp) and PRISM Repurposing dataset

(19Q4, https://depmap.org/portal/prism/). Cell lines with

more than 20% missing data (NA values) or derived from

hematopoietic and lymphoid tissues were excluded. A total

of 437 compounds were selected from the CTRP database

and 1438 compounds from the PRISM database for

further analysis.

2. The “calcPhenotype” function from the “oncopredict”

package was used to predict drug sensitivity for HNSCC

samples in this study, generating AUC values.

3. The Wilcoxon rank-sum test was used to assess differences

in drug sensitivity between the high LPRS subgroup (top

20%) and the low LPRS subgroup (bottom 20%).

Compounds with higher sensitivity (lower AUC values)

in the high LPRS subgroup were identified using the

following criteria: log2FoldChange < -0.02 (CTRP) and

log2FoldChange < -0.06 (PRISM).

4. Spearman correlation analysis was performed to assess the

correlation between drug sensitivity values and LPRS scores

to identify positively correlated compounds. The screening

criteria were set as R < -0.2 (CTRP) and R < -0.35 (PRISM).

5. Compounds identified in steps (3) and (4) were cross-

referenced to extract a set of highly sensitive compounds

from the CTRP and PRISM databases. In addition, the

chemical structures of small molecule drugs were obtained

from the PubChem chemical database (https://

pubchem.ncbi.nlm.nih.gov/).
frontiersin.org
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Molecular docking analysis

The major protein structure of the key target NT5E was

downloaded from the Protein Data Bank (http://www.rcsb.org,

PDB). Molecular docking of key targets with small molecule

drugs was performed using AutoDock Tools software (version

1.5.7). Water molecules and small molecule ligands were removed

using PyMol software (http://www.pymol.org, PyMOL Molecular

Graphics System). The binding activity was evaluated based on

docking energy values, and the docking results were visualized.
Cytotoxicity assay

Cell proliferation was assessed using the Cell Counting Kit-8

(MeilunBio). Cells were seeded at a density of 3000 cells per well in a

96-well plate and incubated overnight at 37°C. Cells were then co-

cultured with different concentrations of drugs for 24 hours at

concentrations of 0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 25.0, 50.0, 100,

and 1000 mM. After discarding the supernatant, 10 mL of CCK-8

and 90 mL of culture medium were added to each well, and the cells

were incubated in the dark for 2 hours. Absorbance was measured

at 450 nm using a microplate reader (Model 550; Bio-Rad). Cell

viability was calculated by normalizing the average OD value to the

negative control.
Statistical analysis

All statistical analyses were performed using R v4.3.1 (https://

www.r-project.org/). Differences between two groups were assessed

using the Wilcoxon test, while the Kruskal–Wallis test was applied

for comparisons across multiple groups. Correlation analyses were

conducted using Pearson’s or Spearman’s correlation coefficients,

depending on data characteristics. Survival curves were generated

with the Kaplan–Meier method, and OS differences were evaluated

via the log-rank test. The accuracy of the LPRS in predicting OS in

HNSCC patients was assessed using ROC curve analysis. A p-value

of less than 0.05 was considered statistically significant. For a

comprehensive description of additional experimental procedures,

please refer to the Supplementary Material section.
Results

Development and characterization of
LLPS-related subtypes in HNSCC patients
from the TCGA cohort

We sourced detailed information on 3,541 human LLPS-related

genes from the DrLLPS database (Additional file: Supplementary

Table S2). Transcriptomic data for these genes were sourced from

the TCGA and GTEx databases. A heatmap in Supplementary

Figure S1A illustrates the expression differences of LLPS-related

genes between HNSCC tumors and normal tissues. Differential
Frontiers in Oncology 06
analysis identified 1,018 LLPS-related differentially expressed genes

(DEGs), with 524 upregulated and 494 downregulated in HNSCC

samples compared to normal tissues (Figure 2A; Additional file:

Supplementary Table S3). A total of 46 prognostic LLPS-related

DEGs were identified by intersecting these DEGs with those derived

from univariate Cox regression analysis (Additional file:

Supplementary Table S4; Figure 2B). The top 10 significantly

enriched KEGG pathways for these DEGs are shown in

Supplementary Figure S1B (Human T-cell leukemia virus 1

infection, AMPK signaling pathway, Nicotine addiction, Bladder

cancer, Glycolysis/Gluconeogenesis, Amphetamine addiction,

Biosynthesis of amino acids, p53 signaling pathway, Synaptic

vesicle cycle, Neuroactive ligand-receptor interaction).Consensus

clustering using the “ConsensusClusterPlus” R package identified

k = 3 as the optimal number of subtypes, categorizing the samples

into three distinct LLPS subtypes: LLPS subtype 1 (LS1), LLPS

subtype 2 (LS2), and LLPS subtype 3 (LS3) (Figure 2C;

Supplementary Figures S1C, D). Kaplan-Meier survival curve

analysis demonstrated significant prognostic differences across

these subtypes (p<0.0001), with LS1 showing the poorest survival

outcomes, while LS2 and LS3 exhibited more favorable prognoses

(Figure 2D). The accuracy of this clustering was validated using

tSNE, which highlighted distinct distribution patterns among the

three LLPS subtypes (Figure 2E). The heatmap in Supplementary

Figure S1E reveals notable differences in the expression levels of 46

prognostic LLPS-related genes. To delve deeper into the molecular

mechanisms linked to the LLPS subtypes in HNSCC, we conducted

ssGSEA on transcriptome data using the KEGG dataset from the

MSigDB database. The results, quantified by ssGSEA Z-scores, are

displayed in heatmaps (Figure 2F). The unfavorable prognosis of

LS1 may be associated with pathways like ERBB signaling, fatty acid

metabolism, unsaturated fatty acid biosynthesis, the pentose

phosphate pathway, fructose and mannose metabolism, and tight

junctions, all of which likely play roles in promoting cancer cell

proliferation, survival, migration, invasion, and metastasis. To

corroborate these findings, 205 upregulated genes in LS1 were

identified (|log2FC|>0.5, p<0.05) (Figure 2G), and subsequent GO

enrichment analysis showed that the functional profiles of these

genes were consistent with the ssGSEA results (Figure 2H), offering

some explanation for the low survival rate observed in LS1.
In-depth analysis of genomic alterations
across LLPS-related subtypes

To understand the genomic differences among LLPS subtypes,

we analyzed somatic mutation and CNA profiles. The mutation

spectrum analysis indicated that LS1 exhibited a higher frequency of

TP53 mutations compared to the other subtypes (Figure 3A). TP53,

the most commonly mutated gene in HNSCC, is associated with

reduced immune activity and poor prognosis (24). Figure 3B

illustrates the CNA characteristics among LLPS subtypes.

Compared to LS2 and LS3, the LS1 subtype exhibits higher

genomic instability, which may be associated with increased

tumor malignancy, proliferative capacity, and resistance to
frontiersin.or
g

http://www.rcsb.org
http://www.pymol.org
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3389/fonc.2025.1509810
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2025.1509810
therapy. LS1 also showed significantly higher levels of TMB and

mutations, which were notably greater than those observed in LS2

and LS3 (Figurse 3C, D). Additionally, LS3 exhibited a higher

microsatellite instability (MSI) score than both LS1 and LS2

(Figure 3E), suggesting that LS3 patients may have a greater

likelihood of benefiting from ICI therapy. In conclusion, these

findings not only explain the poor prognosis associated with LS1

but also suggest that LS3 may be more responsive to ICI treatment.
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TIME and immunotherapeutic responses
across different LLPS-related subtypes

Growing evidence suggests that LLPS may play key roles in

regulating the tumor immune microenvironment (TIME) and

influencing immunotherapy sensitivity (16). Using the

ESTIMATE algorithm, we assessed the tumor microenvironment

in HNSCC samples, finding that the LS1subtype had significantly
FIGURE 2

Identification of LLPS subtypes of HSNC using consensus clustering algorithm. (A) The volcano plot illustrates the differential expression of genes
(DEGs) between HNSC tumor samples in the TCGA cohort and normal samples in GTEx cohort ( P < 0.05 and |log2FC|> 0.5). The top three and
bottom three genes, based on log2FC values, are highlighted. (B) The Venn diagram identifies 46 prognostic DEGs associated with LLPS. (C) The
heatmap for the result of consensus clustering. (D) Kaplan-Meier survival analysis reveals significant differences in overall survival (OS) among the
distinct LLPS subtypes. (E) tSNE mapping of the expression profiles of 46 LLPS-related prognostic DEGs, effectively differentiating the LLPS subtypes.
(F) The heatmap displays the ssGSEA Z-scores of KEGG pathways across LLPS subtypes, with blue indicating high scores and red indicating low
scores. Significant differences are highlighted by the red box. (G) The volcano plots depict DEGs (|log2FC|>0.5, P<0.05) between the LS1 subtype and
the combined LS2 and LS3 subtypes. (H) Gene Ontology (GO) enrichment analysis for the significantly upregulated genes in the LS1 subtype.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509810
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2025.1509810
lower immune, stromal, and ESTIMATE scores, along with higher

tumor purity, in contrast to LS2 and LS3, which showed the

opposite trends (Figure 4A).

Subsequently, we utilized the immune score to classify patients

with HNSCCs into high- and low-immunity subtypes. Notably, LS1

mainly consisted of hypoimmune subtypes, whereas LS2 and LS3

were characterized by hyperimmune subtypes, suggesting stronger

immune functionality in the latter two (Supplementary Figure S2).

The distribution of ssGSEA Z-scores for 28 immune signatures is

illustrated in Figure 4B, with LS2 and LS3 showing higher immune

cell infiltration.
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Additionally, we used the CIBERSORT algorithm to examine

the distribution of the 22 immune cell types across LLPS subtypes,

revealing distinct immune cell compositions (Figure 4C). We also

assessed the expression of mRNAs encoding key immune

checkpoint proteins among these subtypes, finding that LS2 and

LS3 exhibited significantly higher levels of several of them,

including PDCD1, CTLA4 and its ligands (CD80 and CD86),

LAG3, HAVCR2, IDO1, and CD274, compared to LS1 (Figure 4D).

Since LS1 exhibits lower immune activity, while LS2 and LS3

show stronger immune cell infiltration and higher levels of immune

checkpoints, we classified LS2 and LS3 as “hot tumors” and LS1 as a
FIGURE 3

Comprehensive analysis of genomic alterations among LLPS subtypes. (A) Comparison of somatic mutations among LLPS subtypes. (B) Comparison
of copy number variation (CNV) profiles among LLPS subtypes. (C, D) Comparison of TMB and mutation counts among LLPS subtypes. (E) MSI score
comparison across LLPS subtypes.
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“cold tumor”. Given the advantages of ICI therapy, we employed

the TIDE algorithm to predict the responsiveness of different LLPS

subtypes to ICI treatment. LS3 exhibited a significantly lower TIDE

score compared to LS1 and LS2, indicating a higher probability of

responding to ICI therapy (Figure 4E). Additionally, the proportion

of responders in LS3 was nearly four times higher than in LS1

(Figure 4F). These insights underscore the significant impact of

LLPS patterns on regulating the TIME and shaping responses to

immunotherapy in HNSCCs.
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Construction of the LPRS and verification
of its prognostic value

To identify LLPS-related hub genes, we analyzed 46 LLPS-

prognosis-related DEGs using the STRING database to explore

their PPIs. Employing cytoHubba analysis, 26 hub genes were

identified (Figure 5A).

Next, LASSO regression analysis identified 20 significant genes

(LAT, TERT, TRIB3, CDKN2A, ACAA1, CCNA1, TP73, CTTN, PKLR,
FIGURE 4

Different TIME patterns and immunotherapeutic responses of LLPS subtypes. (A) Violinplot of immune scores, stromal scores, ESTIMATE scores, and
tumor purity across LLPS subtypes. (B) Immune cell infiltration levels and immune functions quantified by ssGSEA Z-scores among LLPS subtypes.
(C) Comparison of the ratios of 22 immune cell types quantified among LLPS subtypes using the CIBESORT algorithm. (D) Comparison of immune
checkpoint expression levels among LLPS subtypes. (E) TIDE score comparison across LLPS subtypes. (F) Proportion of ICI therapy responders
predicted by the TIDE algorithm among LLPS subtypes. *:p<0.05; **:p<0.01; ***:p<0.001; ****:p<0.0001; ns, No statistical significance.
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MTHFD2, GPRIN2, CELF2, LCK, SNAP25, SYT1, NCALD, CPNE5,

GRIA3, NT5E, and PFKM) that were used to develop the LPRS

(Figures 5B, C). The LASSO coefficients for each gene within this

signature were meticulously detailed, designating 13 genes as protective

and 7 as risk factors influencing survival outcomes (Supplementary

Figure S3A). The Kaplan-Meier survival curves for these genes further

substantiated their roles (Supplementary Figure S3B). To explore the

functional connections and correlations between these genes, we

performed GO enrichment analysis and correlation analysis. The
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genes showed a high degree of correlation with each other

(Supplementary Figure S3C).Additionally, the pathways enriched by

these genes suggest that they may be associated with cell proliferation

and LLPS (Supplementary Figure S3D), such as the Purine Nucleoside

Diphosphate Metabolic Process, Ribonucleoside Diphosphate

Metabolic Process, Synaptic Vesicle Fusion to Presynaptic Active

Zone Membrane, and Vesicle Fusion to Plasma Membrane.

Subsequently, the LPRS for each patient with HNSCC was

computed by aggregating the expression levels of each gene,
FIGURE 5

Construction and validation of prognostic models based on LLPS. (A) PPI network screening to identify hub genes. (B, C) Identification of twenty
prognostic LLPS-related genes through LASSO regression and 10-fold cross-validation. (D–F) Kaplan-Meier survival curves for LPRS in the TCGA,
GSE41613, and ICGC cohorts. (G–I) ROC curves for LPRS in the TCGA, GSE41613, and ICGC cohorts to validate the accuracy of the
prognostic model.
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weighted by their corresponding LASSO coefficients. The patients

were stratified into high- and low-LPRS groups based on the

median LPRS score. Kaplan-Meier survival analysis revealed that

patients in the high-LPRS group exhibited significantly worse

overall survival in TCGA dataset (Figure 5D). The robustness of

this prognostic model was confirmed through validation with two

additional datasets, GSE41613 and ICGC-HNSC, where a high

LPRS consistently correlated with poor survival (Figures 5E–F).

Furthermore, to assess the predictive accuracy of the LPRS for

overall survival, ROC curves for 1-, 3-, and 5-year survival

predictions were constructed, demonstrating AUC values

exceeding 0.68, which underscored the potential utility of the

LPRS as a reliable prognostic tool in clinical settings (Figure 5G).

The high predictive accuracy of the LPRS was further validated in

the external datasets GSE41613 and ICGC-HNSC (Figures 5H–I),

reinforcing its efficacy in clinical prognosis.
Association of LPRS with
clinicopathological features, TIME patterns,
and its predictive role in ICI
therapy response

To elucidate the clinical relevance of the LPRS within TCGA

cohort, we ranked the LPRS from lowest to highest to analyze its

association with clinicopathological features. We observed significant

differences in survival status, clinical T stage, high- and low-immune

subtypes, and LLPS subtype (Figure 6A). An alluvial plot was used to

depict the transitions across LLPS and LPRS classifications, immune

subtypes, and clinical stages among patients (Figure 6B). Most LS1

subtype patients were found in the high LPRS subtype, low immune

subtype, and clinical stage IV, while the majority of LS3 patients were

distributed in the low LPRS subtype, high immune subtype, and

clinical stage IV. This suggests the precise predictive ability of LPRS

and indicates that ICI treatment may be more effective for patients

with low LPRS. Additionally, we assessed the LPRS levels across

different clinicopathological subgroups, finding that significantly

elevated LPRS levels were related to malignant features and mild

TIME. Notably, the LPRS was higher in the low-immune subtype

than in the high-immune subtype. When comparing LLPS-related

subtypes, LPRS levels were highest in LS1 (Figure 6C).

Given the association between the LPRS and various immune

subtypes, we delved deeper into the relationship between TIME

patterns and LPRS. In the TCGA cohort, LPRS was inversely

correlated with immune, stromal, and ESTIMATE scores and

positively correlated with tumor purity, suggesting a decrease in

immune and stromal cell infiltration as the LPRS increased

(Figure 6D). The relationships between the LPRS and 28 immune

signatures are depicted in a correlation heatmap (Figure 6E). Similarly,

we performed a correlation analysis between LPRS of each LLPS

subtype and 28 immune features, and the results were consistent

with the previous findings (Supplementary Figure S4A).

Additionally, a negative correlation was observed between the

LPRS and the expression levels of most immune checkpoint

molecules (Figure 6F), underscoring the complex interactions

between the LPRS and immune dynamics in HNSCC.To explore the
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relationship between LPRS of LLPS subtypes and immune checkpoints,

we also performed a correlation analysis for each LLPS subtype, and the

results were consistent with the previous findings (Supplementary

Figure S4B). Subsequently, we performed a further correlation

analysis between LPRS and the infiltration levels of 22 immune cell

types using the CIBERSORT algorithm. The results revealed negative

correlations with activated NK cells, resting dendritic cells, neutrophils,

and activated dendritic cells, while showing positive correlations with

resting CD4 memory T cells, naive B cells, and regulatory T cells

(Supplementary Figure S4C).

To validate the predictive role of LPRS in ICI treatment

response, our analysis of the TCGA cohort revealed that patients

with lower LPRS scores had reduced TIDE levels and elevated MSI

scores (Figures 6G, H). According to the TIDE algorithm, a larger

fraction of ICI treatment responders were observed in the low-LPRS

subgroup than in the high-LPRS subgroup (Figure 6I). Moreover,

the LPRS values of responders were consistently significantly lower

than those of non-responders, with significant survival differences

observed (Figures 6J, K). This leads us to hypothesize that patients

with lower LPRS are more likely to benefit from ICI treatment

compared to those with higher LPRS.

To confirm our findings, we further assessed the predictive

ability of the LPRS in an independent ICI treatment cohort

(IMVigor210, an anti-PD-L1 cohort). In this cohort, a

significantly higher proportion of patients in the low-LPRS

subgroup achieved complete response (CR) or partial response

(PR) (Supplementary Figure S4D). Patients exhibiting a CR

displayed notably lower LPRS levels than those with stable disease

(SD) or progressive disease (PD) (Supplementary Figure S4E). To

verify the accuracy of the LPRS in predicting ICI treatment

response, we also constructed KM survival curves and ROC

curves for the IMVigor210 cohort (Figures 6L, M). We found that

the survival rates of low-LPRS patients were significantly better than

that of high-LPRS patients and that the AUC value of the ROC

curve reached 0.82. These results indicate the high accuracy and

reliability of the LPRS in predicting ICI treatment response.

Overall, these results not only demonstrate the association

between LPRS and clinicopathological characteristics, as well as

TIME, but also highlight the strong correlation between LPRS and

ICI therapy response, suggesting its potential as a reliable predictor

for clinical outcomes.
Screening and molecular docking of
potential small molecule compounds
targeting high LPRS

Since patients with lower LPRS are more likely to benefit from

ICI therapy, we aimed to identify potential small molecules that

could be more beneficial for patients with high LPRS.We adopted a

comprehensive strategy to identify potential small-molecule

compounds for use in HNSCC patients exhibiting a high LPRS. It

has been reported that NT5E (CD73) generates extracellular

adenosine, mediates immune escape, and promotes tumor growth

and metastasis, making it a crucial target for immunotherapy (25).

Additionally, NT5E (CD73) is the only gene that shows significant
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differences in overall survival across multiple datasets, including

TCGA, GSE41613, and ICGC (Figures 7A; Supplementary Figure

S5). Therefore, we have focused on NT5E (CD73) and selected it as

a key target for studying LPRS.
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Drug susceptibility data were sourced from the CTRP and

PRISM databases, and the “oncopredict” R package was utilized

to predict drug response within the TCGA-HNSC cohort. Prior to

further analysis, we confirmed the reliability of the predicted drug
FIGURE 6

Correlation of LPRS with clinicopathological features and TIME pattern in the TCGA cohort and its role in predicting response to ICI therapy. (A)
Overview of the relationship between LPRS and various clinicopathological features in HNSC patients. (B) Alluvial diagram illustrating the transitions in
LLPS subtypes, immunity subtypes, clinical stage, and LPRS. (C) Comparison of LPRS across cancer status, immunity type, LLPS subtype, and survival
status. (D) Correlation analysis of LPRS with immune scores, stromal scores, ESTIMATE scores, and tumor purity. (E) Correlation between LPRS and the
ssGSEA Z-scores of 28 immune signatures. (F) Correlation analysis between LPRS and immune checkpoint expression.(G, H) Correlation of LPRS with
TIDE and MSI scores in the TCGA cohort. (I) The proportion of ICI therapy responders predicted by the TIDE algorithm in high-LPRS and low-LPRS
subgroups within the TCGA cohort. (J) Comparison of LPRS levels between responders and non-responders in the TCGA cohort. (K) Survival analysis
between responders and non-responders in the TCGA cohort. (L, M) Accuracy and reliability of LPRS in predicting the efficacy of PD-L1 immunotherapy
in patients (IMvigor210 cohort: AUC = 0.82, Kaplan-Meier plot p<0.0001). *:p<0.05; **:p<0.01; ***:p<0.001; ****:p<0.0001; ns, No statistical significance.
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response data. ICAM1, a cell surface glycoprotein present on

leukocytes and endothelial cells, has been implicated in recent

research, which suggests that its activation enhances the stemness

of HNSCC cells, potentially contributing to docetaxel resistance

(26). Patients were stratified into two groups based on the median

ICAM1 expression levels, revealing that the estimated AUC value of

docetaxel was significantly elevated in the ICAM1_high group,

aligning with previous experimental observations (Supplementary

Figure S6A).

We identified potential compounds using the CTRP and PRISM

databases. From the CTRP database, we selected nine candidate

compounds: alisertib, bosutinib, sorafenib, PHA-793887, GW-

405833, GW-843682X, docetaxel, parbendazole and paclitaxel.

Similarly, from the PRISM database, we identified seven

candidate compounds: daunorubicin, volasertib, LGX818,

epothilone-A, nobiletin, JK184 and salvinorin-A (Figures 7B, C).

The molecular structures of these small molecules are shown in

Supplementary Figure S6B. Subsequently, we conducted molecular

docking studies to investigate the interaction of these compounds

with the key LPRS target NT5E (CD73). We focused on the top five

compounds with the highest binding affinities to NT5E (CD73):

Volasertib, Sorafenib, JK-184, Etoposide-A, and GW-405833. Their

docking results were visualized (Figure 7D; Supplementary Table

S5). While these compounds are well-known, none have been

reported to specifically target NT5E (CD73) in HNSCC. To

evaluate the therapeutic potential of these five compounds for

high LPRS HNSCC patients, we performed IC50 assays. The

results indicated that Volasertib exhibited the greatest therapeutic

potential, making it a promising candidate for treating high LPRS

HNSCC patients (Figures 7E, F).
Analysis and functional validation of NT5E
gene expression levels

To validate the reliability of LPRS, we performed expression

analysis and in vitro functional assays on NT5E (CD73), the key

target gene of LPRS. Results indicated that NT5E (CD73) mRNA

expression was notably higher in HNSCC tumor tissues compared

to normal tissues (Supplementary Figure S7A). To assess NT5E

(CD73) expression at the protein level, immunohistochemistry

images from the HPA database were utilized. NT5E (CD73)

protein expression in HNSCC was markedly higher than that in

normal tissues (Figure 8A). Additionally, we explored the

correlation between NT5E (CD73) protein expression and mRNA

expression. Using data from the TCGA database, we demonstrated

the relationship between NT5E (CD73) protein expression and

mRNA expression, which helps to clarify the link between gene and

protein expression levels. The results showed a positive correlation

between NT5E (CD73) protein expression and mRNA expression

(Supplementary Figure S7B).

We validated the knockdown of NT5E (CD73) using RT-qPCR,

followed by further functional assays (Supplementary Figure S7C).

To investigate the potential involvement of NT5E(CD73) in LLPS

formation, we analyzed the dynamic assembly and rapid exchange

properties of NT5E (CD73) induced liquid condensates by
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(FRAP). After photobleaching, the NT5E-GFP puncta recovered

fluorescence within seconds (Figure 8B). This result indicates that

NT5E (CD73) significantly influences the formation and recovery

of LLPS structures, suggesting a potential functional link between

NT5E (CD73) expression and LLPS.

To elucidate the role of NT5E (CD73) in HNSCC proliferation

and migration, we employed CCK8 assays, which revealed that

knockdown of NT5E (CD73) significantly inhibited the

proliferation of Detroit562, FADU, HN6, and other cell lines

compared with that of controls (Figure 8C). The two cell lines

that exhibited the most pronounced differences after NT5E (CD73)

knockdown were chosen for additional functional experiments.

Colony formation assays then corroborated these findings,

demonstrating that cell proliferation was markedly inhibited in

the SH-NT5E lines compared to the NC group (Figures 8D, E).

We then divided HNSCC patients into high and low NT5E

(CD73) expression groups and performed GSEA enrichment

analysis. The results indicated that NT5E (CD73) is not only

associated with cell proliferation but also closely linked to cell

migration, such as in pathways like FOCAL_ADHESION and

ECM_RECEPTOR_INTERACTION (Supplementary Figure S7D).

Therefore, we conducted a wound healing assay to assess the effect

of NT5E knockdown on HNSCC migration (Figure 8F). Compared

to the NC group, the migration rate of the NT5E (CD73)

knockdown cell lines was significantly reduced.
Discussion

Increasing evidence underscores the role of LLPS in both

tumorigenesis and cancer progression (27). Furthermore, research

has demonstrated that LLPS contributes to the formation of various

TIME patterns and influences immune signaling regulation (28,

29). Thus, a thorough investigation of LLPS-related biomarkers is

crucial for uncovering new tumor subtypes, making accurate

prognoses and predicting responses to immunotherapy.

The response to ICI therapy is also a priority. This therapy has

led to significant advancements in cancer treatment, but there is

substantial heterogeneity in treatment response. Therefore, our

study focused on the predictive capacity of the LPRS in

determining responses to ICI therapy.

We attempted to establish prognostic signatures by analyzing

LLPS-related genes to be able to predict which patients are sensitive

to ICI treatment based on typing in order to make accurate HNSCC

prognoses and guide personalized treatments. In this study, we

concentrated on HNSCC patients and used the expression profiles

of 46 prognostic LLPS-related DEGs to classify 501 HNSCC

patients into three distinct LLPS subtypes through a consensus

clustering algorithm. We observed marked differences between

these subtypes in terms of prognosis, functional enrichment,

genomic alterations, TIME patterns, and immunotherapy

responses. To facilitate personalized and comprehensive

assessments, we constructed a prognostic signature known as the

LPRS using PPI networks and LASSO regression. To verify the

predictive ability of the LPRS for ICI treatment response, we
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validated it using an IMVigor-independent cohort. Our findings

indicated that the LPRS correlates strongly with LLPS subtype,

clinical features, and TIME patterns in HNSCC patients, thus

demonstrating exceptional predictive capabilities for ICI

treatment responsiveness.

Tumors acquire hallmark characteristics, such as sustained

proliferation, angiogenesis, EMT, and genomic rearrangements,
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through various mechanisms. However, the field of LLPS has

changed our understanding of how tumors develop these

malignant traits (27). For instance, estrogen can induce MYC to

form condensates through an LLPS-mediated mechanism, thereby

enhancing VEGF expression and promoting angiogenesis (30).

Additionally, LLPS involving transcriptional coactivators, such as

YAP/TAZ, plays a crucial role in EMT and cancer aggressiveness
FIGURE 7

LPRS Potential Compound Screening. (A) Kaplan-Meier plots illustrating the prognostic value of NT5E(CD73) in the TCGA, GSE41613, and ICGC
cohorts. (B, C) Spearman correlation analysis results and differential drug responses for potential compounds identified from the CTRP and PRISM
databases. (D) Visualization of molecular docking results for the top five potential compounds, ranked by molecular docking scores. (E, F)
Cytotoxicity assays for the top five potential compounds were performed in Detroit562 and FADU cell lines, including the calculation of drug IC50
values. *:p<0.05; **:p<0.01; ***:p<0.001; ****:p<0.0001; ns, No statistical significance.
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(31, 32). Abnormal LLPS of the ENL protein gathers at specific

genomic loci, recruits numerous transcription complexes, and

potentially leads to genomic rearrangements characteristic of

cancer (33, 34). In our analysis, different LLPS subtypes in

HNSCC demonstrated distinct behaviors in terms of the KEGG
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pathways involved. Notably, the LS1 subtype exhibited increased

activity in pathways such as erbB signaling, fatty acid metabolism,

biosynthesis of unsaturated fatty acids, the pentose phosphate

pathway, fructose and mannose metabolism, and tight junctions.

These pathways likely contribute to an increased capacity for tumor
FIGURE 8

Expression and function of the NT5E (CD73) gene in LPRS. (A) Immunohistochemistry (IHC) images from the HPA database comparing NT5E (CD73)
protein expression in normal and tumor tissues in HNSC. (B) Fluorescence recovery after photobleaching (FRAP) experimental images of cells
overexpressing NT5E-GFP. The red rectangle represents the CTRL, and the other circles represent FRAP. (C) CCK8 assays evaluating the impact of
NT5E (CD73) knockdown on the proliferation of HNSC cell lines. (D, E) Colony formation assays detecting changes in cell proliferation following
NT5E (CD73) knockdown. (F) Scratch assays assessing the effect of NT5E(CD73) knockdown on cell migration. *:p<0.05.
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proliferation, survival, migration, invasion and metastasis (35, 36).

These findings may explain the poor prognosis of LS1.

According to traditional classification, tumors can be

categorized into three distinct TIME phenotypes: immune-

inflamed, immune-excluded and immune-desert. Historically,

HNSCC have predominantly been associated with an immune-

desert phenotype, suggesting that these tumors are more adept at

evading immune system attacks, complicating treatment. Recent

advances in understanding the role of LLPS in both innate and

adaptive immunity have offered new perspectives on this process.

For example, the substitution of GMP-AMP synthase with LLPS

enhances the production of cyclic GMP-AMP second messengers,

thereby amplifying innate immune signaling (24). Furthermore, the

aggregation of biomolecules in T cell transmembrane signal

receptors into clusters via LLPS may enhance signal transduction

and modulate the immune response of the tumor (37). In this study,

the LS2 and LS3 subtypes exhibited higher immune and stromal

scores but lower tumor purity, indicating a higher presence of non-

tumor components compared with other subtypes. Additionally,

LS2 and LS3 showed significant immune cell infiltration, suggesting

that these subtypes align with an immunoinflammatory phenotype

and are likely to respond favorably to immunotherapy. Analysis

using the TIDE algorithm confirmed this hypothesis, revealing that

LS3 had a lower TIDE score and a higher MSI score compared to

LS1 and LS2. These results suggest that the identified LLPS subtypes

are useful for recognizing distinct TIME patterns and for identifying

patients who may respond favorably to ICI therapy.Future studies

are necessary to elucidate the precise mechanisms by which LLPS

influences the formation of these TIME patterns, the knowledge of

which would enhance our ability to tailor and optimize

immunotherapeutic strategies for patients with HNSCCs.

Given the diverse heterogeneities among the three LLPS subtypes,

constructing a prognostic signature appears feasible for quantifying

such variations and facilitating personalized, integrative assessments.

As anticipated, the LPRS demonstrated a strong correlation with the

clinicopathological features and TIME patterns of patients with

HNSCC. Furthermore, it showed significant predictive power for

the prognosis and response to ICI therapy. The LPRS consists of

twenty selected LLPS-related genes: LAT, TERT, TRIB3, CDKN2A,

ACAA1, CCNA1, TP73, CTTN, PKLR, MTHFD2, GPRIN2, CELF2,

LCK, SNAP25, SYT1, NCALD, CPNE5, GRIA3, NT5E, and PFKM,

which includes one scaffold, two regulators, and seventeen clients.

The scaffold LAT is a transmembrane protein essential for T cell

activation, undergoing LLPS upon tyrosine phosphorylation and

interacting with cytoplasmic multivalent adaptor proteins (38). The

regulator TERT, when interacting with CIRP, influences TERT’s

transcription and translation processes, thereby localizing the

telomerase complex to the Cajal body (39). Another regulator,

TRIB3, is upregulated and interacts with PML-RARa, inhibiting
the assembly of PML nuclear bodies (40). Among the 17 clients

identified, CDKN2A, PKLR, and MTHFD2 are involved in nucleolus

formation (41, 42). TP73 and GPRIN2 participate in the assembly of

PML nuclear bodies (43, 44). CELF2 is involved in stress granule

formation, while SNAP25, SYT1, NCALD, CPNE5, GRIA3, NT5E,

and PFKM contribute to the formation of postsynaptic densities (45).

The other four clients are involved in the formation of various
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biomolecular condensates: ACAA1 (nucleolus, postsynaptic

density); CCNA1 (centrosome, spindle pole body); CTTN

(centrosome, spindle pole body, stress granule); LCK (centrosome,

spindle pole body) (45–49). Currently, our understanding of these

LLPS-related genes primarily focuses on their roles in biomolecular

condensate formation. Future research should further investigate how

LLPS processes contribute to tumor development and progression,

providing deeper insights into the complex mechanisms underlying

cancer biology.

Exploring individualized treatment strategies for different LPRS

subgroups is of great significance for maximizing treatment effects. In

addition to providing prognostic information and predicting

immunotherapy responses, the LPRS can be used in precision

oncology as a potential biomarker for HNSCC treatment. Although

only a small number of patients benefit from targeted strategies and

immunotherapy, docetaxel remains the first-line treatment for

HNSCC. However, DTX resistance is common and threatens the

long-term survival of patients (26). Therefore, after comprehensive

screening and molecular docking, we screened out five potential

compounds (volasertib, sorafenib, JK-184, epothilone-A, and GW-

405833). Volasertib is a key Plk1 inhibitor with broad anticancer

activity. Preclinical studies have shown strong efficacy across various

cancer cell lines and tumor regression in multiple xenograft models

(50). Sorafenib is a serine-threonine protein kinase inhibitor targeting

bRaf, C-Raf, VEGFR, and platelet-derived growth factor receptors.

When combined with radiochemotherapy, it enhances antitumor

effects by inhibiting cell proliferation, colony formation, migration,

and invasion (51). JK184, an anilinopyrimidine derivative, specifically

inhibits Gli in the Hedgehog (Hh) pathway, showing significant

promise in cancer therapy (52). Epothilone-A, a microtubule-

stabilizing agent similar to paclitaxel, inhibits cell division by

stabilizing microtubules and is widely used in chemotherapy (53).

GW-405833 is a selective CB2 receptor agonist that has been shown

to induce autophagy in pancreatic cancer cells, thereby inhibiting

their growth (54). Of them, volasertib, a small molecule PLK1

inhibitor, showed the greatest therapeutic potential. Studies have

shown that PLK1 expression is negatively correlated with the survival

rates for HNSCC and other solid tumors (55). These findings

highlight the critical role of the LPRS in drug screening and

provide a promising option for the treatment of HNSCC.

To date, numerous HNSCC classifications have been based on

traditional biomarkers or significant molecular indicators. For

instance, TP53 mutation status is widely recognized as a crucial

prognostic biomarker for HNSC (56). Our classification approach,

which leverages LLPS subtyping, offers an advantage by revealing

multidimensional heterogeneities. These factors include prognosis,

functional enrichment, genomic alterations, TIME patterns, and, in

particular, responses to immunotherapy, which is of considerable

clinical relevance.

This study has some limitations. First, all analyses were

conducted using retrospective data from public databases;

employing prospective multicenter cohorts could enhance the

reliability of the results. Secondly, due to the limited availability of

immunotherapy cohorts with accessible transcriptional data and

clinical information, our evaluation of the predictive capacity of

LPRS for ICI therapy was restricted to data from urothelial cancer
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cohorts. Furthermore, while bioinformatics analysis provides valuable

insights, it falls short of fully elucidating the underlying molecular

mechanisms, highlighting the indispensable need for experimental

evidence to advance our understanding. In this study, we focused on

validating NT5E (CD73), the key target gene of LPRS, through

experimental assays. However, the other 19 genes included in the

LPRSmodel were not experimentally validated. Future studies should

aim to validate these additional genes to strengthen the findings and

explore their roles in HNSCC. Finally, we did not separate HPV(+)

and HPV(-) subtypes in our analysis, despite the significant

differences in tumorigenic mechanisms and immune

microenvironment characteristics between these two groups. This is

a limitation, and future studies could explore how LLPS and immune

responses may vary across these subtypes.
Conclusion

In conclusion, we successfully classified patients with HNSCC

into three unique LLPS subtypes, each characterized by distinct

prognostic outcomes, functional enrichment profiles, genomic

alterations, TIME patterns, and immunotherapy responses.

Additionally, we developed a prognostic signature, the LPRS, to

facilitate personalized comprehensive assessments and to identify

potential small-molecule compounds for targeted therapy. These

findings offer promising avenues for enhancing customized

prognostic predictions and optimizing immunotherapeutic

strategies for patients with HNSCC. Further studies are required

to validate and expand upon these results.
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