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Background: High-grade colorectal neuroendocrine carcinoma (HCNEC) is a

rare but aggressive subset of neuroendocrine tumors. This study was designed to

construct a risk model based on comprehensive clinical and mutational

genomics data to facilitate clinical decision making.

Methods: A retrospective analysis was conducted using data from the Surveillance,

Epidemiology, and End Results (SEER) database, spanning 2000 to 2019. The

external validation cohort was sourced from two tertiary hospitals in Southwest

China. Independent factors influencing both overall survival (OS) and cancer-specific

survival (CSS) were identified using LASSO, Random Forest, and XGBoost regression

techniques. Molecular data with the most common mutations in CNEC were

extracted from the Catalogue of Somatic Mutations in Cancer (COSMIC) database.

Results: In this prognostic analysis, the data from 714 participants with HCNECwere

evaluated. The median OS for the cohort was 10 months, whereas CSS was 11

months. Six variables (M stage, LODDS, Nodes positive, Surgery, Radiotherapy, and

Chemotherapy) were screened as key prognostic indicators. The machine learning

model showed reliable performance across multiple evaluation dimensions. The

most common mutations of CNEC identified in the COSMIC database were TP53,

KRAS, and APC.

Conclusions: In this study, a refined machine learning predictive model was

developed to assess the prognosis of HCNEC accurately and we briefly analyzed

its genomic features, which might offer a valuable tool to address existing

clinical challenges.
KEYWORDS

high-grade colorectal neuroendocrine carcinoma (HCNEC), machine learning,
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Introduction

Neuroendocrine tumors, which are rare malignancies, arise

from peptidergic neurons and neuroendocrine cells (1, 2).

Advances in diagnostic techniques such as endoscopy and

hematological markers have contributed to a marked increase in

the detection of neuroendocrine cancer (3, 4). These tumors can

manifest across various body sites, including the digestive system,

particularly the colorectum, which is a prevalent location, and they

exhibit notable heterogeneity (5, 6). According to the World Health

Organization (WHO) classification criteria of 2019, neuroendocrine

tumors are classified as well-differentiated neuroendocrine tumors

(NETs), poorly differentiated neuroendocrine carcinomas (large

cell/small cell, NECs), and mixed neuroendocrine-non-

neuroendocrine tumors (MiNENs) (7). While existing research

predominantly addresses well-differentiated NETs, there remains

a research gap concerning more aggressive high-grade colorectal

neuroendocrine carcinoma (HCNEC). HCNEC’s elusive onset and

intricate pathological classification often lead to clinical

misdiagnoses, resulting in an advanced-stage diagnosis for the

majority of patients (8, 9). As a result, the median survival

duration for these patients is typically less than 1 year (10, 11).

For non-metastatic patients, a combination of surgery and

postoperative systemic therapy is the most potent therapeutic

approach, although the rate of successful radical surgical resection

remains suboptimal (12). For patients with metastatic or

unresectable conditions, the prevalent clinical interventions

include vascular interventional embolization, local ablation,

systemic chemotherapy, peptide receptor radionuclide therapy,

and targeted radiotherapy (13, 14). However, the outcomes of

these interventions have been constrained. Established

management guidelines and precise tumor staging play pivotal

roles in clinical decision-making. Regrettably, current references

for HCNEC predominantly align with those for colorectal

adenocarcinoma, revealing the absence of standardized clinical

guidelines and a dedicated prognostic evaluation system.

Given the pressing clinical requirements, our study introduced

and validated an interactive machine learning survival prediction

model based on extensive population data. Furthermore, we have

analyzed the mutated genes in this rare tumor, which has helped us

understand its genetic landscape. This aim extends beyond filling

the void in existing prognostic frameworks to further solidify the

groundwork for clinical decision-making.
Methods

Study design and selection criteria

This study adhered to the Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or

Diagnosis (TRIPOD) reporting guidelines for prognostic studies.

The comprehensive workflow is shown in Figure 1. Ethical

considerations adhered to the 2013 revised Declaration of
Frontiers in Oncology 02
Helsinki and received approval from the Ethics Committee of the

Affiliated Hospital of GuizhouMedical University, China (Approval

No. 2023-630), as well as the First Affiliated Hospital of Chongqing

Medical University, China (Approval No. 2024-086). Informed

consent was obtained from all subjects. Public data were sourced

from the SEER database, a significant open-access repository.

Incidence data were acquired using the SEER*Stat software

[Incidence - SEER 17 Regs Research Data, Nov 2022 Sub (2000-

2020)]. Incidence rates were adjusted relative to the age of the

standard American population, as of 2000. Temporal trends across

the three pathological types and the age-sex distribution

characteristics were also analyzed. Complete follow-up and

treatment data were collected from the Incidence-SEER 17 Regs

Research Plus Data, Nov 2021 Sub (2000-2019) and the screening

phase utilized the following specific criteria: only patients diagnosed

with HCNEC (primary site: C18.0-C18.9, C19.9, C20.9) possessing

codes 8013/3: large cell neuroendocrine carcinoma, 8041/3: small

cell carcinoma, and 8246/3: neuroendocrine carcinoma, NOS, with

grade 3/4 (poorly differentiated/undifferentiated) from 2000 to 2019

were included. These records indicated a unique primary tumor.

The recorded survival duration for patients must be a minimum of

one month. Each patient’s dataset required a comprehensive follow-

up. The essential data elements for each patient included vital

status, survival duration, demographics (age, sex, and race), number

of positive lymph nodes (PLNs), count of dissected lymph nodes

(DLNs), pathological grade, 7th T/N/M stage, CS tumor

dimensions, and primary therapeutic approaches. The primary

observation endpoint of the study was OS, defined as the time

from diagnosis until death for any reason and the cancer-specific

survival (CSS) was defined as the time from diagnosis of the study

until death for tumor only). The Log odds of positive lymph nodes

(LODDS) were determined with the following expression:

Log½(PLNs + 0:5)=(DLNs − PLNs + 0:5)�
To differentiate cancer-specific from non-cancer-specific

survival outcomes in HCNEC, SEER variables pertinent to cause-

specific death classifications and other causes of mortality were

employed. Relevant treatment data, spanning the sequence of

radiation post-surgery to the rationale for oncology-focused

surgical procedures, radiation recording, and chemotherapy

recording, were extracted from the respective fields. For external

validation, we enrolled 26 patients with HCNEC treated at the First

Affiliated Hospital of Guizhou Medical University from 2014 to

2022 and 21 patients with HCNEC treated at the First Affiliated

Hospital of Chongqing Medical University from 2010 to 2022. Six

samples (3 tumor tissues and paired 3 adjacent non-cancerous

tissues) from 3 HCNEC patients from the First Affiliated Hospital of

Chongqing Medical University were used to extract total RNA.

cDNA was synthesized by reverse transcription, and RT-qPCR was

performed using a qPCR kit (Takara Bio) to determine gene

expression. The PCR primer sequences are shown in

Supplementary Table 1. GAPDH was used as a control standard

and was calculated using the relative mRNA-D;D;Ct method

for comparison.
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Statistical analysis

Data from the SEER database were randomly partitioned into

training and validation subsets in a 7:3 ratio. Age-adjusted

incidence rates were computed as per 100,000 individuals using

the SEER statistic, and annual percentage changes (APCs) were also

determined. Categorical variables were evaluated by computing

frequencies and are presented as percentages. Their significance
Frontiers in Oncology 03
was ascertained using the chi-square test. Survival trends were

delineated using the Kaplan-Meier method, with disparities

among the curves identified using the log-rank test. The restricted

cubic spline (RCS) method was employed to establish cutoff values

for the LODDS and DLNs (Supplementary Figure 1). Factors

influencing OS and CSS were identified using regression analyses,

specifically the Least Absolute Shrinkage and Selection Operator

(LASSO), Random Forest (RF), and extreme Gradient Boosting
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Study design and the workflow diagram.
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(XGBoost) algorithms. Common features across the three

algorithms were chosen as the definitive variables for the

nomograms, which subsequently served as foundational elements

in the digital survival risk-prediction model. To enhance the

transparency and interpretability of the model, the SHAP method

was employed to interpret the predicted results.

For model discrimination, the area under the time-dependent

ROC was assessed, complemented by the C-index. Calibration plots

were constructed to juxtapose the predicted survival rates with

observed outcomes. In contrast to TNM stage, the predictive

accuracy of the model was ascertained using both DCA and time-

dependent ROC. Individualized risk scores were derived by

employing the constructed nomograms and categorizing patients

into higher- or lower-risk groups. The Surv_Cutpoint function was

used to pinpoint the optimal cutoffs for OS and CSS. Heatmaps

visually displayed risk factor associations and illustrated the

distribution of clinical features among various risk categories for

OS and CSS. Sankey diagrams were generated for each variable in

the final risk category to enhance the clinical relevance of the

framework. To ensure a meticulous comparison of survival rates

across various treatments, we integrated Propensity Score Matching

(PSM) analysis (1:1 ratio). The top 20 mutated genes derived from

the COSMIC database were utilized for subsequent PPI network

analysis (Confidence score > 0.7) and imported into Cytoscape

software (v3.8.2) for visualization. For biological process and

pathway enrichment analyses, the Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Ontology (GO) analyses were

performed using the R clusterProfiler package. Our analytical

methods hinged on SPSS (version 26.0), R software (version

4.1.1), and Python (version 3.7), all findings were deemed
Frontiers in Oncology 04
significant at two-sided P values less than 0.05. All images were

produced using Adobe Illustrator 2024 software.
Results

Epidemiological characteristics analysis

The incidence of CNEC consistently increased between 2000

and 2020, with an APC of 4.1% (95% CI:1.9-6.3; P< 0.05)

(Figure 2A). Among the three subtypes, neuroendocrine

carcinoma (NOS) was the predominant pathological type

(Figure 2B). Both CNEC and HCNEC displayed approximately

uniform distributions in terms of age and sex (Figures 2C, D).
Clinical characteristics of patients

Data from 714 individuals diagnosed with HCNEC between

2000 and 2019 were sourced from the SEER database. The cohort

was stratified into a 7:3 split, designating 499 individuals as the

training set and 215 as the validation set. Clinical characteristics

were evaluated to identify any disparities between subsets, revealing

no significant differences (P > 0.05) in demographic or clinical

attributes. Demographic and clinical data are summarized in

Table 1. Key findings included that the majority of participants

were aged >60 years (n=419, 58.7%), primarily Caucasian (n=604,

84.6%), with tumor size ≥2 cm (n=556, 77.9%), exhibiting poorly

differentiated pathological features (n=492, 68.9%), neuroendocrine

carcinoma (NOS) (n=490, 68.6%), and from lower-income
FIGURE 2

Trends and characteristics of CNEC. (A) Incidence of CNEC from 2000 to 2020. (B) Temporal changes in the proportions of three pathological
types. (C) Age-sex distribution in CNEC. (D) Age-sex distribution in HCNEC.
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TABLE 1 Characteristics of patients with HCNEC in the training and validation cohort.

Characteristics

Total
(n=714)

Training cohort
(n=499)

Validation cohort
(n=215) P value

no.(%) no.(%) no.(%)

Year of diagnosis 0.760

2000-2009 168 (23.5%) 119 (23.8%) 49 (22.8%)

2010-2019 546 (76.5%) 380 (76.2%) 166 (77.2%)

Gender 0.673

Male 370 (51.8%) 243 (48.7%) 101 (47.0%)

Female 344 (48.2%) 256 (51.3%) 114 (53.0%)

Age 0.967

<50 106 (14.8%) 75 (15.0%) 31 (14.4%)

50-60 189 (26.5%) 131 (26.3%) 58 (27.0%)

>60 419 (58.7%) 293 (58.7%) 126 (58.6%)

Marital status 0.388

Married 391 (54.8%) 268 (53.7%) 123 (57.2%)

Others 323 (45.2%) 231 (46.3%) 92 (42.8%)

Household income 0.266

≥75000$ 215 (30.1%) 144 (28.9%) 71 (33.0%)

<75000$ 499 (69.9%) 355 (71.1%) 144 (67.0%)

Race 0.155

White 604 (84.6%) 430 (86.2%) 174 (80.9%)

Black 65 (9.1%) 39 (7.8%) 26 (12.1%)

Others 45 (6.3%) 30 (6.0%) 15 (7.0%)

Histological 0.897

SNEC 102 (14.3%) 73 (14.6%) 29 (13.5%)

LNEC 122 (17.1%) 86 (17.2%) 36 (16.7%)

NEC (NOS) 490 (68.6%) 340 (68.1%) 150 (69.8%)

Grade 0.464

Poorly differentiated 492 (68.9%) 348 (69.7%) 144 (67.0%)

Undifferentiated 222 (31.1%) 151 (30.3%) 71 (33.0%)

Primary Site 0.279

LSC 87 (12.2%) 70 (14.0%) 21 (9.8%)

RSC 398 (55.7%) 273 (54.7%) 121 (56.2%)

Rectal 229 (32.1%) 156 (31.3%) 73 (34.0%)

T stage 0.329

T1 164 (23.0%) 115 (23.0%) 49 (22.8%)

T2 94 (13.2%) 71 (14.2%) 23 (10.7%)

T3 256 (35.8%) 182 (36.5%) 74 (34.4%)

T4 200 (28.0%) 131 (26.3%) 69 (32.1%)

(Continued)
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households (n=499, 69.9%). Regarding treatment, 68.1% underwent

gross total resection (GTR) or subtotal resection (STR), 63.2%

received chemotherapy, and 18.2% underwent radiotherapy. The

overall median survival was 10 months (range:8.7-11.3), and the

median cancer-specific survival was 11 months (range:9.7-12.3).
Frontiers in Oncology 06
Specifically, the training set showed a median OS of 10 months

(range:8.6-11.4) and CSS of 11 months (range:9.6-12.4), while the

validation set reported 10 months (range:7.3-12.6) and 10 months

(range:6.8-13.2), respectively. Moreover, 26 patients with HCNEC

treated at the First Affiliated Hospital of Guizhou Medical
TABLE 1 Continued

Characteristics

Total
(n=714)

Training cohort
(n=499)

Validation cohort
(n=215) P value

no.(%) no.(%) no.(%)

N stage 0.217

N0 248 (34.7%) 170 (34.1%) 78 (36.1%)

N1 341 (47.8%) 248 (49.7%) 93 (43.3%)

N2 125 (17.5%) 81 (16.2%) 44 (20.5%)

M stage 0.318

M0 369 (51.7%) 264 (52.9%) 105 (48.8%)

M1 345 (48.3%) 235 (47.1%) 110 (51.2%)

Clinical stage 0.598

I 47 (6.6%) 31 (6.2%) 16 (7.4%)

II 87 (12.2%) 64 (12.8%) 23 (10.7%)

III 235 (32.9%) 169 (33.9%) 66 (30.7%)

IV 345 (48.3%) 235 (47.1%) 110 (51.2%)

Tumor size 0.385

<2cm/NOS 158 (22.1%) 106 (21.2%) 52 (24.2%)

≥2cm 556 (77.9%) 393 (78.8%) 163 (75.8%)

Nodes examined 0.755

<12 349 (48.9%) 242 (48.5%) 107 (49.8%)

≥12 365 (51.1%) 257 (51.5%) 108 (50.2%)

Nodes positive 0.504

Negative 365 (51.1%) 251 (50.3%) 114 (53.0%)

Positive 349 (48.9%) 248 (49.7%) 101 (47.0%)

LODDS 0.977

<1 336 (47.1%) 235 (47.1%) 101 (47.0%)

≥1 378 (52.9%) 264 (52.9%) 114 (53.0%)

Sugery 0.952

GTR/STR 486 (68.1%) 340 (68.1%) 146 (67.9%)

Others 228 (31.9%) 159 (31.9%) 69 (32.1%)

Radiation 0.975

No/Unknown 584 (81.8%) 408 (81.8%) 176 (81.9%)

Yes 130 (18.2%) 91 (18.2%) 39 (18.1%)

Chemotherapy 0.380

No/Unknown 263 (36.8%) 189 (37.9%) 74 (34.4%)

Yes 451 (63.2%) 310 (62.1%) 141 (65.6%)
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University and 21 patients with HCNEC treated at the First

Affiliated Hospital of Chongqing Medical University were

included for external validation. This external cohort had a

median OS of 8 months (range:3.3-12.7) and 10 months

(range:5.5-14.6), with demographic and clinical details provided

in Supplementary Table 2.
Feature selection and establishment of
predictive model

Prior to machine learning algorithm screening, potential

collinearity among the examined parameters was assessed using

Spearman correlation analysis, as illustrated in Figure 3A.

Supplementary Figures 2–4 show survival curves for each variable.

In this investigation, we utilized three machine learning algorithms

(LASSO, RF, and XGBoost) to screen variables for OS and CSS,

effectively mitigating overfitting risks (15–17). LASSO regression was

performed by minimizing the partial likelihood deviation, producing

coefficient curves from a logarithmic (lambda) series, as depicted in

Figure 3B. Utilizing 10-fold cross-validation, the algorithm identified
Frontiers in Oncology 07
critical clinical parameters that served as individual predictors in OS

contexts (Figure 3C). The importance of each parameter within the

LASSO analysis was further ranked to assess the predictive capability

of each independent factor related to OS (Figure 3G). In the RF

algorithm for OS, an increase in the number of random forests

corresponded to a decline in the out-of-bag (OOB) error rate

(Figure 3D). Subsequently, the Var.select function was used to

isolate the VIP variables (Figure 3H). For the XGBoost algorithm,

Figure 3E shows the learning curve relative to the iteration count and

highlights the top 12 features (Figure 3I). The predictor variables for

CSS underwent a similar filtration process (Supplementary Figure 5).

In conclusion, six consistent parameters (M stage, LODDS, Nodes

positive, Surgery, Radiotherapy, and Chemotherapy) pinpointed by

all three algorithms (Figure 3F) were chosen as the ultimate

predictor variables.
Dynamic web version model deployment

The prediction model built based on six parameters is displayed

with forest plots (Figures 4A, B) and visual nomograms (Figures 4C, D),
FIGURE 3

Analytical insights into OS using machine learning. (A) Correlation analysis among all incorporated variables. (B) Selection of tuning parameter (l) in
the LASSO model. (C) 10-fold cross-validation results. (D) OBB error rate derived from the Random Forest algorithm. (E) Learning curve plotted
against the number of iterations. (F) Common variables identified across the three algorithms. (G) Variables identified through the LASSO model.
(H) VIP variables selected via the Random Forest method. (I) Top 12 feature variables based on importance.
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and SHapley Additive exPlanation (SHAP) is used to implement the

interpretability analysis of the model (Figures 4E, F). Each point

represents a sample, and the color gradient from blue to red

represents the size of the sample feature value. The vertical axis

shows the importance ranking of features, as well as the correlation

and distribution of each feature value with SHAP values. To aid

researchers and clinicians in evaluating OS and CSS in patients with

HCNEC, we introduced digital iterations of our model. These can be

accessed at the following URLs: https://necr.shinyapps.io/

NomoforHGNECRinOS/ and https : //necr .shinyapps. io/

NomoforHGNECRinCSS/.
Frontiers in Oncology 08
Internal and external multidimensional
validation of models

The proposed nomogram demonstrated significant proficiency

in predicting OS at the 0.5-, 1-, and 2-year intervals. The C-index

values for both the training (0.762) and validation (0.833) cohorts

were 0.648 and 0.634, respectively, surpassing those of TNM stage.

For 0.5-, 1-, and 2-year CSS predictions, our model outperformed

the TNM staging system, achieving C-index scores of 0.761 and

0.665 for the training cohort and 0.831 and 0.652 for the validation

cohort. Compared to TNM stage, our nomograms consistently
FIGURE 4

Machine learning models and predictive tools for patient survival. (A) Forest plot illustrating the machine learning model for OS. (B) Forest plot for
the model on CSS in the training cohort. (C) Nomogram predicting 0.5-, 1-, and 2-year OS. (D) Nomogram for 0.5-, 1-, and 2-year CSS projections.
(E) SHAP value visualization for Nomogram of OS. (F) SHAP value visualization for Nomogram of CSS.
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presented a time-dependent AUC near 0.8, highlighting their

superior predictive capability (Supplementary Figure 6).

Calibration curves indicated a tight alignment between the

predicted and observed survival rates, with the proposed models

accurately predicting OS and CSS across all durations in both

cohorts (Supplementary Figures 7, 8). Decision curve analyses for

the OS and CSS models validated their heightened clinical utility

and predictive accuracy over the specified intervals, as evident from

a broad spectrum of optimal threshold probabi l i t ies

(Supplementary Figure 9). Moreover, in the external validation

cohort, metrics such as the calibration curve, time-dependent AUC,

DCA curve, and risk stratification analysis unequivocally showed

the model’s robustness and superiority (Figure 5).
Risk stratification and Sankey diagram
based on the model

Notable differences in survival outcomes were observed between

these risk groups (P<0.001), highlighting the utility of our nomogram

and its stratification methodology (Figures 6A, B, D, E). To further

illustrate the discrepancies in clinical characteristics among the

designated risk categories for OS (Figure 6C) and CSS (Figure 6F),

heat maps were utilized. A Sankey diagram, presented in Figures 6G, J,

effectively captures the interplay between each factor and its
Frontiers in Oncology 09
consequent risk categorization. This visualization distinctly conveys

how individual parameters contribute to the final risk classification,

thereby enhancing the understanding of the model ’s

predictive capability.
Optimal treatment strategy analysis

To investigate the impact of various treatments on patient prognosis,

PSM analysis was used to minimize the effects of confounding variables

(18, 19). The outcomes before and after PSM are presented in

Supplementary Table 3. While literature on the survival benefits of

radiotherapy for NEC remains scant, this study sought to contrast the

results of triple therapy (encompassing surgery, radiotherapy, and

chemotherapy) against those treatments combining surgery and

chemotherapy, herein termed SC. Before the matching procedure, the

triple-therapy regimen demonstrated superior OS and CSS outcomes

compared to SC (Figures 6H, K). This advantage inOS andCSS for triple

therapy remained evident after matching (Figures 6I, L).
Genetic mutations and GO/KEGG analysis

The CNEC genetic mutation data were extracted from COSMIC

version GRCh38 COSMIC v99. In total, 55279 cases of colorectal
FIGURE 5

Multicenter external validation of predictive models. (A-C) Calibration curves forecasting OS at 0.5-year (A), 1-year (B), and 2-year (C) intervals.
(D-F) Decision curve analysis for OS prediction at 0.5-year (D), 1-year (E), and 2-year (F) milestones, contrasting the model with the TNM-stage.
(G) Time-dependent ROC curve comparison between the nomogram and TNM-stage system for OS. (H) Risk-stratification based on risk points derived
from the model.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509170
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1509170
tumors were evaluated for genetic mutations in the database. In

the sub-tissue category, all colorectal sites were selected for

data extraction. For histological selection, only CNEC cases were

selected, and a final total of 63 cases were analyzed for genetic

mutations. The top 20 genes that were mutated in CNEC were TP53

70% (in all samples tested = 43), KRAS 28% (96), APC 42% (43),

BRAF 21% (81), RB1 30% (30), NOTCH1 13% (30), RET 13%

(30), CTNNB1 7% (41), FBXW7 10% (30), MET 10% (30), PIK3CA

10% (30), SMAD4 10% (30), SMARCA4 16% (19), EGFR 7% (30),

IDH2 7% (30), FLT3 7% (30), PTPN11 7% (30), AKT1 7% (30),
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NF1 12% (17), and MLLT1 50% (4) (Figure 7A). RT-QPCR

results based on clinical samples also showed that the expression

of TP53, KRAS, APC, BRAF and RB1 genes increased significantly

in HCNEC tissues (Supplementary Figure 10). An overview of

the mutation types and PPI network are shown in Figures 7B, C.

We performed GO and KEGG analyses of these genes (20).

Biological process analysis showed that the top 20 genes were

enriched in gland development, extrinsic component of

membrane, protein kinase activity, EGFR and Ras signaling

pathways (Figure 7D).
FIGURE 6

Risk-stratification, Sankey diagram based on the model and treatment strategy selection. Analysis of OS and CSS in HCNEC patients from the training
cohort (A, D) juxtaposed against the validation cohort (B, E). Clinicopathological feature distribution across varied risk groups for OS (C) and CSS (F).
The Sankey diagram delineates the relationship between predictor features and risk stratification for OS (G) and CSS (J). Survival curves showcase
the disparities between the two groups, both pre- and post-matching, for OS (H, I) and CSS (K, L).
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Discussion

HCNEC, a rare and aggressive tumor, exhibits traits akin to

small cell lung cancer, particularly in terms of pronounced invasion

and metastasis (8, 21). Most HCNEC patients are diagnosed at

advanced stages or when distant metastasis has already manifested,

resulting in a bleak prognosis (22, 23). Owing to the rarity of

HCNEC cases, comprehensive research in this area poses

considerable challenges. The SEER database, a respected source of

U.S. cancer statistics, is invaluable for studying rare tumors (24–27).

From an in-depth analysis, we extracted a substantial sample of

HCNEC data from SEER (n=714) and employed machine learning

techniques to discern six pivotal clinical factors that correlated with

OS and CSS. Additionally, we used the COSMIC database to

analyze the genomic variation characteristics of CNEC. To our

knowledge, this study represents a pioneering effort to leverage

SEER data and COSMIC data to establish specific survival

prediction models and gene mutation landscapes, respectively. To

enhance the practical relevance of our conclusions, we integrated

web-based prognostic tools and introduced SHAP visual

representation to optimize risk-informed clinical decision-making.

Our epidemiological survey demonstrated a noticeable increase in

the incidence of CNEC over the past two decades. Given the scarcity

of early research and recent advancements in endoscopic diagnostic

and therapeutic approaches, the actual incidence of NEC, especially
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within the gastrointestinal domain, is anticipated to increase (28, 29).

Consequently, it is imperative to prioritize and enhance NEC related

management in the future. Evidence suggests that HCNEC possess

notable invasive and metastatic capacity (30, 31). In alignment with

this, our analysis revealed a significant number of patients with newly

diagnosed metastasis exhibiting an unfavorable prognosis (M1 = 345,

48.3%). It has been established that tumors within the digestive system

frequently metastasize to lymph nodes, often resulting in a poor

prognosis (32–35). Prior research has underscored the correlation

between prognosis and parameters such as the number of dissected

lymph nodes, number of positive lymph nodes, and ratio of positive

lymph nodes in patients with colorectal cancer (36, 37). In our

investigation, the LODDS algorithm, recognized for its precision,

was employed to elucidate the association between lymph nodes

and HCNEC (38, 39). These findings substantiated that both

positive lymph nodes and LODDS > 1 serve as reliable prognostic

markers, offering advantages over traditional N staging. Moreover,

these findings maintained consistent validation even within the

constraints of our limited external dataset.

According to the National Comprehensive Cancer Network

(NCCN) Neuroendocrine Tumor Guidelines, resectable NEC

should undergo surgery and systemic chemotherapy, optionally

complemented by local radiotherapy, paralleling the treatment

approach for small cell lung cancer (13). Surgery continues to be

the primary diagnostic and therapeutic intervention for patients (12).
FIGURE 7

The Genomic Landscape, PPI and GO/KEGG analysis in CNEC. (A) The top 20 mutated genes. (B) An overview of the types of mutation observed.
(C) PPI network of the top 20 mutated genes. (D) The GO/KEGG enrichment analysis of top 20 genes.
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A thorough examination of the database’s surgical definitions

revealed significant survival benefits for patients who underwent

gross total resection or subtotal resection (GTR/STR). Numerous

prior studies have convincingly demonstrated that patients with

gastroenteropancreatic neuroendocrine tumors who receive R0

surgical resection of the primary tumor experience substantial

survival advantages (40, 41). In conclusion, R0/R1 resection should

always be regarded as the first-line treatment when achievable. For

cases of locally advanced, unresectable, or metastatic CNEC, frontline

therapy involves a combination of cisplatin/carboplatin and

etoposide (EP regimen) (14, 42). Several retrospective studies with

limited sample sizes have reported an objective response rate (ORR)

for this regimen ranging between 30% and 70%, with a median OS

spanning 11-19 months (43, 44). In addition, a phase 2 clinical trial

from a multi-center randomized controlled trial showed that after the

failure of the EP regimen, the FOLFIRI regimen (irinotecan,

leucovorin, and fluorouracil) can be regarded as the standard

second-line treatment for patients with gastroenteropancreatic

neuroendocrine cancer (45). Our study corroborates the

significance of chemotherapy as a pivotal factor for patient

prognosis. The adoption of radiation therapy in HCNEC remains

infrequent (n=130, 18.2%), with little previous research. Machine

learning algorithm outcomes denote radiotherapy as a consequential

variable influencing HCNEC prognosis, although its distinction in

the multi-factor Cox forest plot remains unclear (P=0.140 in OS,

P=0.215 in CSS). Given the paucity of prior investigations and

indeterminate outcomes, we leveraged the PSM technique to

equalize confounding elements and juxtaposed survival rates of

SRC (amalgamating surgery, radiotherapy, and chemotherapy) and

SC (surgery combined with chemotherapy) patient groups. The

findings revealed that the tri-modal treatment yielded pronounced

survival advantages both pre- and post-matching. The pivotal role of

RT was further reinforced using our external dataset (Supplementary

Figure 4O). This highlights the importance of integrating local

radiotherapy with combination treatments and could offer pivotal

insights for ensuing clinical prospective studies. In summary,

addressing aggressive malignancies, such as HCNEC, mandates a

multifaceted therapeutic strategy. Anticipation builds for future

clinical trials to elucidate and affirm these progressive methods.

The pathogenesis of HCNEC remains unclear, and there is a

notable absence of targeted therapeutic drugs currently available in

clinical practice. Multiple previous studies on neuroendocrine

tumors have confirmed that this type of disease is related to

multiple gene mutations/deletions, such as TP53, RB1, CTNNB1,

NF1, etc (46–48). Our mutation gene analysis results also showed

that the most common mutations in CNEC were TP53, KRAS,

APC, BRAF, and RB1, and were verified from independent clinical

samples. As the most common tumor suppressor gene, TP53

mutations or functional inactivation are associated with poor

prognosis in pan-cancers, including colorectal tumor (49). The

GO/KEGG analysis based on the top 20 mutated gene sets also

revealed that the biological properties of CNEC are related to EGFR,

RAS, MAPK signaling pathway. Multiple studies have proven that

EGFR mutations may be involved in the process of tumors

becoming neuroendocrine. Targeting signaling pathways such as

RAS and MAPK can inhibit the growth of neuroendocrine tumors
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(50–52). Consequently, conducting an in-depth genomic analysis of

high-grade CNEC patients with poor prognoses is essential, as it

may reveal potential therapeutic targets for this disease.

In this study, machine learning algorithms were employed to

develop a model for evaluating survival risks. Rigorous validation

demonstrated the model’s exceptional precision, indicating that it is

more effective than the prevailing TNM staging system. However,

there are some limitations to our research. Owing to the

retrospective nature of the study, patients not listed in the SEER

registry were excluded, potentially leading to sampling bias.

Additionally, the SEER database does not provide comprehensive

information on crucial clinical parameters, such as performance

status, distinct chemotherapy protocols, number of treatment

cycles, radiation dosage, and subsequent therapeutic lines, which

may cause survival bias. Furthermore, the lack of indicators, such as

disease progression-free survival and recurrence survival, within the

SEER database might restrict the model’s widespread applicability.

Genomics analysis needs to be more in-depth, such as exploration

of epigenetic changes and functional mechanisms.
Conclusions

In conclusion, we systematically analyzed patient data from the

SEER database from 2000 to 2019 and the genetic mutation

characteristics of the patients in the COSMIC database. From this

analysis, we identified several clinical factors that independently

influenced OS and CSS in patients with HCNEC and mapped the

genetic mutation landscape. The developed prediction model, notable

for its precision, presents a potential instrument for tackling prevailing

clinical hurdles. Additionally, analysis based on mutational genomics

will facilitate future research on molecular targeted drugs.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by the ethics

committee of the First Affiliated Hospital of Chongqing Medical

University, China (Approval No. 2024-086). The studies were

conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

RW: Conceptualization, Data curation, Investigation,

Methodology, Software, Writing – original draft, Writing – review

& editing. SC: Conceptualization, Data curation, Investigation,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509170
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1509170
Methodology, Software, Writing – original draft, Writing – review

& editing. YH: Conceptualization, Data curation, Investigation,

Software, Writing – original draft. YL: Conceptualization, Data

curation, Investigation, Writing – original draft . SM:

Conceptualization, Data curation, Investigation, Methodology,

Supervision, Writing – original draft, Writing – review & editing.

AJ: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Supervision,

Validation, Visualization, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This study was

supported by a grant from the Postdoctoral Science Foundation of

Chongqing Municipal Natural Science Foundation (CSTB2023NSCQ-

BHX0153) and the Chongqing Medical University Postdoctor

Scientific Research Start-up Fund (R1069).
Acknowledgments

We are immensely grateful to all investigators involved in this

study and thanks to Biorender (https://www.biorender.com/) for

providing the flow chart material.
Frontiers in Oncology 13
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1509170/

full#supplementary-material
References
1. Kulke MH, Benson AB 3rd, Bergsland E, Berlin JD, Blaszkowsky LS, Choti MA,
et al. Neuroendocrine tumors. J Natl Compr Canc Netw. (2012) 10:724–64.
doi: 10.6004/jnccn.2012.0075

2. Klöppel G. Classification and pathology of gastroenteropancreatic
neuroendocrine neoplasms. Endocr Relat Cancer. (2011) 18 Suppl 1:S1–16.
doi: 10.1530/ERC-11-0013

3. Xu Z, Wang L, Dai S, Chen M, Li F, Sun J, et al. Epidemiologic trends of and
factors associated with overall survival for patients with gastroenteropancreatic
neuroendocrine tumors in the United States. JAMA Netw Open. (2021) 4:e2124750.
doi: 10.1001/jamanetworkopen.2021.24750

4. Lee MR, Harris C, Baeg KJ, Aronson A, Wisnivesky JP, KimMK. Incidence trends
of gastroenteropancreatic neuroendocrine tumors in the United States. Clin
Gastroenterol Hepatol. (2019) 17:2212–7. doi: 10.1016/j.cgh.2018.12.017

5. Klöppel G. Tumour biology and histopathology of neuroendocrine tumours.
Best Pract Res Clin Endocrinol Metab . (2007) 21:15–31. doi: 10.1016/
j.beem.2007.01.004

6. Pavel M, Öberg K, Falconi M, Krenning EP, Sundin A, Perren A, et al.
Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice
Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2020) 31:844–60.
doi: 10.1016/j.annonc.2020.03.304

7. Assarzadegan N, Montgomery E. What is new in the 2019 World
Health Organization (WHO) classification of tumors of the digestive system:
review of selected updates on neuroendocrine neoplasms, appendiceal tumors, and
molecular testing. Arch Pathol Lab Med. (2021) 145:664–77. doi: 10.5858/arpa.2019-
0665-RA

8. Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic
high-grade neuroendocrine carcinoma. Cancer. (2014) 120:2814–23. doi: 10.1002/
cncr.28721

9. Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec JY, Volante M, et al.
Genomics of high-grade neuroendocrine neoplasms: well-differentiated
neuroendocrine tumor with high-grade features (G3 NET) and neuroendocrine
carcinomas (NEC) of various anatomic sites. Endocr Pathol. (2021) 32:192–210.
doi: 10.1007/s12022-020-09660-z
10. Smith JD, Reidy DL, Goodman KA, Shia J, Nash GM. A retrospective review of
126 high-grade neuroendocrine carcinomas of the colon and rectum. Ann Surg Oncol.
(2014) 21:2956–62. doi: 10.1245/s10434-014-3725-3

11. Alese OB, Jiang R, Shaib W, Wu C, Akce M, Behera M, et al. High-grade
gastrointestinal neuroendocrine carcinoma management and outcomes: A national
cancer database study. Oncologist. (2019) 24:911–20. doi: 10.1634/theoncologist.2018-
0382

12. Wu Z, Wang W, Zhang K, Fan M, Lin R. The impact of surgery and survival
prediction in patients with gastroenteropancreatic neuroendocrine tumors: a
population-based cohort study. Int J Surg. (2023) 109:1629–38. doi: 10.1097/
JS9.0000000000000336

13. Shah MH, Goldner WS, Benson AB, Bergsland E, Blaszkowsky LS, Brock P, et al.
Neuroendocrine and adrenal tumors, version 2.2021, NCCN clinical practice guidelines
in oncology. J Natl Compr Canc Netw. (2021) 19:839–68. doi: 10.6004/jnccn.2021.0032

14. Garcia-Carbonero R, Sorbye H, Baudin E, Raymond E, Wiedenmann B, Niederle
B, et al. Vienna consensus conference participants. ENETS consensus guidelines for
high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine
carcinomas. Neuroendocrinology. (2016) 103:186–94. doi: 10.1159/000443172

15. Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients:
Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.
Cell. (2023) 186:1772–91. doi: 10.1016/j.cell.2023.01.035

16. Kaur I, Doja MN, Ahmad T. Data mining and machine learning in cancer
survival research: An overview and future recommendations. J BioMed Inform. (2022)
128:104026. doi: 10.1016/j.jbi.2022.104026

17. Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer
research, diagnosis and therapy. Nat Rev Cancer. (2021) 21:747–52. doi: 10.1038/
s41568-021-00399-1

18. Williamson EJ, Forbes A. Introduction to propensity scores. Respirology. (2014)
19:625–35. doi: 10.1111/resp.12312

19. Liang X, Li J. Optimize statistical analysis via propensity score matching and
repeated-measures analysis of variance. JACC Cardiovasc Interv. (2023) 16:361–2.
doi: 10.1016/j.jcin.2022.11.017
frontiersin.org

https://www.biorender.com/
https://www.frontiersin.org/articles/10.3389/fonc.2025.1509170/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1509170/full#supplementary-material
https://doi.org/10.6004/jnccn.2012.0075
https://doi.org/10.1530/ERC-11-0013
https://doi.org/10.1001/jamanetworkopen.2021.24750
https://doi.org/10.1016/j.cgh.2018.12.017
https://doi.org/10.1016/j.beem.2007.01.004
https://doi.org/10.1016/j.beem.2007.01.004
https://doi.org/10.1016/j.annonc.2020.03.304
https://doi.org/10.5858/arpa.2019-0665-RA
https://doi.org/10.5858/arpa.2019-0665-RA
https://doi.org/10.1002/cncr.28721
https://doi.org/10.1002/cncr.28721
https://doi.org/10.1007/s12022-020-09660-z
https://doi.org/10.1245/s10434-014-3725-3
https://doi.org/10.1634/theoncologist.2018-0382
https://doi.org/10.1634/theoncologist.2018-0382
https://doi.org/10.1097/JS9.0000000000000336
https://doi.org/10.1097/JS9.0000000000000336
https://doi.org/10.6004/jnccn.2021.0032
https://doi.org/10.1159/000443172
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1016/j.jbi.2022.104026
https://doi.org/10.1038/s41568-021-00399-1
https://doi.org/10.1038/s41568-021-00399-1
https://doi.org/10.1111/resp.12312
https://doi.org/10.1016/j.jcin.2022.11.017
https://doi.org/10.3389/fonc.2025.1509170
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1509170
20. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

21. Dasari A, Mehta K, Byers LA, Sorbye H, Yao JC. Comparative study of lung and
extrapulmonary poorly differentiated neuroendocrine carcinomas: A SEER database
analysis of 162,983 cases. Cancer. (2018) 124:807–15. doi: 10.1002/cncr.31124

22. Shafqat H, Ali S, Salhab M, Olszewski AJ. Survival of patients with
neuroendocrine carcinoma of the colon and rectum: a population-based analysis. Dis
Colon Rectum. (2015) 58:294–303. doi: 10.1097/DCR.0000000000000298

23. Lee SM, Sung CO. Comprehensive analysis of mutational and clinicopathologic
characteristics of poorly differentiated colorectal neuroendocrine carcinomas. Sci Rep.
(2021) 11:6203. doi: 10.1038/s41598-021-85593-9

24. Gallicchio L, Daee DL, Rotunno M, Barajas R, Fagan S, Carrick DM, et al.
Epidemiologic research of rare cancers: trends, resources, and challenges. Cancer
Epidemiol Biomarkers Prev. (2021) 30:1305–11. doi: 10.1158/1055-9965.EPI-20-1796

25. Lin S, Liu C, Tao Z, Zhang J, Hu X. Clinicopathological characteristics and
survival outcomes in breast carcinosarcoma: A SEER population-based study. Breast.
(2020) 49:157–64. doi: 10.1016/j.breast.2019.11.008

26. Cole S, Gianferante DM, Zhu B, Mirabello L. Osteosarcoma: A Surveillance,
Epidemiology, and End Results program-based analysis from 1975 to 2017. Cancer.
(2022) 128:2107–18. doi: 10.1002/cncr.34163

27. Chen S, Yu W, Shao S, Xiao J, Bai H, Pu Y, et al. Establishment of predictive
nomogram and web-based survival risk calculator for Malignant pleural mesothelioma:
A SEER database analysis. Front Oncol. (2022) 12:1027149. doi: 10.3389/
fonc.2022.1027149

28. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing but NET: A review of
neuroendocrine tumors and carcinomas. Neoplasia. (2017) 19:991–1002. doi: 10.1016/
j.neo.2017.09.002

29. Song Z, Zou L. Risk factors, survival analysis, and nomograms for distant
metastasis in patients with primary pulmonary large cell neuroendocrine carcinoma: A
population-based study. Front Endocrinol (Lausanne). (2022) 13:973091. doi: 10.3389/
fendo.2022.973091

30. Park HK, Kwon GY. Comparison of metastatic patterns among
neuroendocrine tumors, neuroendocrine carcinomas, and nonneuroendocrine
carcinomas of various primary organs. J Korean Med Sci. (2023) 38:e85.
doi: 10.3346/jkms.2023.38.e85

31. Kwon TS, Choi SB, Lee YS, Kim JG, Oh ST, Lee IK. Novel methods of lymph
node evaluation for predicting the prognosis of colorectal cancer patients with
inadequate lymph node harvest. Cancer Res Treat. (2016) 48:216–24. doi: 10.4143/
crt.2014.312

32. Kayani B, Zacharakis E, Ahmed K, Hanna GB. Lymph node metastases and
prognosis in oesophageal carcinoma–a systematic review. Eur J Surg Oncol. (2011)
37:747–53. doi: 10.1016/j.ejso.2011.06.018

33. Kang WZ, Xiong JP, Li Y, Jin P, Xie YB, Xu Q, et al. A new scoring system to
predict lymph node metastasis and prognosis after surgery for gastric cancer. Front
Oncol. (2022) 12:809931. doi: 10.3389/fonc.2022.809931

34. Sohn B, Kwon Y, Ryoo SB, Song I, Kwon YH, Lee DW, et al. Predictive factors
for lymph node metastasis and prognostic factors for survival in rectal neuroendocrine
tumors. J Gastrointest Surg. (2017) 21:2066–74. doi: 10.1007/s11605-017-3603-y

35. Rausei S, Iovino D, Tenconi S, Mangano A, Inversini D, Boni L, et al. Impact of
lymph node ratio on survival of colorectal cancer patients. Int J Surg. (2013) 11 Suppl 1:
S95–9. doi: 10.1016/S1743-9191(13)60026-6

36. Märkl B, Olbrich G, Schenkirsch G, Kretsinger H, Kriening B, Anthuber M.
Clinical Significance of International Union Against Cancer pN Staging
and Lymph Node Ratio in Node-Positive Colorectal Cancer after Advanced
Lymph Node Dissection. Dis Colon Rectum. (2016) 59:386–95. doi: 10.1097/
DCR.0000000000000569
Frontiers in Oncology 14
37. Li T, Yang Y, WuW, Fu Z, Cheng F, Qiu J, et al. Prognostic implications of ENE
and LODDS in relation to lymph node-positive colorectal cancer location. Transl
Oncol. (2021) 14:101190. doi: 10.1016/j.tranon.2021.101190

38. Huang B, Chen C, Ni M, Mo S, Cai G, Cai S. Log odds of positive lymph nodes is
a superior prognostic indicator in stage III rectal cancer patients: A retrospective
analysis of 17,632 patients in the SEER database. Int J Surg. (2016) 32:24–30.
doi: 10.1016/j.ijsu.2016.06.002

39. Thomas KEH, Voros BA, Boudreaux JP, Thiagarajan R, Woltering EA, Ramirez
RA. Current treatment options in gastroenteropancreatic neuroendocrine carcinoma.
Oncologist. (2019) 24:1076–88. doi: 10.1634/theoncologist.2018-0604

40. Knigge U, Hansen CP. Surgery for GEP-NETs. Best Pract Res Clin Gastroenterol.
(2012) 26:819–31. doi: 10.1016/j.bpg.2012.12.005

41. Pommergaard HC, Nielsen K, Sorbye H, Federspiel B, Tabaksblat EM,
Vestermark LW, et al. Surgery of the primary tumour in 201 patients with high-
grade gastroenteropancreatic neuroendocrine and mixed neuroendocrine-non-
neuroendocrine neoplasms. J Neuroendocrinol. (2021) 33:e12967. doi: 10.1111/
jne.12967

42. Yamaguchi T, Machida N, Morizane C, Kasuga A, Takahashi H, Sudo K, et al.
Multicenter retrospective analysis of systemic chemotherapy for advanced
neuroendocrine carcinoma of the digestive system. Cancer Sci. (2014) 105:1176–81.
doi: 10.1111/cas.12473

43. Okita NT, Kato K, Takahari D, Hirashima Y, Nakajima TE, Matsubara J, et al.
Neuroendocrine tumors of the stomach: chemotherapy with cisplatin plus irinotecan is
effective for gastric poorly-differentiated neuroendocrine carcinoma. Gastric Cancer.
(2011) 14:161–5. doi: 10.1007/s10120-011-0025-5

44. Nakano K, Takahashi S, Yuasa T, Nishimura N, Mishima Y, Sakajiri S, et al.
Feasibility and efficacy of combined cisplatin and irinotecan chemotherapy for poorly
differentiated neuroendocrine carcinomas. Jpn J Clin Oncol. (2012) 42:697–703.
doi: 10.1093/jjco/hys085

45. Walter T, Lievre A, Coriat R, Malka D, Elhajbi F, et al. Bevacizumab plus
FOLFIRI after failure of platinum-etoposide first-line chemotherapy in patients with
advanced neuroendocrine carcinoma (PRODIGE 41-BEVANEC): a randomised,
multicentre, non-comparative, open-label, phase 2 trial. Lancet Oncol. (2023)
24:297–306. doi: 10.1016/S1470-2045(23)00001-3

46. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. Comprehensive
genomic profiles of small cell lung cancer. Nature. (2015) 524:47–53. doi: 10.1038/
nature14664

47. Cao Y, Zhou W, Li L, Wang J, Gao Z, Jiang Y, et al. Pan-cancer analysis of
somatic mutations across 21 neuroendocrine tumor types. Cell Res. (2018) 28:601–4.
doi: 10.1038/s41422-018-0019-5

48. van Riet J, van de Werken HJG, Cuppen E, Eskens FALM, Tesselaar M, van
Veenendaal LM, et al. The genomic landscape of 85 advanced neuroendocrine
neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat
Commun. (2021) 12:4612. doi: 10.1038/s41467-021-24812-3

49. Ottaiano A, Santorsola M, Capuozzo M, Perri F, Circelli L, Cascella M, et al. The
prognostic role of p53 mutations in metastatic colorectal cancer: A systematic review
and meta-analysis. Crit Rev Oncol Hematol. (2023) 186:104018. doi: 10.1016/
j.critrevonc.2023.104018

50. Lin SR, Wen YC, Yeh HL, Jiang KC, Chen WH, Mokgautsi N, et al. EGFR-
upregulated LIFR promotes SUCLG2-dependent castration resistance and
neuroendocrine differentiation of prostate cancer. Oncogene. (2020) 39:6757–75.
doi: 10.1038/s41388-020-01468-9

51. Valentino JD, Li J, Zaytseva YY, Mustain WC, Elliott VA, Kim JT, et al.
Cotargeting the PI3K and RAS pathways for the treatment of neuroendocrine
tumors. Clin Cancer Res. (2014) 20:1212–22. doi: 10.1158/1078-0432.CCR-13-1897

52. Cui J, Ge Y, Sun W, Liu B, Dai C. CgB promotes EMT and stemness via MAPK
pathway in colonic neuroendocrine carcinoma. Am J Cancer Res. (2023) 13:1560–70.
frontiersin.org

https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/cncr.31124
https://doi.org/10.1097/DCR.0000000000000298
https://doi.org/10.1038/s41598-021-85593-9
https://doi.org/10.1158/1055-9965.EPI-20-1796
https://doi.org/10.1016/j.breast.2019.11.008
https://doi.org/10.1002/cncr.34163
https://doi.org/10.3389/fonc.2022.1027149
https://doi.org/10.3389/fonc.2022.1027149
https://doi.org/10.1016/j.neo.2017.09.002
https://doi.org/10.1016/j.neo.2017.09.002
https://doi.org/10.3389/fendo.2022.973091
https://doi.org/10.3389/fendo.2022.973091
https://doi.org/10.3346/jkms.2023.38.e85
https://doi.org/10.4143/crt.2014.312
https://doi.org/10.4143/crt.2014.312
https://doi.org/10.1016/j.ejso.2011.06.018
https://doi.org/10.3389/fonc.2022.809931
https://doi.org/10.1007/s11605-017-3603-y
https://doi.org/10.1016/S1743-9191(13)60026-6
https://doi.org/10.1097/DCR.0000000000000569
https://doi.org/10.1097/DCR.0000000000000569
https://doi.org/10.1016/j.tranon.2021.101190
https://doi.org/10.1016/j.ijsu.2016.06.002
https://doi.org/10.1634/theoncologist.2018-0604
https://doi.org/10.1016/j.bpg.2012.12.005
https://doi.org/10.1111/jne.12967
https://doi.org/10.1111/jne.12967
https://doi.org/10.1111/cas.12473
https://doi.org/10.1007/s10120-011-0025-5
https://doi.org/10.1093/jjco/hys085
https://doi.org/10.1016/S1470-2045(23)00001-3
https://doi.org/10.1038/nature14664
https://doi.org/10.1038/nature14664
https://doi.org/10.1038/s41422-018-0019-5
https://doi.org/10.1038/s41467-021-24812-3
https://doi.org/10.1016/j.critrevonc.2023.104018
https://doi.org/10.1016/j.critrevonc.2023.104018
https://doi.org/10.1038/s41388-020-01468-9
https://doi.org/10.1158/1078-0432.CCR-13-1897
https://doi.org/10.3389/fonc.2025.1509170
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Machine learning based predictive model and genetic mutation landscape for high-grade colorectal neuroendocrine carcinoma: a SEER database analysis with external validation
	Introduction
	Methods
	Study design and selection criteria
	Statistical analysis

	Results
	Epidemiological characteristics analysis
	Clinical characteristics of patients
	Feature selection and establishment of predictive model
	Dynamic web version model deployment
	Internal and external multidimensional validation of models
	Risk stratification and Sankey diagram based on the model
	Optimal treatment strategy analysis
	Genetic mutations and GO/KEGG analysis

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


