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Background: Liquid–liquid phase separation (LLPS) is a novel concept that could

explain how living cells precisely modulate internal spatial and temporal

functions. However, a comprehensive bibliometric analysis on LLPS and

immune signaling processes in cancer is still scarce. This study aims to

perform a bibliometric assessment of research to explore the landscape of

LLPS research in immune signaling pathways for cancer.

Methods: Utilizing the Web of Science Core Collection database and multiple

analysis software, we performed quantitative and qualitative analyses of the study

situation between LLPS and immune signaling in cancer from 1992 to 2024.

Results: The corresponding authors were primarily from China and the USA. The

most relevant references were the “International Journal of Molecular Sciences”,

“Proteomics”. The annual number of publications exhibited a fast upward

tendency from 2020 to 2024. The most frequent key terms included

expression, separation, activation, immunotherapy, and mechanisms.

Qualitative evaluation emphasized the TCR, BCR, cGAS-STING, RIG-1, NF-kB
signaling pathways associated with LLPS processes.

Conclusion: This research is the first to integratively map out the knowledge

structure and forward direction in the area of immune transduction linked with

LLPS over the past 30 years. In summary, although this research area is still in its

infancy, illustrating the coordinated structures and communications between

cancer and immune signaling with LLPS within a spatial framework will offer

deeper insights into the molecular mechanisms of cancer development and

further enhance the effectiveness of existing immunotherapies.
KEYWORDS

liquid liquid phase separation (LLPS), immune transduction, bibliometric,

CiteSpace, cancer
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1 Introduction

Cancer is distinguished by genomic instability resulting in the

accumulation of gene mutations and structural alterations

throughout tumor progression (1, 2). These genomic changes

may generate tumor-derived antigens, which can be identified by

the immune system as foreign antigens and then trigger the cellular

immune response (3, 4). The immune system exhibits a crucial role

in immune surveillance (5, 6), as immune cells from both the innate

and adaptive immune system infiltrate into the tumor derived

microenvironment and further modulate tumor growth and

progression (7, 8). In particular, innate immune cells are involved

in suppressing tumors by either directly eliminating cancer cells or

initiating adaptive immune responses (8–10). As for the adaptive

immune system, it is functionalized with T cells and B cells (5, 11,

12). The aforementioned immune systems have developed complex

signaling networks to protect against pathogens or sterile threats.

Nevertheless, cancer cells have developed multiple mechanisms,

including deficiencies in antigen presentation machinery, the

enrollment of immunosuppressive cell populations, and the

upregulation of the negative signaling pathways (13–17).

Immunotherapy, which aims to bolster the body’s natural

defenses to eradicate cancerous cells, stands as a significant

advancement in cancer treatment, reshaping the landscape of

oncology. While, various types of cancer have shown positive

responses to immunotherapy (18–23),, the rates of response

remain limited, and the underlying mechanisms are still elusive

(24).Therefore, it is particularly important to explore the immune

mechanism of cancer progression for cancer treatments.

Liquid-liquid phase separation (LLPS) is a cellular biological

process wherein macromolecules spontaneously segregate into

dilute and dense phases, forming bio-molecular condensates

(25, 26). These compounds create a heterogeneous cellular

microenvironment, specifically enhancing nucleic acids and

proteins and exhibiting special features that promote biomolecule

organization and concentration (27, 28). Anomalies in the

separation of phases and transitions have been verified from

liquid to solid in various neurodegenerative diseases (29). For

instance, in a study conducted by Meng and colleagues, they

discovered that Merlin (NF2) could induce the formation of

phase-separated droplets when examining tissue samples

extracted from individuals with vestibular schwannoma (30).

However, growing research also suggests that altered LLPS plays a

vital role in the phenotypes of cancer cells. It is proposed that cancer

mutations could influence the ability of macromolecules to generate

bio-molecular complexes, consequently impacting functionality

indirectly. Additionally, bio-molecular condensates could serve as

a formidable mechanism for spatial modulation in cancer cells (31),

potentially explaining tumor heterogeneity and chemotherapy drug

resistance by non-genetic theories. Despite the well-documented

evidence of LLPS in fields such as transcriptional regulation and

stress responses, there is still a lack of research on its relevance to

immune signaling pathways.

The field of bibliometric utilizes both quantitative and

qualitative analysis to study journals, publications, and their
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citation patterns, tracking changes over time and distribution

trends within specific areas of interest, disciplines, institutions,

and countries (32, 33). By employing bibliometric, researchers

can pinpoint emerging research topics, plan out research

directions, and forecast upcoming research trends (34). Co-

citation and co-linearity methods are performed in bibliometric

to identify the research foundation and highlight current

research hotspots.

In this article, we use bibliometric analysis to detect the

worldwide research trends between LLPS and immune signaling

in cancer, and foresee potential future hotspots. Furthermore, we

also provide an up-to-date insight of LLPS in driving the immune

signaling pathway, including those triggered by TCR, BCR, cGAS-

STING, and RIG-1 in cancer. As researchers focused on bone tumor

disease, we have also reviewed the literature on LLPS and immune

signaling related to bone tumors. However, there is no single

literature that further elucidates the pathogenesis of bone tumor

disease. Meanwhile, we discuss studies that have designed

immunotherapy drugs involving LLPS process, and highlight

some unresolved questions in the field of immunotherapy with

LLPS. Hence, we conceive of the LLPS process as a promising

strategy for cancer treatments. In general, understanding the role of

LLPS in immune signaling transduction could reveal novel

mechanisms of cancer progression and resistance, providing new

targets for immunotherapy
2 Materials and methods

2.1 Search strategy

Recognized as a leading database platform, the Web of Science

Core Collection (WoSCC) is known for its comprehensive coverage

and authority. With a vast collection of over 12,000 international

academic journals (35), it serves as a valuable source of global

academic structure for R package “bibliometrix” software analysis,

following the approach of previous studies (36–38).

Following the outlined procedure, all of the online literatures

were extracted originated from the WoS database, covering period

from January 1, 1992, to January 1, 2024. The search algorithm was

as follows: TS = (tumor OR tumor OR cancer OR oncology) AND

TS = (immune) AND TS = (liquid-liquid phase separation OR

LLPS) AND publishing year = (1992-2024). The inclusion criteria

for this study are as follows: (1) Peer-reviewed publications that

primarily focus on the research field of LLPS and immune responses

in tumor disease; (2) The document types must be either Article or

Review; (3) The publications must be written in English; (4) The

publication date must fall between 1992 and 2024. The exclusion

criteria are as follows: (1) Publications that do not pertain to the

themes of LLPS and immune responses in tumor disease; (2)

literatures that are categorized as news, meetings, abstracts,

briefings, etc. Then, obtained all valid data of literatures,

including literature titles, authors, countries, institutions,

abstracts, keywords, journals, and publishing years were stored in

download_.txt files. The titles and abstracts of retrieved publications
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509457
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pei et al. 10.3389/fonc.2025.1509457
were independently screened by two reviewers, with any

discrepancies being resolved through discussion with a third

reviewer. Furthermore, both reviewers conducted a full-text

review of all included references independently. A second full-text

review was then performed on the discrepant articles to make the

final decision for inclusion/exclusion. All disagreements were

addressed by consulting with experts to reach a final consensus.

Finally, all data were cleaned and analyzed individually by the co-

authors and then cleaned separately using an R package. In

addition, as part of the qualitative assessment, we further

conducted a bibliometric screening of the literatures with an

average annual citation ≥ 10. Figure 1A was the scheme of this

study for cancer.
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Meanwhile, for a deeper exploration of immune and LLPS, we

further searched for literatures in bone tumor disease from 1992-

2024, using the TS = (bone tumor OR bone cancer OR bone tumour)

AND TS = (immune) AND TS = (liquid liquid phase separation OR

LLPS) algorithm. The documents were presented in plain-text form

and contained comprehensive citations for references to enhance the

analysis and visualization by the R package “bibliometrix” software

and CiteSpace software. Figures 1B (bone tumor) provided an in-

depth summary of the data selected.

This study is a bibliometric article. Bibliometric articles typically

do not require ethical approval because such studies do not involve

direct experiments on humans or animals, but rather analyze and

quantify research that has already been published.
FIGURE 1

Flowchart of literature screening under bibliometric analysis. (A) Flow diagram in cancer. (B) Flow diagram in bone tumor.
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2.2 Bibliometric analysis and visualization

The WoSCC database was utilized to analyze the fundamental

characteristics of qualified literature, focusing on the number of

publications and citations. The Relative Research Interest (RRI) was

calculated as the ratio of publications in a specific field per year to

the total literature across all fields. The world map was generated

using the R software, which integrates numpy, python, matplotlib,

and scipy. The publication timeline was created based on the

method described in a previous article (39).

The H-index is an indicator of the impact of scientific research,

reflecting a scholar’s publication of literatures that have been cited

at least H times (40).

We utilized the VOSviewer (version: 1.6.20) to construct and

visualize bibliometric networks. VOSviewer was used to analyze

bibliometric coupling, co-occurrence, and co-citation in detail.

Additionally, R package (version: 4.4.1) “bibliometrix” software

was utilized to visualize publications among states, map

international collaboration, and create a three-field plot analysis.

Furthermore, CiteSpace (version: 6.3.R1), developed by

Professor Chen C, was utilized to construct a dual-map overlay

for journals, to perform cluster-analysis of authors, institutions,

nations and co-cited keywords, and to detect keywords and

references with demonstrate citation bursts.

At last, we used the online website: http://www.bibliometric.com to

further analysis the landscape of nations, affiliations, and authors

according to the enrolled literatures.
3 Results

3.1 Main information of the
published literatures

On January 1, 2024, a scientific literature search of the WoS was

done to gain all online documents related to tumor, immune and

LLPS. Based on the search criteria, a total of 57 literatures were

gathered from 1992 to 2024, of which 43 articles (76.79%) and 13

reviews (23.21%) (Figure 2A).

As shown in Figure 2A, the annual growth rate was 5.16%, and

the rate of international co-authorship was 7.143%. In addition,

from 1992 to 2024, although only 1-2 literatures were published in

the past nearly 30 years, the annual number of publications

exhibited a fast upward tendency from 2020 to 2024 (Figure 2B,

and 2C). The evolution trend of the cumulative number of

productions followed the fitting curve y = 3.1926x – 8.95 (R² =

0.8318) (Figure 2D), indicating that LLPS has become a

progressively prominent research area for scientists and may

represent an enduring and promising field of study.
3.2 Analysis of countries and institution

The corresponding authors were primarily from China, the

USA and the Czech Republic (Figure 3A). As depicted in Figure 3B,

China is the nation that has published the largest number of
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literatures, compared to other states. The number of literatures

linked to China presented a rapid and consistent increase over time,

contrasting with the USA, where the increase was more moderate

(Figures 3B, C).

The USA (total citations: 336) and China (total citations:273)

are the main nations with the most total citations, demonstrating

the superior quality of their articles in this research field

(Figure 3D). While, for the average article citations, Germany

reaches the highest rank (44.00%, ranks 1), followed by the

United Kingdom (24.50%, ranks 2), the USA (24.00%, ranks 3),

ITALY (24.00%, ranks 3) (Figure 3E). According to the total

citations and the average article citations, a deep reflection should

be needed as a member of the Chinese scientific researcher.

A filled radar chart, also known as a solid radar chart, is a visual

representation that uses filled areas to show data points in a multi-

dimensional space. This chart includes multiple axes, each

representing a different variable or category, radiating from a

central point like the spokes of a wheel. Each data point is plotted

on the chart using coordinates on the axes, with the distance from

the center indicating the value for that category. The data points are

connected to create a closed shape, which can be filled with color or

shading to show the overall performance or value across all

categories. Points that are further from the center represent

higher values, while points closer to the center indicate lower

values. As shown in Figures 3F, 3G and 3H, the University of

Michigan (14, 20%), the University of Michigan system are the

primary affiliation of these studies, followed by the Central South

University, the state university system of Florida and University of

California system. Regrettably, the Chinese Academy of Medical

Sciences - Peking Union Medical College ranks last, not containing

Peking University.

At last, by the online website (http://www.bibliometric.com),

top 10 for author’s impact was exhibited in Table 1.
3.3 Author analysis

Lubman DM (articles: 3, articles fractionalized: 0.62), is closely

followed by Zhou L (3, 0.37), Goodison S (2, 0.45), Krcmova LK (2,

0.27), Kreumin P (2, 0.45), Li H (2, 0.15), Li Y (2, 0.27), Liu J (2,

0.17), Mechref Y (2, 0.30), and Melichar B (2, 0.27) as the most

relevant authors with fractionalized articles, as shown in Figure 4A.

Furthermore, all of these researchers have consistently authored

highly cited studies every year

The local citations of the researchers were measured, with Lu

JH, Qian JJ, Xu ZT, Yin SY, Zhang W, Zheng SS, and Zhou L each

having 6 local citations, as exhibited in Figure 4B. Other authors

had an average of 3 local citations.

The H-index and the author’s production over time were shown

in Figure 4C, D, and the authors’ productivity through Lotka’s law

was presented in Figure 4E. Additionally, a cluster analysis of

cooperative institutes was performed, revealing that the USA

researchers predominantly published in the “Proteomics”,

“Journal of Pharmaceutical and Biomedical Analysis” ,

“Bioanalysis”, and “Cancer Research” journals, while authors

originated from China tended to publish in the “Frontiers in Cell
frontiersin.org
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FIGURE 2

Main information. (A) Relevant literature from 1992-2024 under bibliometric analysis. (B, C) Graphs about the number of annual scientific
production. (D) The number of cumulative publications from 1992-2024.
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and Developmental Biology” and “Cancer Research” journals

(Figure 4F). At last, by the online website (http://www.

bibliometric.com), the top 10 authors’ impact was exhibited

in Table 2.
3.4 Source analysis

The most relevant references were obtained in the journals

“International Journal of Molecular Sciences” (articles: 4),

“Proteomics” (articles: 3), and “Frontiers in Cell and

Developmental Biology” (articles: 2), which are leading

publications in the field of immune and LLPS in cancer

(Figure 5A). The most locally cited sources are mainly in the

journals “Cell”, “Nature”, “Analytical Chemistry”, “Molecular

Cell”, “Science” and “Nature Communications” (Figure 5B).

Moreover, according to Figure 5C, the primary journals where

the key sources contributing to the local impact were

published include “International Journal of Molecular Sciences

(H-index: 3)”, “Proteomics (H-index: 3)”, and “Frontiers in Cell

and Developmental Biology (H-index: 2)”. Furthermore, it is

worth noting that, in the field of cancer, the relevant literature

between immune and LLPS started to emerge in 2002,

as indicated in Figure 5D. Lastly by the online website
Frontiers in Oncology 06
(http://www.bibliometric.com), the top 10 authors’ impact was

exhibited in Table 3.

Thus, selecting an appropriate journal is essential for scientists,

as it enables them to align their research objectives with the specific

aims and scope of the journal. This alignment is crucial to establish

a solid and strong theoretical basis for the study of immune and

LLPS, especially in the field of cancer.
3.5 Cited document analysis

The most globally cited document was “Advanced hyphenated

chromatographic-mass spectrometry in mycotoxin determination:

current status and prospects” (total citations: 86), which was

published online in the journal “Mass Spectrom review” by Li

PW, et al., in 2013. The ranked 2 (total citations: 69) was published

in “Electrophoresis” with the title “Recent advances in mass

spectrometric analysis of glycoproteins” by Banazadeh A., et al.,

in 2017. Tied for the third most globally cited were, “Respiratory

Syncytial Virus Sequesters NF-kB Subunit p65 to Cytoplasmic

Inclusion Bodies To Inhibit Innate Immune Signaling” (total

citations: 46), published in “Journal of Virology” by Jobe F, et al.,

in 2020 and “Identification of metastasis-associated proteins in a

human tumor metastasis model using the mass-mapping
FIGURE 3

Analysis of the distribution over the world. (A) Country’s scientific production. (B) Country production over time. (C) Column chart exhibiting the
countries production over time. (D) Most cited countries. (E) Average cited countries. (F, G) Most relevant affiliations exhibited by radar map and pie
chart. (H) Affiliations’ production over time.
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TABLE 1 Top 10 for institution’s impact.

Affiliation Articles Total
Citation

Average
Citation

Number of the
first author

Total citation
of the

first author

Average citation
of the

first author

Zhejiang Univ 3 12 4.00 2 6 3.00

Chinese Acad Med Sci 4 7 1.75 1 0 0.00

Cent South Univ 10 6 0.60 3 3 1.00

Nanjing Med Univ 8 6 0.75 3 2 0.67

NHC Key Lab
Combined Multi
Organ Transplantat

1 6 6.00 0 0 0.00

Res Ctr Diag &
Treatment
Hepatobiliary Dis

1 6 0.75 0 0 0.00

Zhejiang Shuren Univ 1 6 6.00 0 0 0.00

Huazhon Univ
& Technol

5 4 6.00 3 2 0.67

Hunan Key Lab Translat
Radiat Oncol

1 3 6.00 0 0 0.00

Sun Yat Sen Univ 1 3 3.00 1 1 1.00
F
rontiers in Oncology
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FIGURE 4

Authors analysis. (A) Most relevant authors. (B) Most local cited authors. (C) The H-index with authors. (D) Authors’ production over time. (E) Authors’
productivity through Lotka’s law. (F) The correlation of the states (left), authors (middle), and journals (right) based on the alluvial flow map under R
package in cancer.
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technique” (total citations: 46), published in the journal

“Proteomics” by Kreunin P, et al., in 2004 (Figure 6A).

Furthermore, the most frequently referenced documents within

the local community were “Emerging Roles of Liquid-Liquid Phase

Separation in Cancer: From Protein Aggregation to Immune-

Associated Signaling” (local citation = 6), which was authored by

Lu JH, et al., and published in “Frontier in cell and developmental

biology” in 2021. Following closely behind (local citation = 3) was

“Phase Separation in Cancer: From the Impacts and Mechanisms to

Treatment Potentials” in the journal “International Journal of

Biological Sciences” by Peng Q, et al., in 2022 (Figure 6B).
Frontiers in Oncology 08
However, the most locally cited references were Alberti S, 2019,

Cell; Du MJ, 2018, Science; Su XL, 2016, Science; Banani SF, 2017,

Nat Rev Mol Cell, as shown in Figure 6C.
3.6 Analysis of the key words and
trend topics

The most frequent key terms included expression, separation,

activation, immunotherapy, carcinoma, delivery, mechanisms,

proteins, resistance, and cells. These mentioned key words are
TABLE 2 Top 10 for author’s impact.

Authors Articles Total
Citation

Average
Citation

Number of
the

first author

Total cita-
tion of the
first author

Average
citation of

the
first author

Number of the
corresponding

author

LI, YL 1 0 0.00 1 0 0.00 0

PENG, Q 2 3 1.50 1 3 3.00 1

WANG, LJ 1 0 0.00 0 0 0.00 0

TAN, SM 1 3 3.00 0 0 0.00 0

XIA, LZ 1 3 3.00 0 0 0.00 0

WU, NY 1 3 3.00 0 0 0.00 0

QYANG, L 1 3 3.00 0 0 0.00 0

TANG, YY 1 3 3.00 0 0 0.00 0

SU, M 1 3 3.00 0 0 0.00 0

LUO, X 1 3 3.00 0 0 0.00 0
FIGURE 5

Analysis of sources. (A) Most relevant sources. (B) Most local cited journals. (C) Sources’ local impact. (D) Sources’ production over time.
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also displayed in a plot chart, a word cloud, and a tree map, with

their size reflecting the significance and frequency (Figure 7A–C).

Moreover, trend topics were depicted in Figure 7D, E,

exhibiting that separation was the most researched topic in the

nearly past 10 years, while immunotherapy has been the hotspot

and the primary area of study in the recent 10 years (Figure 7D, E).

This subtle shift indicated a growing interest in exploring the

potential links between immunity and LLPS in cancer

therapy (Figure 7F).
3.7 Cluster analysis of the authors,
affiliations, and states

Then, a total of 57 documents were analyzed for collaborations

between authors, institutions, and countries using the CiteSpace

visualization. As shown in Figure 8A, Jaynes, Jesse M, Abisoye-

ogunniyan, Abisola, Cray, Jeffrey W, Chan King, Knotts, Zachary,

Kozlov, Serguel, O’neill Martinic, and Andresson, Thorkell worked

closely with one another. Furthermore, by the bibliometric analysis,

the collaboration network for the authors: Lubman DM, Goodison

S, Barder TJ; Zhou I, Liu J, Cang S, Li H, Chen CS, Byrd JC, as

exhibited by the Figure 8B. Additionally, we also conducted the

cluster analysis of authors using the online website at http://

www.bibliometric.com. As shown in Figure 8C, there were

numerous co-authors, which indicated that the online analysis

bibliometric website is greater than the other software.

Moreover, as depicted in Figures 8D-F, the University of

Michigan, the State University System of Florida, the University of

California System, the Texas Tech University System and the

Texas Tech University had a strong collaboration with each

other. However, interestingly, other institutions did not have

collaborations on account of just a few researches about the

immune and LLPS. The cooperation among nations predominantly

occurred from China, Canada, and France, not containing the USA,

demonstrating the necessity and the importance of enhancing global

teamwork (Figures 8G-I).
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The above analysis results suggested that potential collaborations

or funding opportunities that could help bridge this gap.
3.8 Analysis of the co-appearance network
of the key words

The quantity and frequency of keywords appearing during a

specific timeframe are essential for evaluating the current and future

advancements in a specific field of research. Following that, we

utilized CiteSpace software and VOSviewer software to perform a

co-occurrence network analysis of the key words, and the outcomes

were depicted through a visualization graph, cluster photo, and

timeline chart.

Figure 9A displays the most frequently appearing keywords,

which align with the presented in Figure7B. Figure 9B is the cluster

photo and timeline chart, respectively, indicating immunotherapy,

solid phase microextraction, antitumor activity, protein, tumor-

associated, liquid chromatography, disease, enrichment, autophagy,

nuclear import, and stress gauge. The focus of research constantly

altered towards immunotherapy from separation, as depicted in

Figure 9C. As depicted in Figure 9C, the trend topics diagram under

the R package was so little because of the searched literature was

scarce. The timeline of keywords presented that the focus of

research gradually shifted towards immunotherapy and LLPS

based on CiteSpace software and VOSviewer (Figure 9D), which

indicated that this shift may be related to the fact that the prospects

for cancer treatment have turned towards tumor immunotherapy as

a fourth-line treatment.
3.9 Quantitative analysis of the
literature enrolled

After implementing the Bibliomtrix filter with an average citation

of ≥ 10 per year, 8 documents were identified. Subsequently, a

qualitative assessment was performed. This evaluation aimed to not
TABLE 3 Top 10 for journal’s impact.

Journal Articles Total Citation Average Citation

FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY 2 7 3.50

INTERNATIONAL JOURNAL OF
BIOLOGICAL SCIENCES

1 3 3.00

JOURNAL OF TRANSLATIONAL MEDICINE 1 2 2.00

FRONTIERS IN ONCOLOGY 1 1 1.00

BMC CANCER 1 1 1.00

CANCER RESEARCH 1 1 1.00

JOURNAL OF CLINICAL LABORATORY ANALYSIS 1 1 1.00

ELECTROPHORSISI 1 1 1.00

BIOANALYSIS 1 1 1.00

AGING-US 1 0 0.00
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only elucidate the current research progress but also to gain a deeper

level of comprehension for the intricate relationship between immune

and LLPS in cancer. Multiple receptors from the surface of immune

cells, in conjunction with ligands or/and downstream binding partners,

can cluster ranging from nanometers to micrometers on the plasma

membrane (41–43).

How do LLPS condensates affect cell functions in the physiological

and pathological environment? Speculatively speaking, as liquid-like
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condensates progress into gel-like structures, they may potentially

transmit force much more effectively. Numerous immune receptors

(just like BCR, low-affinity IgG receptor FcgRIIA, and TCR), are known
to be sensitive to force (44–46). This demonstrates that the shift in the

properties of condensates might modulate the activation of receptors.

Here, we would elaborate on how LLPS influences the immune

signaling cascades by regulating these membrane clusters but many

fields still require investigation.
FIGURE 6

Analysis of documents based on R package. (A) Most global cited documents. (B) Most local cited documents. (C) Most local cited references.
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3.9.1 LLPS on the plasma membrane
3.9.1.1 TCR (T cell receptor) signaling pathway

A predominant characteristic of the TCR signaling pathway is the

formation of distinct clusters (nearly discontinuous micrometer- or

submicrometer sized) on the plasma membrane. Since the 1990s,

scientific researchers have constructed a variety of groups that form

microclusters, including TCR, CD28, and PD1; kinases such as

ZAP70 and LCK; the enzymes like PLCg1, CBL, and SOS1; the

adaptor proteins like SLP76, GADS, LAT, and GRB2 (47–49).

Microcluster formation of T cell is highly dependent on the ligand

binding and phosphorylation. Previous studies have indicated that

SOS1, GRB2, and LAT are are pivotal oligomeric components in the

generation of T cell microclusters (50).

LAT microclusters exhibit properties similar to liquids and are

created through LLPS of LAT and its binding partners (51). Notably,

SOS1 and PLCg1,the two enzymes, also play a scaffolding role in

enhancing LAT cluster formation in an enzyme-independent manner

(52, 53). LAT condensates could facilitate tyrosine phosphorylation, a

crucial marker for the activation of the TCR signaling pathway, by

concentrating kinases, not excluding phosphatases in the clusters.

Despite the relatively well understood LAT microclusters, the

potential mechanism of transmembrane receptor clusters (like

TCR, CD28, and PD1) remains unclear. Additionally, the

properties of these receptor clusters and the extent of LLPS in

driving these TCR cluster formations is still uncertain and need to
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be further investigated. Besides, another intriguing physiological

phenomenon also could be interpreted by the LLPS biophysical

process in the TCR signaling pathway. As we know, a notable aspect

of the TCR signaling pathway is its capability to distinguish between

self and non-self antigens, although the mechanisms of which are

not yet comprehended (54, 55). Despite only a slightly fold

difference for antigens, the signaling response is binary. LLPS

may offer a compelling rationale for this phenomenon as it is a

well-coordinated and collective process that leads to a binary result.

Even a minor alteration in input, like a slight enhancement in the

antigen-TCR interaction affinity, could induce phase separation and

initiate the subsequent signaling pathway (56). Longhui Zeng, et al.

unveiled a crucial function of PLCg1(phospholipase Cg1, PLCg1) in
facilitating the LAT LLPS and the activation of TCR signaling

transduction (53).

3.9.1.2 BCR signaling pathway

Protein SLP5 (called BLNK) triggers LLPS in the BCR signaling

pathway. Some researchers have suggested that SLP65 could form a

liquid-like complex by interacting with CIN85 (called SH3KBP1)

via a traditional multivalent interaction involving the proline-rich

motifs of SLP65 and the SH3 domains of trimeric CIN85 (57, 58).

It has been reported that SLP65 compounds are pre-existing in

the cytoplasm of resting B cells, which is different from the time that

LAT condensates formed (59). Meanwhile, in the process of
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FIGURE 7

Analysis of key words. (A) Radar map for the most frequent words. (B) World-Cloud for the relevant words (C) Thematic map under the clustered
analysis. (D) Tree-Map for the relevant words. (E, F) Words frequency over time.
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FIGURE 8

Cluster analysis of authors, affiliations, collaborated nations. (A) Cluster analysis of authors by CiteSpace software. (B) Cluster analysis of authors by
Bibliometric software. (C) Cluster analysis of authors under http://www.bibliometric.com. (D) Cluster analysis of affiliations by CiteSpace software.
(E) Cluster evaluation under bibliometric software based on R package. (F) Cluster analysis of collaborated institutions by http://www.bibliometric.com.
(G) Cluster analysis of collaborated nations by http://www.bibliometric.com. (H, I) Cluster analysis of states under CiteSpace software and
bibliometric software.
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condensates formed, the liposomes also are essential in facilitating

condensates at physiological cellular concentrations of CIN85 and

SLP65. Barbara L. Kee revealed groundbreaking activity of EBF1 as

a pioneering transcription factor in B lymphocyte specification by

recruiting the nucleosome remodeler Brg1 and driving the

occurrence of FUS LLPS (60).

3.9.2 Innate immune receptors
After binging with ligand, a multitude of innate immune receptors

would cluster at the cell surface such as the mast cell receptorFceRI80-
82 and phagocytic receptors-Drosophila melanogaster Draper and

dectin 1 (61, 62), which are similar to the above mentioned BCR

and TCR signaling clusters on accounting of the existence of immune

receptor tyrosine-derived activation motifs (ITAMs) or ITAM-related

sequences, micrometer/nanometer in size, and multivalent proteins

that amplify signaling pathway transduction.

3.9.3 Liquid-like condensates in immune cells
LLPS not only associates with signaling transduction of the

plasma membrane but is also involved in the regulation of

intracellular immune signaling pathways. This includes the

retinoic acid-inducible gene I (RIG-I) pathway, the cyclic GMP–

AMP synthase (cGAS)–stimulator of interferon genes (STING)

pathway, and the nuclear factor-kB (NF-kB) pathway (56).

3.9.3.1 cGAS liquid-like condensates

cGAS could detect abnormal cytosolic dsDNA originating from

nuclear or mitochondrial injuries or pathogens (63). Then, dsDNA
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binds cGAS and activates it, synthesizes the compound of 2′3′-
cyclic GMP–AMP (cGAMP), and then triggers the STING signaling

pathway, resulting in the expression of pro-inflammatory cytokines

and type I interferons (63, 64). Recent research has revealed that

dsDNA binding to the cGAS could induce the production of liquid-

like condensates related to LLPS (65).

K432T and G303E, the two tumor-related mutations, located at

DNA-binding sites of cGAS, lead to a diminished capability to form

cGAS condensates and a decrease in cGAMP (30).

Furthermore, investigations are necessary to be acquired to

comprehend how these cGAS mutants shape immune responses as

tumor progression. Additionally, manipulating cGAS condensate

could offer a novel insight into regulating immune response

against tumor. Wuchang Zhang et al. reported that the inhibition

of KDM4A mechanistically promoted the formation of

liquid-like HP1g puncta on heterochromatin, halted DNA

replication, and subsequently triggered the activation of cancer

cell-intrinsic cGAS-STING signaling transduction (66). Fansen

Meng et al. demonstrated that inducing the LLPS of mutant NF2

(Neurofibromin 2, NF2) could result in quiescence of cGAS-STING

signaling in antitumor immunity (30).
3.9.3.2 RIG-I signaling pathway

A recent preprint demonstrated that RNA binding induces

LLPS of TRIM25, recruits RIG-1 to condensates, boosts the

ubiquitylation of TRIM25 (67). Conversely, RNF125 has been

reported to inhibit the RIG-1 signaling pathway by enhancing the

K48-linked ubiquitylation and degradation of RIG-1 (67–69).
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FIGURE 9

Cluster analysis of key words using CiteSpace software and VOS viewer. (A) Analysis of VOSviewer. (B) Co-occurrence network analysis of keywords
based on VOSviewer and CiteSpace software. In the visualized graph, keywords are divided into 8 clusters with different colors. (C) Trend topics
diagram under R package. (D) The timeline of keywords based on CiteSpace software and VOS viewer.
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3.9.3.3 NF-kB signaling pathway

Fatoumatta Jobe has verified that viruses can prevent innate

immune response by trapping the NF-kB subunit p65 in bio-

molecular condensate (70). Ziran Qin has reported that in innate

antiviral immunity, the LLPS of IRF3 and IRF7 were enabled by

deacetylation with SIRT1 (71). In this section, our emphasis was on

the activation of signaling cascades. However, there is also evidence

demonstrating that PD1 could form microclusters upon engagement

with PD-L1 (48). Nevertheless, it also remains unclear whether PD1

microclusters originated from LLPS. So, we would not discuss this

situation here. Additionally, in the area of tumor immune infiltration,

Yanling Li, et al. have found that EphA2 (Erythropoietin-producing

hepatocellular A2, EphA2) could be involved in the advancement of

colorectal cancer by forming LLPS condensates and further affecting

the immune cell infiltration (72).

To summarize, the research on how LLPS relates to the immune

signaling pathway remains still limited. While LLPS, as the

biophysical process, has been verified to regulate the immune

signaling pathways, just like TCR, BCR, cGAS, RIG-1, and

NF-kB. Undeniably, this field is still emerging and needs to be

further investigated for the functions of manipulating the immune

system, including the aspects of detecting techniques and

physiological studies.

3.9.4 The regulated effect of LLPS-associated
with immune responses in bone tumor disease

As researchers devoted to elucidating the mechanisms of bone

tumor disease, we also searched relative literatures on the topics:

LLPS, immune, and bone tumor. Surprisingly, there is no

literatures, which indicated that research in the field of immunity

related to LLPS is quite rare in orthopedic research.

We know that OS is an extremely rare malignant bone cancer,

which commonly occurs in children and adolescents. The diagnosis

and treatment of rare diseases is a long process, requiring a

professional medical team and a lot of clinical experience. In

addition, the treatment of children and adolescents is very

different from that of adults, because children have a long way to

go in the future, and doctors need to consider the long-term effects

of medication, dosage, and treatment, including future

rehabilitation planning, and even life planning.

In general, based on the above research background, we think

that modulating the LLPS process could be a promising approach

for OS disease, especially in the biological process of the immune

system. One powerful strategy to develop chemotherapy drugs

tailored towards LLPS condensates by targeting specific proteins

has already been verified (73–75), which could allow for the

selective targeting of abnormal LLPS without the harmful effects

of broader chemotherapy treatments.
4 Discussion

4.1 Role of LLPS in cellular function

In the landscape of physical chemistry, phase separation is a

familiar phenomenon. However, for many biological scientists and
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immunologists, this concept is not entirely understood yet. It refers

that the biomolecules shift from a uniform microenvironment into

two separate phases (the dilute phase and the condensed phase),

where the movement and concentration of solutes vary dramatically

(56). LLPS is commonly observed in cells due to the properties of

the fluidic and aqueous environment of the intracellular space. The

condensed phase often exchanges materials with the dilute

phase while in a liquid-like state, and this characteristic is

significant in shaping the composition and activity of molecules

in the condensed phase (56). Due to the cellular condensates are

often formed by various interactions, it is possible to observe a

spectrum of intermediate states between liquid and solid forms.

LLPS condensates are involved in various of biological functions,

including organizing higher-order chromatin, sorting misfolded

proteins, modulating gene expression, setting signaling clusters,

and building cytoskeletal networks utilizing actin and microtubules

(76). Of course, they also help in segregating cell fate determinants

symmetrically and creating signaling assemblies in pre- and

postsynaptic densities.

The condensates produce a heterogeneous cellular environment,

which specifically enriches nucleic acids and proteins, and

then further facilitate the concentration of biomolecules and

organization (27, 28). The formation of interaction networks that

involve multivalent proteins or nucleic acids plays a crucial role in

LLPS and is primarily boosted by peptides with intrinsically

disordered regions (IDRs), folded modular domains, or

polymerizing domains (77).
4.2 LLPS in cancer progression

Moreover, it has been indicated that a majority of cell signaling

proteins, as well as a significant number of cancer-derived proteins,

contain extensive intrinsically disordered regions (IDRs), that are

essential for driving LLPS process (78). Proteins associated with

cancer and cancer-related mutations could regulate the quantity

and assembly of condensates by affecting LLPS, which in turn

ultimately drives the abnormal cellular activities and boosts the

progression of tumorigenesis (Table 4) (79–82). Notably, irregular

or abnormal transitions of condensates to a solid state are linked to

some specific neurodegenerative diseases (including FUS (83, 84),

TDP-43 (85, 86), HNRNPA1 (87), and DDX (88), as well as Tau

(89, 90),) and cancers (such as transcriptional condensates, PRC1

condensates, super enhancers, DNA repair condensates, stress

granules, Paraspeckles, SPOP/DAXX bodies and PML foci (91–96).
4.3 LLPS in immune signaling pathways

However, the literatures associated with LLPS and immune

signaling progress was scarce in cancer, and there is a paucity of

bibliometric research on these topics. Therefore, based on the

relevant research background, VOSviewer software, and CiteSpace

software visualization, we found the number of enrolled literatures

on this topic remains low, with nearly 57 documents published

from 1992-2024. Furthermore, with an average citation rate of ≥ 10
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per year, only 8 high-quality studies were identified, indicating the

correlated research between LLPS and immune signaling response

is still in the infant stage. Meanwhile, we also searched relevant

literatures in the field of bone tumor, according to the above

mentioned method. The outcome was none.
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4.4 LLPS and immune signaling pathways
in OS disease

On 15 February, 2024, the journal Lancet Child & Adolescent

Health onlined “Holistic support for children with rare disease”.
TABLE 4 Proteins condensates associated with LLPS progress in cancer.

Protein LLPS condensates Location Role of LLPS in tumor disease

EphA2 EphA2 condensates Cytomembrane Associated with ferroptosis and immune cell infiltration in colorectal cancer
{Liu, 2023 #215}

PLCg1 LAT complex Cytomembrane PLCg1 in promoting phase separation of the LAT complex and TCR signal
transduction{Zeng, 2021 #216}

KDM4A KDM4A complex DNA replication stress KDM4A activated tumor cell-intrinsic immunity by inducing
heterochromatin compaction and replication stress{Zhang, 2021 #217}

53BP1 Nuclear complex Nucleus Hyper-assembly of 53BP1 on chromatin lead to LLPS impair cell survival in
cancer{Ghodke, 2021 #219}

EBF1 Mediating recruitment of the
nucleosome
remodeler Brg1 and FUS-assisted
liquid-liquid phase separation

Cytoplasm Regulating the development and progress of cancer{Zolotarev, 2022 #218}

BRD4 Nuclear complex Nucleus BRD4's participation in super-enhancers is crucial for oncogene transcriptional
dependency and the survival of cancer cells{Donati, 2018 #220}

YBX1 CircRNA-YBX1 complex Cytoplasm Cytoskeleton remodeling mediated by circRNA-YBX1
phase separation suppresses the metastasis of liver cancer{Liu, 2023 #221}

DAXX Nuclear complex Nucleus,
Cytoplasm

SPOP/DAXX bodies formed via LLPS is important
in inducing cancer cell apoptosis{Cai, 2021 #222;Mahmud, 2019 #223}

SPOP Nuclear complex Nucleus,
Cytoplasm

SPOP/DAXX bodies formed via LLPS is important
in inducing cancer cell apoptosis{Cai, 2021 #222;Mahmud, 2019 #223}

NONO Paraspeckle Nucleus Impact on the tumor stability to develop drugs resistance{Pisani, 2020 #224}

SFPQ Paraspeckle Nucleus,
Cytoplasm

Impact on the tumor stability to develop drugs resistance{Pisani, 2020 #224}

YTHDF1 P-body; cytoplasmic stress granule;
neuronal ribonucleoprotein granule

Cytoplasm 1. P-bodies modulation of mRNA metabolism plays a critical factor in the
development and progression of cancer{Nsengimana, 2022 #225}
2. Stress granules assembly is increased in tumor{Shi, 2019 #226}

YTHDF2 P-body; cytoplasmic stress granule;
neuronal
ribonucleoprotein granule

Nucleus,
Cytoplasm

1. P-bodies modulation of mRNA metabolism plays a critical factor in the
development and progression of cancer{Nsengimana, 2022 #225}
2. Stress granules assembly is increased in tumor{Shi, 2019 #226}

YTHDF3 P-body; cytoplasmic stress granule;
neuronal ribonucleoprotein granule

Cytoplasm 1. P-bodies modulation of mRNA metabolism plays a critical factor in the
development and progression of cancer{Nsengimana, 2022 #225}
2. Stress granules assembly is increased in tumor{Shi, 2019 #226}

TAF15 Nuclear protein granule Nucleus,
Cytoplasm

The ability of oncogenic transformation in relevant cancers can be influenced
by aberrant gene transcription occurring through loci-specific phase separation
{Thandapani, 2019 #227}

OCT-4 MED1 droplets at SEs Nucleus and
Cytoplasm

SEs mediate transcriptional addiction in diverse
cancers{Qiao, 2016 #228}

YAP YAP-TEAD complex/ YAP-TAZ-
TEAD complex

Nucleus and
Cytoplasm

The compound is over-hyperactivated, and also confers a great oncogenic
activity in cancer{Qiao, 2016 #228}

TAZ YAP-TAZ-TEAD complex Nucleus and
Cytoplasm

The compound is over-hyperactivated, and also confers a great oncogenic
activity in cancer{Qiao, 2016 #228}.

DDX3 Cytoplasmic stress granule Nucleus, cytoplasm
and plasma
membrane

Cancer-associated mutations of DDX3X cause SG
hyper-assembly and translation impairment{Valentin-Vega, 2016 #229}

HSF1 HSF1 nuclear stress bodies Nucleus HSF1 foci are preferentially located in cancer
cells of primary human{Gaglia, 2020 #230}v
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The author, Siyuan Li, a Ph.D. student engaged in the regenerative

medicine of biomedical engineering, was also a patient with OS

disease in childhood (97). “The former patient has become a doctoral

student in biomedical engineering, and her crutches have not only

seen her on the road to recovery but also given her a guiding light to a

new field,” as reviewed by the Lancet Child & Adolescent Health

journal. It is very lucky for children with OS to be like Siyuan Li.

Therefore, increased efforts are necessary to explore the pathogenesis

that could be utilized in preclinical research and clinical trials,

especially the immunotherapy with LLPS in OS.
4.5 LLPS in other aspects of tumor
immunology, tumor biology and
chronic inflammation

LLPS could potentially aid in immune evasion by promoting the

creation of biomolecular condensates that trap immune signaling

proteins or regulate the production of immune checkpoint molecules.

This means that cancer cells could exploit LLPS to gather proteins

that hinder the stimulation of immune cells, ultimately establishing a

microenvironment that is less detectable by the immune system (98).

The spatial arrangement of signaling molecules mediated by LLPS

can also influence the recruitment and activation of immune cells,

shaping immune cell communication. This organization may

facilitate the formation of signaling complexes at the immune

synapse, critical for immune cell activation. Conversely, it could

also cause the segregation of signaling molecules away from the

synapse, potentially dampening the immune response (99).

Additionally, LLPS could potentially contribute to the

development of an immunosuppressive tumor microenvironment

(TME) by influencing the positioning and behavior of immune cells

in the tumor. This process could result in the creation of condensates

that draw in immunosuppressive cells such as Tregs or MDSCs,

which have the ability to dampen the function of cytotoxic T cells.

Moreover, LLPS might impact the release of immunosuppressive

cytokines, leading to a TME that is not conducive to successful

immune attacks on cancer cells (100). Overall, the emerging role of

LLPS in the tumor microenvironment highlights its critical influence

on cancer progression, immune evasion, and therapeutic resistance.

Understanding the mechanisms by which LLPS modulates oncogenic

signaling and immune responses not only provides new insights into

cancer biology but also offers promising avenues for developing novel

therapeutic strategies targeting LLPS-related pathways.

Meanwhile, the study of LLPS in the field of tumor associated

macrophages (TAMs) is an emerging area of research that has

shown promising implications in both tumor progression and

immune responses. In TAMs, LLPS might regulate signal

transduction processes, ultimately leading to an upregulation of

immune-suppressive molecules, such as PD-L1. It might also be

involved in controlling the secretion of cytokines like IL-10 and

TGF-b, and in regulating the metabolism of TAMs. Furthermore,

LLPS could potentially influence the phagocytic function of TAMs

by modifying the aggregation state of proteins associated with

intracellular endocytosis, which in turn affects TAMs’ ability to

engulf tumor cells (101, 102).
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At last, chronic inflammation is also greatly influenced by LLPS,

which affects intracellular signaling pathways, modulates molecular

dynamics during inflammatory responses, and determines the

polarization state of immune cells (103). LLPS can also affect the

functionality of macrophages and potentially play a role in the

formation of inflammasomes (104, 105).
4.6 Immunotherapy with LLPS

Recently, the landscape of tumor treatment has shifted toward

tumor immunotherapy, which stands as a beacon in research and

therapy, and is now widely recognized as the fourth line of

treatment (106). Tumor immunotherapy encompasses immune

checkpoint blockades (ICBs) and chimeric antigen receptor T cell

(CAR-T) immunotherapy. Broadly speaking, LLPS could impact

tumorigenesis through various signaling pathways, it is essential to

devise practical strategies for treating these cancer-associated

proteins. For instance, we can disrupt the LLPS process, target

cancer drugs within bio-molecular condensates, and modify LLPS

by interfering with PTMs (posttranslational modifications, RTMs).

For example, a study conducted in 2024 showed that Svg3, a

nature-inspired oligonucleotide, is a potent cGAS agonist that

activates cGAS-STING in tumor immunotherapy. The hairpin-

shaped Svg3 exhibited strong binding to cGAS and facilitated LLPS

to generate Svg3-cGAS liquid-like condensates, which led to specific

activation of cGAS and robust IFN-1 responses. Thrillingly, Svg3

surpasses several cutting-edge STING agonists in human and murine

cells/tissues (107). Si Sun, et al. (108) have found that high levels of

CAL protein-coding gene transcription were significantly associated

with poor prognosis in KIRP and were also linked to specific targeted

therapies. The inhibitor of LLPS could also increase the effectiveness

of paclitaxel and cisplatin in killing cancer cells. Targeting CAL

signatures might be a promising therapeutic approach with LLPS

modulating synergy. Merlin (NF2/schwannoma), is a tumor

suppressor protein and boots innate immunity against cancer

(30, 109). While, Merlin can also be found in various malignancies

with genetic inactivation and mutations, such as skin cancer, type 2

neurofibromatosis, schwannomas, and colorectal cancer (110). A

recent study by Meng et al. revealed that by forming LLPS

condensates with IRF3, the mutant FERM domain of Merlin

further obstructed the anticancer immunity signaling pathway.

Based on the above studies, in NF2-related cancer, trying to

prevent the formation of intracellular membranes structures of NF2

could restore the antitumor immune responses mediated by the

cGAS-STING pathway (30).

Even though all of these initiatives are still in their early stages,

we anticipate that delving into the study of LLPS will lead to a more

profound comprehension of pathological processes in cancer and

reveal fresh possibilities for treatment.
4.7 Unsolved outstanding problems

While the field is still in its infancy, further investigations are

needed to thoroughly examine the functions of phase separation in
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immunity, including advancements in technology and physiological

research. Looking ahead, we predict that the following areas will

present exciting avenues for exploration.

4.7.1 Detecting techniques
Apprehending the LLPS condensates organization internally will

greatly benefit the design of antagonists and agonists by disrupting

liquid-like condensates and the involved immune signaling responses.

While crystallography and electron microscopy have been employed to

ascertain the internal structure and arrangement of the condensates,

the application for liquid-like objects remains restricted. Since LLPS

occurs widely in a 4D environment, Breakthroughs in nuclearmagnetic

resonance imaging, computational simulations, spatial omics

technology, and the invention of new fluorescent probes might open

up new possibilities for approaching this issue, which could be pivotal

for immunotherapy with LLPS, and even for implementing

personalized therapy in clinical settings (111).

4.7.2 LLPS for the immunological synapse
Up to now, the majority of LLPS research has mainly focused on

a single situation, just like the plasma membrane (TCR, BCR) or the

cytoplasm (cGAS, RIG-1). Nonetheless, studies between LLPS and

immunological synapse are still limited, which consist of five

environments: the immune cell’s cytosol and plasma membrane,

along with the intermembrane space, and the antigen-presenting

cell’s plasma membrane and cytosol. The interaction between these

diverse environments is facilitated by numerous ligand-receptor

pairs, which can affect their assembly structures and facilitate two-

way signaling. By utilizing a multiple-membrane reconstitution

system alongside light-sheet microscopy on live-cell conjugates, a

comprehensive understanding of the phase separation behavior at

immunological synapses can be achieved.
4.8 Advantages and limitations

4.8.1 Advantages
In this research, we performed an integrated analysis of the

relationship between immune and LLPS biological processes in

cancer for the first time, using bibliometric estimation to present the

research status, key areas of focus, and potential future research trends

in this area. Moreover, by utilizing R package “bibliometrix” software,

CiteSpace, and VOSviewer analyses, we have ensured the accuracy and

reliability of the data, allowing us to deeply and thoroughly elucidate

the evolving trends in the pathogenic mechanisms and

immunotherapy associated with LLPS. We also further assessed the

state of the research at the intersection of LLPS, immune signaling

responses, and bone tumor disease.More surprisingly, no literature was

found. Nevertheless, we cannot deny the significant importance of

LLPS in immunity, especially in tumor disease. In the subcellular

section, scientific research on LLPS has uncovered intracellular

compartments or new membrane-less organelles involved in

signaling transduction. In the molecular section, LLPS highlights the

significance of unstructured protein domains and weak interactions.

These components, often overlooked in previous studies on protein-
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protein interactions, play a crucial role in driving LLPS. In the

physiological section, LLPS provides pioneering insights into the

mechanisms of cellular decision-making processes in immune

signaling responses.

4.8.2 Limitations
However, the present study also has some inherent limitations.

First, the documents were only obtained from the WoS database,

not from Scopus or Embase, which may potentially lead to biased

results. Future research may need to search additional databases or

other bibliometric tools to verify these findings. Meanwhile, as the

field of LLPS in immune signaling response is still an emerging

research area, related literatures, especially those focusing on

cancer, are scarce. Additionally, new online publications in

reputable journals may have been overlooked due to their lower

citation counts. The lack of relevant keywords with strong citation

bursts in the CiteSpace software indicates a scarcity of literature on

this topic. Furhtermore, the use of different parameters in the

CiteSpace software may have impacted the output data, leading to

slight variations in the results.
5 Conclusions

In conclusion, this study is the first to conduct a bibliometric

analysis that scientifically and comprehensively examines the

correlation between liquid-liquid phase separation (LLPS) and the

immune signaling system in cancer research trends over the past 30

years. It has systematically summarized global publication trends and

helped researchers identify key authors, institutions, and journals in

this field. Additionally, a qualitative analysis has also been conducted.

Despite this research area being in its early stages, illustrating the

interconnected structures and communications between cancer and

immune signaling with LLPS within a spatial framework will provide

deeper insights into the molecular mechanisms of cancer development

and enhance the effectiveness of current immunotherapies. At the same

time, the development of compounds that target LLPS and the

utilization of LLPS as a biomarker for cancer diagnosis and

prognosis are also key points that scientists need to focus on.

Nevertheless, the intricate nature of LLPS, the constantly changing

condensates, and the requirement for specificity present challenges that

need to be addressed thoughtfully.
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