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A prognostic model based on
autophagy-and senescence-
related genes for gastric cancer:
implications for immunotherapy
and personalized treatment
Shuming Chen †, Xiaoxi Han †, Yangyang Lu, Shasha Wang,
Yuanyuan Fang, Chuanyu Leng, Xueying Sun, Xin Li,
Wensheng Qiu* and Weiwei Qi*

Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
Background: The process of human aging is accompanied by an increased

susceptibility to various cancers, including gastric cancer. This heightened

susceptibility is linked to the shared molecular characteristics between aging

and tumorigenesis. Autophagy is considered a critical mediator connecting aging

and cancer, exerting a dynamic regulatory effect in conjunction with cellular

senescence during tumor progression. In this study, a combined analysis of

autophagy- and senescence-related genes was employed to comprehensively

capture tumor heterogeneity.

Methods: The gene expression profiles and clinical data for GC samples were

acquired from TCGA and GEO databases. Differentially expressed autophagy-

and senescence-related genes (DEASRGs) were identified between tumor and

normal tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were carried out to provide insights into

biological significance. A prognostic signature was established using univariate

Cox and LASSO regression analyses. Furthermore, consensus clustering analyses

and nomograms were employed for survival prediction. TME and drug sensitivity

analyses were conducted to compare differences between the groups. To

predict immunotherapy efficacy, the correlations between risk score and

immune checkpoints, MSI, TMB, and TIDE scores were investigated.

Results: A fourteen-gene prognostic signature with superior accuracy was

constructed. GC patients were stratified into three distinct clusters, each

exhib i t ing significant var ia t ions in their prognosis and immune

microenvironments. Drug sensitivity analysis revealed that the low-risk group

demonstrated greater responsiveness to several commonly used

chemotherapeutic agents for gastric cancer, including oxaliplatin. TME analysis

further indicated that the high-risk group exhibited increased immune cell

infiltration, upregulated expression of ICs, and a higher stromal score,

suggesting a greater capacity for immune evasion. In contrast, the low-risk

group was characterized by a higher proportion of microsatellite instability-

high (MSI-H) cases, an elevated TIDE score, and a greater TMB, indicating a

higher likelihood of benefiting from immunotherapy. In addition, Single-cell

sequencing demonstrated that TXNIP was expressed in epithelial cells. Cellular
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experiments preliminarily verified that TXNIP could promote the proliferation and

migration of gastric cancer cells.

Conclusion: This study presents a robust predictive model for GC prognosis

using autophagy- and senescence-related genes, demonstrating its ability to

predict immune infiltration, immunotherapy effectiveness, and guide

personalized treatment.
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1 Introduction

Globally, gastric cancer remains the second leading cause of

cancer-related death and the fourth most common cancer (1).

Despite a high incidence and mortality rate, the prevalence of GC

varies significantly across different regions and individuals (1, 2),

indicating its substantial heterogeneity (3). While recent

advancements in GC diagnosis and treatment have been

considerable, the traditional prognostic system based on tumor

stage and histological grade is increasingly inadequate for capturing

the observed clinical heterogeneity (4). In the era of precision

medicine, developing novel diagnostic and prognostic models

based on patients’ molecular signatures and clinical characteristics

holds significant promise.

Cancer, including gastric cancer, is well acknowledged as a

disease associated with ageing. As individuals age, chronic

inflammation, and the accumulation of senescent cells collectively

contribute to an environment conducive to cancer formation (5). At

the cellular level, senescence is characterized by the irreversible

arrest of cell proliferation in response to cellular stress (6). During

the initial phases of carcinogenesis, cellular senescence is frequently

regarded as a protective mechanism that prevents the proliferation

of potentially malignant cells. Senescent cells, however, secrete the

senescence-associated secretory phenotype (SASP), which

comprises a variety of pro-inflammatory cytokines and

chemokines. These secretory components enhance the malignant

characteristics of tumor cells and accelerate their immune evasion

mechanisms (7, 8). Therefore, comprehending the dual function of

senescence and the complex interactions between senescent cells

and tumor cells is essential for the formulation of innovative anti-

cancer strategies.

Autophagy is recognized as a critical link between aging and

cancer (9). It is a highly conserved cellular catabolic process that

facilitates the recycling of cellular components through lysosomal

degradation (10). During the initial phases of tumorigenesis,

autophagy acts as a tumor-suppressive mechanism by eliminating

damaged organelles, preserving genomic stability, and promoting

cellular senescence (11). In contrast, in advanced tumors,

autophagy aids in the survival of senescent cells through
02
metabolic reprogramming. Concurrently, the SASP is activated,

releasing pro-inflammatory factors such as IL-6 and TGF-b, which
modify the tumor microenvironment (TME), promoting immune

evasion and facilitating metastasis (8). However, senescence-related

signals can also influence autophagic activity through a feedback

loop. Consequently, autophagy and cellular senescence engage in

a dynamic, bidirectional regulatory relationship during

tumor progression.

In summary, the present study sought to identify a gene signature

incorporating autophagy and senescence factors to accurately predict

the prognosis of GC. A fourteen-gene signature was constructed

using univariate Cox regression and LASSO regression. Additionally,

the predictive performance of the model was further enhanced

through the establishment of a nomogram. A detailed analysis was

performed on gastric cancer subtypes, immune cell infiltration, the

distribution of ICs, gene mutation differences, and drug sensitivity

differences in the TCGA cohort. In addition, cellular function

experiments preliminarily verified the role of TXNIP in gastric

cancer. Collectively, this research has the potential to uncover novel

characteristic genes that serve as reliable prognostic biomarkers for

the personalized treatment of GC patients.
2 Materials and methods

2.1 Data sources

The raw data was downloaded from TCGA and GEO databases.

Duplicate samples and those lacking essential clinical characteristics

or survival information were removed. The training cohort

consisted of 410 STAD samples and 10 gastric normal samples

from TCGA. The validation cohort was selected to be the GSE66229

dataset (12), which was verified using the GPL570 platform. To

eliminate discrepancies caused by batch effects and ensure research

integrity and reliability, COMBAT was used when merging GEO

data. In the survival analyses, patients were included based on the

availability of survival status and survival time, with a minimum

survival time of 30 days. The list of genes associated with autophagy

and senescence was obtained from GeneCards datasets (13).
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2.2 Analysis of differentially
expressed genes

To identify common genes, Venny 2.1.0 was employed. DEGs

were detected using the “limma” package in R. A cutoff of |logFC| ≥

1 and a FDR < 0.05 were applied to determine significant DEGs. A

volcano plot was drawn by the “pheatmap” package in R to visually

represent the DEGs.
2.3 Functional annotation and
enrichment analyses

The “clusterProfiler” package was employed to conduct GO and

KEGG analyses. These analyses identified the biological functions

and pathways associated with the DEASRGs, providing insights

into their biological significance. Furthermore, the functional

profiles of the different risk groups were assessed using Gene Set

Enrichment Analysis (GSEA) to detect any relevant changes.
2.4 Consensus clustering to identify
DEASRG clusters

DEASRGs were utilized to conduct consensus cluster analysis

using the “ConsensusClusterPlus” package in R. Employing optimal

k-means clustering, STAD patients were categorized into three

distinct groups. Principal component analysis (PCA) was

implemented to differentiate these clusters. We used the

“estimate” package to determine particular scores in tumor tissue

for assessing the extent of infiltration by stroma and immune cells.
2.5 Construction and verification of
autophagy- and senescence-related risk
score signature

Univariate Cox analysis was employed to screen core prognostic

DEASRGs and we further assessed their copy number variation

(CNV) alterations. Subsequently, LASSO regression was utilized to

select genes for constructing the prognostic signature. Through the

calculation of the following algorithm, we obtained corresponding

risk score for every single patient.

Risk score =o
n

i=1

(Coefi ∗ Expi)

The variables n, Coefi, and Expi represent the signature gene

number, the risk weighting coefficient index, and the expression

level of the signature gene, respectively.

The median risk score in the TCGA cohort was used to

distinguish the high-risk group from the low-risk group. KM

survival curves were generated to compare prognosis between the

groups. We constructed a ROC curve to compare the Area Under

the Curve (AUC) value of the risk score and several clinical
Frontiers in Oncology 03
markers. Risk curves and survival status analyses were performed

to evaluate the efficiency of model in high- and low-risk groups.

Additionally, we conducted PCA analysis to visualize the

distribution of patients.
2.6 The modification of predictive
signature-nomogram

To enhance predictive power the signature, a nomogram was

established incorporating risk scores and clinical features. Variables

within the nomogram, including age, gender, M stage, T stage, N

stage, clinical stage, and risk score, were assigned points based on

their relative prognostic contributions. Individual patient scores

were calculated by summing these points. The calibration curve

allowed us to evaluate the predictive capability of the nomogram

across various survival periods. Decision curve analysis (DCA) was

used to evaluate the clinical benefits brought by the model.
2.7 Stratified analysis of
clinicopathological features

To investigate the association between the novel signature and

various clinical factors, subgroup analyses were conducted within

the TCGA cohort. Available clinicopathological features were

extracted for further analysis. Moreover, survival curves were also

plotted across distinct clinical subgroups.
2.8 Screening of sensitive drugs

Drug sensitivity assessments was performed using data obtained

from the Genomics of Drug Sensitivity in Cancer (GDSC) public

database (14). The “oncoPredict” package was employed to

calculate the half-maximal inhibitory concentration (IC50) values

for therapeutic drug.
2.9 Immune cell infiltration and
immunotherapy response

The CIBERSORT algorithm enabled us to accurately assess the

composition of infiltrating immune cell types within patient’s

tumor sample (15). To assess potential treatment response based

on proportions of immune cell, we examined the expression of

immune checkpoint genes within the two subgroups. Furthermore,

we employed the tumor immune dysfunction and exclusion (TIDE)

algorithm to obtain TIDE scores, dysfunction scores, and exclusion

scores for each tumor sample. Tumor purity was evaluated using the

ESTIMATE algorithm. The stromal score represents the proportion

of stromal cells, while the immune score reflects the balance of

immune cell populations. Finally, we visualized the distribution

differences between risk groups and microsatellite status (MSI)

states using boxplots.
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2.10 Mutation analysis

We downloaded somatic mutation data of training group via

the UCSC Xena browser. This data was then visualized using

waterfall charts from the “maftools” R package. Next, we

computed the tumor mutational burden (TMB) score for every

single sample and investigated its correlation with risk score.
2.11 Visualization of protein-protein
interaction networks

Associations between these model genes were constructed by

STRING database. A PPI network was built using interaction scores

higher than 0.15 and P < 0.05 as the significant threshold. Genes

with interaction scores greater than 0.15 were selected to construct

PPI network. Cytohubba plugin was utilized to estimate the MCC

score, Stress score, Degree score and Closeness score. In this

analysis, genes with the same score were considered to be

sequenced equally.
2.12 Single-cell data analysis

The raw expression profiling of GSE112302 was retrieved from

the GEO dataset. The data pertaining to normal tissue were omitted,

while the data corresponding to tumor tissue were utilized for

subsequent analysis. The employment of the “Seurat” program was

necessary for performing data quality control, PCA, and t-

Distributed Stochastic Neighbor Embedding (t-SNE) visualization

are all reliant on the utilization of the “Seurat” package. The

“SingleR” package was vital for annotating the cell types in

each cluster.
2.13 Cell culture

The gastric cancer cell lines (SGC7901, AGS, HGC27) and the

human normal gastric mucosal cell line GES-1 were procured from

Pricella Life Science & Technology Co., Ltd. These cell lines were

cultured in RPMI-1640 medium (Pricella Life Science &

Technology Co., Ltd) supplemented with 10% Fetal Bovine Serum

(FBS, from Shanghai Life-iLab Biotech Co., Ltd.), and containing

penicillin and streptomycin.
2.14 Cell viability assay

The growth of AGS and HGC27 cells was assessed using the

MTT assay. Cells were seeded at a stable density in a 24-well plate and

incubated. Subsequently, 0.5 mg/mL MTT solution (M158055,

Aladdin) was added to each well at 24, 72, and 120 hours,

respectively. After 3-4 hours of incubation at 37°C, the supernatant
Frontiers in Oncology 04
was removed, and dimethyl sulfoxide was added to dissolve the

formazan precipitate. The absorbance of the resulting solution was

measured at 490 nm using a microplate spectrophotometer.
2.15 Colony formation assay

To assess the proliferation of AGS and HGC27 cells, a cell

cloning assay was performed. Cells were seeded into a six-well plate

and incubated under standard conditions for 10-14 days.

Subsequently, the supernatant was removed, and cells were fixed

with 4% paraformaldehyde (30072418, China National

Pharmaceutical Group Chemical Reagent Co., Ltd). Following

fixation, cells were stained with crystal violet, and the number of

colonies formed was manually counted.
2.16 Migration assay

To assess the migration of AGS and HGC27 cells, a cell scratch

assay was performed. Cells were seeded in a 24-well plate and

incubated for 2-3 days until reaching approximately 90%

confluency. A wound was created on the cell monolayer using a

200 μL pipette tip. Cell migration into the wound area was observed

and evaluated after 48 hours.
2.17 Western blot

Use cell lysis buffer (containing 20mM Tris (pH 7.5), 150mM

NaCl, 1% Triton X-100, and other components) to lyse cell samples.

Protein concentration in the collected lysates was determined using

the BCA quantification method. Subsequently, 25-40 μg of protein

was separated on an SDS-PAGE gel, followed by transfer to a

polyvinylidene fluoride (PVDF) membrane. The membrane was

incubated overnight at 4°C with primary antibodies against TXNIP

and GAPDH. Afterward, the membrane was incubated with a

secondary antibody at room temperature for 2 hours. Protein

bands were visualized using ECL chemiluminescence.
2.18 Statistical analysis

The work in this study was primarily performed by R software

(version 4.3.1). Univariate and multivariate Cox regression analysis

were employed to evaluate the independent prognostic significance

of variables. For survival analysis, the Kaplan-Meier method was

employed to plot the survival curves of different risk groups, and the

Log-rank test was utilized to evaluate the significance of survival

differences between groups. Regarding the comparison of

continuous data, the independent Student’s t-test was carried out

for normally distributed data between two groups, while the

Wilcoxon test was applied for non - normally distributed
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continuous variables. The Spearman’s correlation coefficient was

computed to evaluate the associations between two variables.

Statistical significance was determined by setting the threshold at

p < 0.05 for all analyses.
3 Results

3.1 Identification of autophagy- and
senescence-related prognostic DEGs in
STAD and functional enrichment analysis

Firstly, a general workflow was constructed to outline the entire

analysis process (Figure 1). Supplementary table 1 displayed a

fundamental table containing baseline data of certain participants

in this study. These participants have available survival status and

survival time (≥30 days), and their T, N, M and clinical stage are

clearly defined. As illustrated in the Venn plot (Figure 2A), 685

overlapping genes were obtained by intersecting 2269 autophagy-

related genes and 4136 senescence-related genes from the

GeneCards database with TCGA-STAD genes. Through

differential expression analysis of these overlapping genes, 161

autophagy- and senescence-related DEGs (DEASRGs) were

filtered comparing normal and tumor groups (Figure 2B). To

provide a clearer understanding of the functional properties of

DEASRGs in STAD, GO enrichment analysis was performed. The

GO terms for biological processes and molecular functions revealed
Frontiers in Oncology 05
that the DEASRGs were mainly involved in the regulation of mitotic

cell cycle phase transition, regulation of response to DNA damage

stimulus, and ubiquitin-like protein ligase binding (Figure 2C).

Additionally, KEGG pathway analysis was conducted to investigate

the possible mechanistic pathways associated with these DEGs,

including the cell cycle, cellular senescence, and PI3K-Akt signaling

pathway (Figure 2D).
3.2 Construction and validation of the
autophagy- and senescence-
related signature

Through univariate Cox regression analysis, we identified 29

genes from the initial 161 DEASRGs as potential prognostic factors

for STAD patients (Figure 2E). We investigated CNV alterations in

these 29 genes, revealing predominantly copy number gains.

However, COL3A1, HMGB2, DNMT1, CASP2, EZH2, DCN,

TP53, LMNB2, TTF2, LMNB1, TNFRSF10B and UHRF1

exhibited a greater frequency of CNV losses (Figure 2F). The

chromosomal location of CNV alterations for these 29 genes is

depicted in Figure 2G. Finally, LASSO regression analysis further

reduced the gene set to 14 (Figures 3A, B).

After calculating risk scores, patients were categorized into

high- and low-risk groups using the median risk score as a

threshold. KM survival analysis demonstrated a statistically better

OS for the individuals classified as low risk (Figures 3C, D). The risk
FIGURE 1

Study workflow.
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score exhibited a negative correlation with patient survival,

indicating that a higher risk score predicts lower overall survival

and higher mortality (Figures 3E, F). Similar analyses were

conducted on the validation cohort (Figures 3G, H). Figures 3I, J

presents gene expression profiles of the prognostic model genes as

heatmaps. Our model demonstrated superior prognostic accuracy

for gastric cancer patients compared to traditional clinical

indicators in TCGA cohort (Figure 3K). Time-dependent ROC

curves with AUCs of 0.645, 0.673, and 0.721 at 1, 3, and 5 years

further validated the model’s efficiency (Figure 3L). In the

GSE66229 dataset, our model outperformed most clinical

indicators (Figure 3M), with AUCs of 0.627, 0.648, and 0.633 at

1, 3, and 5 years (Figure 3N). After that, we employed GSEA

method to investigate disparities in biological functionality between

patients classified as high and low risk (Supplementary Figure S1).

Interestingly, the findings indicated that the biological functions of

the high-risk group were intricately linked to the composition and

specific activities of the extracellular matrix, while the low-risk

group was primarily enriched in cell cycle, certain activities related

to DNA and mitochondria. Univariate and multivariate Cox

analyses confirmed the risk score as a significantly independent

predictor of gastric cancer in the TCGA-STAD and GSE66229

datasets (Supplementary Figures S2A-D). Next, we examined the

association between risk scores and clinical factors. The findings

suggested that the younger populations (<65) had considerably

higher risk scores (Supplementary Figure S2E). In addition, the

differences in risk scores among gender, T stage, N stage, M stage,
Frontiers in Oncology 06
and clinical stage were not statistically significant (Supplementary

Figures S2F-J). Moreover, Supplementary Figure S3 illustrated the

difference in survival rates among high- and low-risk patients across

several clinical subgroups.
3.3 Identification of three subtypes by
consensus clustering

Based on the expression of DEASRGs, we employed the

Consensus Cluster algorithm to identify three distinct patient

subtypes within the TCGA-STAD cohort, designated as clusters 1,

2, and 3 (Figure 4A). A PCA plot visualized the transcriptional

differences among the three clusters in a three-dimensional space

(Figure 4B). Survival analyses revealed a significant survival

advantage for patients in cluster 1 (Figure 4C). A Sankey diagram

illustrated patient transitions among gene clusters, risk groups, and

survival status, demonstrating higher survival rates in cluster 1 and

low-risk group (Figure 4D). The risk score in cluster 1 exhibited a

statistically significant decrease compared to the other two clusters

(Figure 4E). We subsequently assessed inter-cluster variations in the

immunological microenvironment (Figures 4F-H). Notably, cluster

2 exhibited considerably higher expression levels of most ICs than

the other clusters (Figure 4I), suggesting a suboptimal response to

immunotherapy. A heatmap comparing immune cell infiltration

patterns across clusters using algorithms from multiple platforms is

presented in Figure 4J. C2 exhibited the highest overall immune cell
frontiersin.or
FIGURE 2

Identification of core prognostic genes and enrichment analysis. (A) Venn diagram illustrating the intersection of 685 genes associated with
autophagy, senescence, and STAD. (B) Volcano plot of DEASRGs based on intersected genes. (C) GO functional annotation of DEASRGs. (D) KEGG
enrichment analysis of DEASRGs. (E) Univariate Cox regression analysis identifying 29 genes. (F) Frequencies of CNV gain and loss among 29
prognostic genes. (G) Circular plots visualizing chromosome distributions of core prognostic genes.
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infiltration, consistent with the findings from the ESTIMATE

algorithm (Figure 4G). However, elevated expression of M2

macrophages, myeloid-derived suppressor cells, and tumor-

associated fibroblasts was detected in C2 across multiple

platforms, suggesting that this subgroup resides in an

immunosuppressive microenvironment.
3.4 Establishing a predictive nomogram

To enhance the clinical applicability and predictive accuracy of

our signature, a nomogram was constructed incorporating risk

score and other clinical indicators (Figures 5A, E). Calibration

curves exhibited robust concordance between the expected and

observed survival probability at 1, 3, and 5 years (Figures 5B, F),

indicating high nomogram accuracy and reliability. DCA curve

revealed that the nomogram exhibited larger net benefit compared

to the nomogram without prognostic signature (nomogram
Frontiers in Oncology 07
excluding ASRG) and other factors (Figures 5C, G). ROC curve

demonstrated superior predictive accuracy of the nomogram

compared to other factors, such as nomogram excluding ASRG,

risk score, gender, age, and TNM stage, with AUC values of 0.691 in

the training set and 0.826 in the validation set (Figures 5D, H). The

above results indicated that the incorporation of prognostic

signature contributed to enhancing the superiority of

the nomogram.
3.5 Relationship between ASRG signature
and drug sensitivity

Resistance to therapeutic medications is a common challenge in

cancer therapy, often leading to poor drug efficacy and worse

clinical outcomes in gastric cancer. To enhance therapeutic

benefits, we figured out whether the ASRG signature could

accurately predict drug sensitivity in the training cohort. By
FIGURE 3

Development and verification the ASRGs signature. (A) LASSO regression model selection curve with log(l) on the x-axis and partial likelihood
deviance on the y-axis. (B) Coefficients of the LASSO regression model. (C, D) KM survival curves of OS. (E, G) Survival curves of patients with GC. (F,
H) Distribution of survival status based on risk score. (I, J) Heatmaps of gene expression for the prognostic model genes. (K, M) Comparison of ROC
curves. (L, N) ROC curve using temporal information (time-dependent ROC curves).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509771
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1509771
utilizing the “oncoPredict” package, we estimated IC50 values for

198 drugs in all patients. The high-risk patients showed markedly

elevated IC50 values for Oxaliplatin, Paclitaxel, Cisplatin, Docetaxel,

5-Fluorouracil, and Afatinib, which were positively correlated with

risk scores. This suggested that individuals with lower risk scores

might exhibit a more favorable response to therapies containing
Frontiers in Oncology 08
these medications (Figures 6A-F). Gemcitabine, Camptothecin,

KRAS (G12C) Inhibitor, Dabrafenib, and Sorafenib also exhibited

increased IC50 values in the high-risk group (Figure 6G).

Conversely, SB505124, JQ1, IGF1R, JAK, and NU7441 had higher

IC50 values in the low-risk patients, implying a poorer response to

these drugs (Figure 6H).
FIGURE 4

Association of the prognostic signature with gene clusters and immunological features. (A) The heat map display of consensus clustering is
categorized into three cluster (C1 = 277; C2 = 63; C3 = 26). (B) PCA showing the perfect separation of C1, C2 and C3. (C) KM survival curves with
three distinct clusters. (D) A Sankey diagram illustrating the link between gene clusters, risk group, and survival status. (E) Variations in risk score
among the three gene subtypes. (F-H) ESTIMATE algorithm results for three gene clusters. (I) Expression of immune checkpoints related genes. (J)
The heat map depicting variations in immune cell infiltration as determined using TIMER, CIERSORT, quanTIseq, MCPcounter, xCell, and
EPIC algorithms.
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3.6 Immunological features of
the signature

The TME, composed of diverse immune cells, cancer-associated

fibroblasts (CAFs), endocrine cells, extracellular matrix (ECM)

components, and other elements, significantly influences

tumorigenesis. Disrupting the tumor immune tolerance feedback
Frontiers in Oncology 09
loop by targeting the TME is a promising strategy to enhance cancer

therapy (16). To examine the correlation between our signature and

immune infiltration, we employed the CIBERSORT algorithm to

determine the composition of tumor-infiltrating immune cells in

STAD (Figure 7A). Comparative analysis of immune cell

distribution between high- and low-risk groups revealed

significant differences. Plasma cells were notably reduced in the
FIGURE 5

Establishment and validation of the nomogram. (A, E) A nomogram was established to forecast the 1-year, 3-year, and 5-year OS. (B, F) Calibration
plots illustrating the agreement of predicted survival rates compared to the actual observed survival rates. (C, G) A DCA was carried out to compare
the net benefits of the nomogram incorporating the prognostic signature, the nomogram excluding the prognostic signature, and other factors. (D,
H) The AUC was employed to compare the predictive accuracy of the nomogram with other prognostic markers.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509771
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1509771
high-risk patients, whereas naïve B cells, activated NK cells

monocytes, resting dendritic cells, and resting mast cells were

increased (Figure 7B). Moreover, elevated expression of multiple

ICs in high-risk patients suggested increased susceptibility to

immune evasion (Figure 7C).
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Subsequently, we examined the correlation between microsatellite

status and risk score. Figure 7D indicated that patients with MSI-H,

known for increased immunotherapy sensitivity, exhibited lower risk

scores. As expected, the MSI-H prevalence was considerably higher in

low-risk patients (30%) (Figure 7E). To predict immune system evasion,
FIGURE 6

Drug sensitivity in the TCGA cohort. (A-F) The IC50 of Oxaliplatin (A), Paclitaxel (B), Cisplatin (C), Docetaxel (D), 5-Fluorouracil (E), Afatinib (F) were
considerably lower in the low-risk group, and there was a favorable correlation between the IC50 values of these drugs and the risk score. The
difference in drug sensitivity showing the IC50 of Gemcitabine, Camptothecin, KRAS (G12C) Inhibitor, Dabrafenib, Sorafenib drugs were significantly
higher in high-risk groups (G), while the IC50 of SB505124, JQ1, IGF1R, JAK, NU7441 were significantly higher in low-risk groups (H).
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we performed TIDE analysis. As shown in Figure 7F, individuals at high

risk expressed elevated TIDE scores, indicating a greater risk of

immunological escape and reduced immunotherapy responsiveness.

The ESTIMATE algorithm revealed significantly elevated stromal,

immune, and estimate scores in the high-risk group, positively

correlated with the risk score. Conversely, a negative correlation

between tumor purity and the risk score was observed (Figures 7G, H).
3.7 Correlation of risk model with TMB

Human tumors exhibit varying levels of somatic mutations

collectively termed TMB, which has been linked to immunotherapy
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efficacy (17, 18). To investigate the association between risk score

and gene mutation, we analyzed simple nucleotide variation data

from TCGA. Figures 8A, B present the top 20 genes with the highest

frequency of mutations in two groups. TTN, TP53, MUC16,

ARID1A, and LRP1B emerged as the five most prominent

mutated genes. TMB analysis revealed an inverse relationship

between TMB and risk score (Figures 8C, D). Spearman

correlation analysis further differentiated clusters based on TMB

and risk score (Figure 8E). Significantly, the high TMB had superior

survival rates compared to the group with a low TMB (Figure 8F).

An integrated survival analysis, including both TMB and risk

groups (Figure 8G), demonstrated that GC patients with high

TMB and low risk scores presented the most favorable outcome.
FIGURE 7

Immune microenvironment analysis and prediction for immunotherapy. (A) Heat map of immune cell distribution in the immune microenvironment
of GC patients in training cohort. (B) Disparities in the allocation of various immune cells within the TME. (C) Differences of ICs expression. (D) The
distribution of risk scores under three different microsatellite states. (E) The proportion of MSS, MSI-L, and MSI-H in different risk groups. (F)
Comparative analysis of the TIDE score in both low- and high-risk populations. (G) ESTIMATE algorithm results for different risk groups. (H)
Correlation analysis between four indicators of the ESTIMATE algorithm and the risk score. (*, **, ***, and ns represent p < 0.05, p < 0.01, p < 0.001,
and “not statistically”, respectively.).
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3.8 PPI network

To investigate the interaction of model genes, we constructed a

PPI network. Next, the results of the STRING database were

exported into Cytoscape for further analysis to obtain the hub

gene (Supplementary Figure S4A). Then, by intersecting the top 7

hub genes determined by MCC, Stress, Degree and Closeness

algorithms in cytohub plug-in, we identified 6 core genes

(Supplementary Figure S4B-F). Moreover, the impact of IRAK1,

SERPINE1, KIT, CXCL1, CD36, TXNIP on prognosis of STAD was

analyzed by GEPIA online tools (Supplementary Figure S5). The

findings indicated that lower expression levels of SERPINE1, KIT,

CD36 and TXNIP were associated with longer OS, while differences

in IRAK1 and CXCL1 expression levels did not have a statistically

significant effect on prognosis.
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3.9 Single-cell analysis of the model genes

We selected scRNA-seq data from GSE112302 dataset for

further analysis of the model gene. To ensure the reliability of the

single-cell data, we applied a filter to exclude genes expressed in

fewer than three cells and cells expressing fewer than 50 genes

(Supplementary Figure S6A). The correlation of sequencing depth

with mitochondrial content and gene number was shown in the

Supplementary Figure S6B. Subsequently, the data was standardized

and the top 1,500 genes with significant intercellular coefficients of

variation were extracted for further analysis (Supplementary Figure

S6C). We then employed PCA analysis to reduce the dimensionality

of the data (Supplementary Figure S7A). Supplementary Figures

S7B-C illustrates the characteristic genes of the initial four principal

components in the PCA analysis. We chose the initial 14 PCA
FIGURE 8

Assessment of TMB and genetic mutation profile. (A, B) The waterfall plot illustrated difference of somatic mutation characteristics. (C) The TMB
difference between the two groups. (D, E) The correlation map demonstrates the associations between various risk groups and gene clusters with
TMB. (F) Comparison of the survival probability. (G) An examination of survival rates was conducted on three groups of patients, combining their risk
group and TMB group.
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components with a significance level of p<0.05 for subsequent

analysis (Supplementary Figure S7D). The t-Distributed

Stochastic Neighbor Embedding (tSNE) algorithm was applied to

classify the cells into six distinct clusters, illustrating the global

distribution of the single-cell transcriptomes (Supplementary

Figure S8A). Each cluster represents a distinct cell population.

Supplementary Figure S8B depicted, in the form of a heat map,

the top 10 genes exhibiting the most substantial variances within

each cluster. The distribution and expression of key model genes are

visualized in Supplementary Figures S8C, D. Furthermore,

Supplementary Figure S8E visualizes the expression of prognostic

genes identified through the PPI network, including SERPINE1,

KIT, CD36, and TXNIP, across the clusters: IRAK1 was

significantly expressed in Clusters 4 and 5; SERPINE1 and KIT

were not highly expressed in any of the clusters; CXCL1 showed

high expression in Clusters 1 and 5; CD36 was predominantly

expressed in Cluster 5; and TXNIP was most highly expressed in

Clusters 0 and 2. Cell type annotation (Supplementary Figure S8F)
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reveals that the six clusters can be broadly classified into two major

cell types: Clusters 0-4 primarily represent epithelial cells, while

Cluster 5 is primarily composed of monocytes. Based on these

findings, we conclude that IRAK1 and CXCL1 are expressed in both

epithelial cells and monocytes, CD36 is predominantly expressed in

monocytes, and TXNIP is mainly expressed in epithelial cells.
3.10 Knockdown of TXNIP inhibits the
growth of gastric cancer cells

We initially examined TXNIP protein expression levels in

gastric cancer cell lines SGC7901, AGS, and HGC27, as well as in

normal human gastric mucosal epithelial cells GES-1. TXNIP

protein expression was significantly higher in AGS and HGC27

cells compared to GES-1 cells (Figure 9A). To investigate the

biological role of TXNIP in gastric cancer, we employed lentiviral

transduction to knock down TXNIP gene expression in AGS and
FIGURE 9

Knockdown of TXNIP inhibits the growth of gastric cancer cells. (A) Western blot revealed TXNIP expression levels in GES-1, SGC7901, AGS, HGC27
cell lines (n=3). (B) TXNIP protein expression was evaluated by western blot in AGS and HGC27 cells silenced by TXNIP-sh1, TXNIP-sh2, and TXNIP-
sh3 (n=3). (C, D) Cell viability of AGS and HGC27 cell lines treated with lentivirus (shControl, TXNIP-sh3) was determined (n=3). (E, F) AGS and
HGC27 cell lines cloning after lentivirus treatment (shControl, TXNIP-sh3). (G, H) Determination of migration ability of AGS and HGC27 cell lines
treated with lentivirus (shControl, TXNIP-sh3) (n=3). Scale bar: 250 mm. The data were represented as mean ± standard deviation **p<0.01,
***p<0.001, and ****p<0.0001, with significant differences compared to the control group.
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HGC27 cells. Based on knockdown efficiency, shRNA3 was selected

for subsequent experiments (Figure 9B). MTT assays revealed that

TXNIP knockdown significantly inhibited the growth of AGS and

HGC27 cells, with a marked reduction in cell viability on days three

and five (Figures 9C, D). Furthermore, colony formation and

migration assays demonstrated that TXNIP knockdown

suppressed the clonal formation and migratory capacity of AGS

and HGC27 cells (Figures 9E-H). Overall, these results indicate that

TXNIP exerts an oncogenic role in gastric cancer.
4 Discussion

Gastric cancer, originating from the epithelial cells of the gastric

mucosa, is a globally prevalent and highly lethal malignant tumor

(1, 19). While the morbidity and mortality rates of GC have

declined in recent decades, largely attributed to advancements in

multimodal treatments, China continues to bear 44% of the global

disease burden, and overall patient survival remains a critical

concern (20). Given the substantial heterogeneity of gastric

cancer, personalized treatment is considered the optimal

approach to reduce mortality and prolong survival. Advances in

sequencing and bioinformatics technologies are empowering

clinicians to refine patient assessments for personalized care.

While cancer and aging have traditionally been studied as distinct

entities, a growing body of evidence underscores the intimate link

between them, suggesting that cancer is an aging-related disease (21–

24). Impaired macroautophagy and cellular senescence, both

hallmarks of aging, exert context-dependent oncosuppressive and

pro-tumorigenic influences (5). Furthermore, previous research has

established the pivotal role of autophagy-senescence crosstalk in

regulating tumor initiation and progression (25–29). By integrating

autophagy- and senescence-related genes, we developed a novel

prognostic signature that demonstrates exceptional predictive

power and offers novel avenues for identifying potential therapeutic

interventions in GC patients.

While autophagy has been investigated in GC using

bioinformatics approaches (30–34), this study established a novel

connection between autophagy and senescence to develop a robust

prognostic model, further characterizing the TME, predicting

immunotherapy efficacy, and assessing drug responsiveness in GC

patients. Initially, common genes were identified among autophagy-

related genes, senescence-related genes, and STAD-associated genes

through intersection analysis. Subsequent differential expression

analysis of these intersecting genes yielded 161 DEASRGs.

Functional enrichment analyses revealed significant enrichment of

these DEGs in cell cycle and carcinogenesis pathways. Univariate Cox

regression identified 29 prognosis-associated genes, with frequent

copy number variations confirming the critical involvement of

ASRGs in GC lesions. LASSO regression selected 14 variables

(PIM1, ITGB4, SPARC, CASP2, LMNB2, SERPINE1, TXNIP,

UHRF1, IRAK1, KIT, CD36, CXCL1, ZFP36, MAP4K4) for

inclusion in the final prognostic signature. KM curves revealed a

statistically significant decrease in overall survival for individuals
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classified as high-risk. Time-dependent ROC curve validated the

signature’s predictive performance, exhibiting high accuracy.

Multivariate Cox regression confirmed the independent prognostic

value of the derived risk scores. These findings suggest autophagy and

senescence as potential therapeutic targets for GC, with the novel

signature serving as a predictor of prognosis. To further explore

ASRG-related modifications in GC, patients were classified into three

distinct subtypes with significant prognostic differences based on

gene expression profiles. This suggests three different ASRG-related

modification modes in GC, each with unique clinical and

immunological characteristics. Nomograms incorporating

clinicopathological variables and the signature provided a

comprehensive perspective on the predictive potential of ASRGs.

External validation using the GSE66229 dataset confirmed the

robustness of the prognostic risk model and nomogram.

We then conducted a comparative analysis of TME variations

within risk subgroups. As a dynamic and complex ecosystem

composed of various extracellular components and cell types, the

crosstalk between cellular components and tumor cells is a critical

factor in cancer pathogenesis and has emerged as a potential

therapeutic target (35). Immune checkpoints (ICs) analysis

indicated an immunosuppressive TME in the high-risk group.

NK cells serve as an essential part in the innate immune

response, capable of operating independently without prior

sensitization. They can eliminate tumor cells through antibody-

dependent cell-mediated cytotoxicity (ADCC) and trigger an

adaptive immune response by releasing pro-inflammatory

cytokines and chemokines (36).

Previous studies have demonstrated that a high abundance of

NK cell infiltration within the TME was associated with favorable

prognosis in certain malignancies (37). NK cells directly kill tumor

cells. Additionally, NK cells can express death receptors, such as

FasL, which bind to Fas on the tumor cell surface, triggering

apoptosis (38). NK cells also secrete cytokines like IFN-g and

TNF-a. Recent studies have indicated that IFN-g can upregulate

MHC-I expression on the surface of tumor cells, thereby increasing

their susceptibility to immune cell-mediated recognition (39). In

contrast, TNF-a directly induces apoptosis in tumor cells. NKG2D

is a stimulatory receptor located on the surface of NK cells. While

NKG2D ligands are downregulated in normal tissues, their

expression rapidly increases upon malignant transformation (40).

Consequently, NKG2D is an ideal target for chimeric antigen

receptor (CAR)-T cell therapy (41). Additionally, a research team

has developed 70CAR-iNK cells, which express CD70-targeted

CAR molecules (42). Dendritic cells (DCs) play a crucial role in

the TME, serving as antigen-presenting cells that initiate specific

immune responses. Beyond this, they also regulate the function of

other immune cells. Studies have shown that IL-12 secreted by DCs

can promote the differentiation of T cells into Th1 cells (43).

Moreover, mature DCs can inhibit Treg activity by upregulating

co-stimulatory molecules, thereby restoring the body’s anti-tumor

immune response (44).

In the contemporary medical landscape, chemotherapy efficacy

for GC has plateaued, while targeted therapies benefit only a small
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subset (10-12%) of the population. Immunotherapy, exemplified by

programmed cell death protein 1 (PD-1) inhibitor antibodies, has

demonstrated significant progress in GC treatment (45, 46). Previous

research on immunotherapy response predictors has primarily

focused on patients with elevated MSI, increased PD-L1 expression,

higher tumor mutation burden, and Epstein-Barr virus positivity.

However, identifying patients who benefit from immunotherapy may

require additional clinical and molecular markers.

Microsatellites are DNA sequences composed of short, tandemly

repeated units (typically 1 to 6 base pairs) with a high mutation rate.

MSI arises from errors in DNA replication due to defective mismatch

repair machinery, resulting in insertions or deletions within

microsatellite sequences (47). MSI-H tumors exhibit increased

immunogenicity across various tumor types, leading to an immune

response from tumor-infiltrating lymphocytes (TILs). This

heightened immunogenicity is responsible for the susceptibility of

MSI-H tumors to immunotherapy.

Our signature identified a 4.3-fold higher proportion of MSI-H in

the low-risk group, suggesting superior immunotherapy efficacy for

the low-risk population. Immune checkpoint inhibitors (ICIs), a

group of molecules expressed on immune cells that modulate

immune activation, are central to immunotherapy (48). Analysis of

ICs within the two risk subgroups revealed significantly increased

ICIs expression in the high-risk populations. Consistent with these

findings, the low-risk patients exhibited a considerably higher TMB.

A higher TMB correlates with increased neoantigen presentation and

enhanced T-cell recognition, leading to improved ICIs outcomes (49).

Furthermore, TIDE scores corroborated these observations. The

high-risk group demonstrated markedly elevated stromal scores.

Excessive stromal components in the high-risk group might impair

ICIs efficacy by impeding the infiltration of TILs and other immune

cells into tumors (50, 51). Taken together, our novel signature

provides a new perspective for accurately identifying individuals

who may benefit from immunotherapy.

Four genes significantly associated with prognosis in GEPIA

analysis were selected for further analysis. SERPINE1 promotes the

proliferation and division of gastric cancer cells by upregulating

positive cell cycle regulators, such as Cyclin D1 (52). Additionally,

SERPINE1 can indirectly enhances the migratory and invasive

abilities of gastric cancer cells by inhibiting plasminogen

activators, like tPA and uPA (52). CD36 functions as a fatty acid

transporter and plays a crucial role in metabolic reprogramming. By

facilitating the uptake of fatty acids, CD36 supports the growth and

drug resistance of gastric cancer cells (53). In gastric cancer,

particularly in gastrointestinal stromal tumors (GISTs), mutations

in the KIT gene are frequently observed. These mutations activate

signaling pathways, including MAPK and PI3K/Akt, that promote

cell survival, proliferation, migration, and invasion (54). As such,

KIT inhibitors, are currently being investigated in clinical trials for

their therapeutic potential in gastric cancer (55, 56).TXNIP

functions primarily as a molecule that binds to TRX to regulate

ROS and oxidative stress within cells. ROS are closely related to the

initiation and development of autophagy and senescence. Increased

expression of TXNIP can enhance the cytotoxicity of chemotherapy

drugs by modulating ROS levels (57). Furthermore, overexpression
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of TXNIP leads to the upregulation of angiogenesis-related proteins

and promotes an angiogenic phenotype (58). The NLRP3

inflammasome is involved in immune responses in various

cancers, and numerous studies have highlighted the link between

TXNIP and NLRP3 inflammasome activation (59). TXNIP is

crucial for the maturation of NK cells and the function of DCs in

the tumor microenvironment, thus influencing anti-tumor

immunity (60–62). Initially, TXNIP was considered a potential

tumor suppressor gene. Nevertheless, the findings obtained from

diverse tumor studies utilizing varied methodologies exhibit

paradox, suggesting that the role of TXNIP can be variable upon

the specific tumor type and stage. These findings indicate that the

involvement of TXNIP in cancer is intricate Some studies have

demonstrated decreased TXNIP expression in several cancer types.

Song et al. reported that TXNIP antisense cDNA transfection in

melanoma cells reduced FasL and CD44 cytokine expression,

confirming TXNIP’s role in promoting melanoma cell apoptosis

and inhibiting tumor growth (63). In breast cancer, TXNIP

knockdown increased Ki-67 expression (a marker of cell

proliferation) and decreased p27 (a cell cycle regulatory protein),

leading to enhanced breast cancer cell growth in vitro and in vivo

(64–66). Furthermore, TXNIP mediates acetylation inhibitor-

induced suppression of hepatocellular carcinoma by triggering

potassium deprivation (67). The tumor-suppressive mechanism of

TXNIP in lung cancer is likely attributed to its promotion of A2BR

degradation and inhibition of cRaf/Erk signaling (68). In contrast,

Elevated expression of TXNIP may also contribute to worse

prognosis in some types of cancer.

For instance, in hepatocellular carcinoma (HCC) and renal

clear cell carcinoma, the overexpression of TXNIP promotes

angiogenesis and the spread of cancer cells (58, 69). Studies have

also noted that lung cancer patients with high levels of TXNIP

expression had reduced rates of progression-free survival (70).

These studies demonstrate that the effects of TXNIP on tumors

are characterized by tumor heterogeneity.

However, the precise role of TXNIP in GC remains poorly

understood. TXNIP protein expression correlates with the

prognosis of GC patients. A Pan-cancer analysis indicated a

connection between TXNIP and an unfavorable outcome in

gastric cancer (71). To elucidate TXNIP’s role in GC progression,

this study downregulated TXNIP protein expression in gastric

cancer cell lines, resulting in significant inhibition of cell viability,

proliferation, and migration. Given previous findings on TXNIP’s

involvement in ROS homeostasis, metabolic response, and immune

function, TXNIP emerges as a promising therapeutic target for

cancer treatment (71–74).

Despite these promising findings, our study has inherent

limitations. Primarily, the research relied on publicly available

databases, necessitating prospective, large-scale real-world

investigations to validate the model’s generalizability. While we

have experimentally confirmed key findings, additional exploration

is necessary to clarify the underlying mechanisms governing the

interplay between autophagy, senescence, and tumorigenesis.

Additionally, the model’s complexity, involving many genes,

hinders its practical application and necessitates optimization.
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Conclusively, our study identified an entirely novel, fourteen-

gene predictive signature associated with autophagy and senescence

in GC patients, validated in an independent cohort. This prognostic

model reliably and consistently predicts GC patient survival,

providing a foundation for personalized treatment strategies.

Additionally, our findings suggest that alterations in immune cell

infiltration within the TME may underlie gastric cancer

development. These results offer valuable insights for future

research on GC prognosis and personalized therapy.
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