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Optimized deep learning
model for diagnosing tonsil
and adenoid hypertrophy
through X-rays
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and Jian Wang1*
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Objective: To explore the application of a deep learning model based on lateral

nasopharyngeal X-rays in diagnosing tonsillar and adenoid hypertrophy.

Methods: A retrospective study was conducted using DICOM images of lateral

nasopharyngeal X-rays from pediatric outpatients aged 2-12 at our hospital from

July 2014 to July 2024. The study included patients exhibiting varying degrees of

respiratory obstruction symptoms (disease group). Initially, 1006 images were

collected, but after excluding low-quality images and standardizing the imaging

phase, 819 images remained. These images were divided into training and

validation sets in an 8:2 ratio. The independent test set is consisted of 484

images. We delineated the target areas for tonsils and adenoids and used a

YOLOv8n-based model for object detection and use various convolutional

neural network models to classify the cropped images, assessing the severity

of tonsillar and adenoid hypertrophy. We compared the performance of these

models on the training and validation sets using metrics such as ROC-AUC,

accuracy, precision, recall, and F1 score.

Results: The combined model, incorporating YOLOv8 for object detection and

secondary classification, demonstrated excellent performance in diagnosing

tonsillar and adenoid hypertrophy, significantly improving diagnostic accuracy

and consistency. The ResNet18 model, due to its lightweight nature and minimal

computational resource requirements, performed exceptionally well in the

YOLOv8-ResNet fusion model for detecting and classifying tonsils and

adenoids, making it our preferred model.

Conclusion: The deep learning model combining YOLOv8n and ResNet18 based

on lateral nasopharyngeal X-rays demonstrates significant advantages in

diagnosing pediatric tonsillar and adenoid hypertrophy.
KEYWORDS

tonsillar, adenoid, artificial intelligence in medicine, ResNet18, YOLOv8,
diagnostic imaging
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Introduction

Tonsillar and adenoid hypertrophy are common upper

respiratory tract diseases in children, significantly affecting their

health and quality of life. The adenoids and tonsils are important

lymphoid tissues in the pharynx, responsible for filtering pathogens

entering the respiratory tract. However, when these tissues become

excessively hypertrophic, they can cause symptoms such as mouth

breathing, nasal obstruction, difficulty breathing, snoring, and sleep

apnea. If left untreated, this can lead to facial deformities, growth

retardation, cognitive impairment, increased cardiovascular risk (1),

and behavioral problems (2). Adenoid and tonsillar hypertrophy are

independently associated with the risk of pediatric obstructive sleep

apnea syndrome (OSAS), with the prevalence of OSAS increasing

with the size of the adenoids and tonsils (3). Adenotonsillectomy

and medication are common treatments for children with adenoid

and tonsillar hypertrophy who suffer from OSAS.

Lateral cephalometric radiographs, a standard orthodontic method

for evaluating craniofacial morphology, provide orthodontists with

readily available references for assessing airway obstruction and

hypertrophic adenoids and tonsils (4). Numerous studies have

reported a reasonable correlation between cephalometric

measurements of adenoids and their size (5). Lateral cephalometric

radiographs are accurate in diagnosing adenoid hypertrophy (6), but

there is a lack of sufficient guidelines for diagnosing tonsillar

hypertrophy using cephalometric measurements (7). Currently, the

Fujioka method (8) is used to measure adenoid size on lateral

radiographs by calculating the adenoid/nasopharyngeal (A/N) ratio

(Figure 1). This ratio is derived by dividing the adenoid measurement
Frontiers in Oncology 02
(A) by the distance from the posterior edge of the hard palate to the

anterior inferior edge of the spheno-occipital junction (N). An A/N

ratio greater than 0.67 is considered indicative of adenoid hypertrophy.

The standard grading system for diagnosing tonsillar size and

hypertrophy is based on clinical oropharyngeal examination (9),

grading tonsils by the percentage they occupy in the oropharyngeal

airway’s diameter (10). However, this widely used method is

imperfect as it cannot show anterior-posterior obstruction of the

oropharynx (11–13). Some literature suggests using the T/O ratio to

evaluate tonsillar hypertrophy (7), but these previous evaluation

metrics have certain limitations (14). They are also relatively

cumbersome to operate and require a high level of diagnostic and

assessment proficiency from different physicians.

In recent years, deep learning has made significant progress in

medical image analysis and diagnosis (15), with broad applications

in image segmentation for trauma fractures (16) and lung nodule

diagnosis (17). This paper proposes a deep learning method

combining YOLO (You Only Look Once) object detection and

image classification for diagnosing tonsillar and adenoid

hypertrophy in lateral nasopharyngeal X-rays. Tonsillar and

adenoid hypertrophy are common pediatric health issues that can

lead to airway obstruction, sleep apnea syndrome, and recurrent

infections, among other serious health problems. Traditional

diagnostic methods rely on the clinical experience of physicians,

which can be subjective and have limitations in diagnostic accuracy.

In contrast, deep learning models can reduce diagnostic bias (18).

Therefore, developing an automated computer-aided diagnostic

method is of paramount importance. Currently, there is no

research that utilizes a combination of YOLO for object detection

and CNNs for secondary classification to diagnose tonsillar and

adenoid hypertrophy on the same lateral nasopharyngeal X-

ray images.

Materials and methods

Materials preparation

Tonsils and adenoids reach their maximum size at around ages

7-9 and 12-13, respectively (19). In this study (Figure 2), we

included children aged 2-13, who are the most common

candidates for adenoidectomy and tonsillectomy. We collected

lateral nasopharyngeal X-ray DICOM images of pediatric

outpatients from our hospital from July 2014 to July 2024. These

images were used as training, validation, and independent test sets.

Initially, there were 1006 images in the training and validation sets,

which were reduced to 819 images after excluding low-quality

images and standardizing the imaging phase. The validation set

included 164 images, evenly distributed among 104 cases of simple

tonsillar hypertrophy, 268 cases of simple adenoid hypertrophy, 223

cases of both tonsillar and adenoid hypertrophy, and 224 normal

cases. An additional independent test set was collected, consisting of

484 images, including 74 cases of simple tonsillar hypertrophy, 153

cases of both tonsillar and adenoid hypertrophy, 151 cases of simple

adenoid hypertrophy, and 154 normal cases. The inclusion criteria

for the collected images were: (1) adequate radiographic image
FIGURE 1

The Fujioka method for measuring adenoid size on lateral
radiographs by calculating the adenoid/nasopharyngeal (A/N) ratio.
The black line marks the lateral contour of the occipital slope of the
skull on the lateral radiograph. The green line (A) represents the
vertical distance from the most prominent point of the adenoid to
the lateral contour of the occipital slope of the skull. The red line (N)
represents the width of the nasopharyngeal cavity at the level of the
most prominent point of the adenoid.
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quality, (2) children in the disease group with varying degrees of

respiratory obstruction symptoms, and (3) children in the normal

group without any clinical symptoms. Exclusion criteria included:

(1) poor image quality or low contrast blurry images, (2) abnormal

postures of the children during imaging (e.g., excessive neck

extension or flexion), and (3) images taken in the inverse phase.
Frontiers in Oncology 03
The images were initially diagnosed by radiologists with 3 years of

experience, and the final diagnoses were confirmed by two

attending radiologists with 5-8 years of experience. Any

discrepancies in diagnoses were resolved through discussion.

This study obtained parental consent and was approved by the

Institutional Ethics Committee of our hospital.
FIGURE 2

Flowchart of data collection and construction of a deep learning integrated model.
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Research methods

YOLOv8 (20) (You Only Look Once) models use Darknet-53

(21) as their backbone, which includes residual and convolutional

blocks. This model transforms object detection into a regression

problem by directly predicting the class and location of the object.

Previous studies have utilized this model for facial landmark

detection (22), and Wenting Xie et al. applied an improved

YOLOv8 model for ovarian cancer diagnosis (23). While YOLO

models perform well in object detection and localization, they may

not be as effective in distinguishing different states of the same

organ (Figure 3), particularly in medical imaging. CNN models,

composed of multiple stacked convolutional layers, are advanced

deep learning technologies. They typically consist of an input layer
Frontiers in Oncology 04
(image input), a convolutional layer (which convolves the input

image with filters to generate feature maps), a Rectified Linear Unit

(ReLU) activation layer (which activates neurons above a

threshold), a pooling layer (which reduces image size while

retaining high-level features), and a fully connected (FC) layer

(which produces the final results) . These models can

automatically extract features from image data and classify the

images, and have been applied to various radiology tasks, achieving

high performance in image-based disease classification. We found

that combining CNN models with YOLO models can enhance the

classification performance, especially in distinguishing subtle

features. This approach integrates feature extraction and

classification within the same network, providing a streamlined

and efficient process. However, CNNs can struggle with imbalanced
FIGURE 3

Performance metrics of direct object detection and inference classification using the YOLOv8 model. (A) Calibration plots for each class.
(B) Confusion matrix. (C) ROC curves.
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datasets, which often requires various techniques to balance the

data. Data augmentation is commonly used in the medical field to

increase the size of datasets. This method generates additional

labeled images without altering the semantics of the images,

thereby mitigating dataset imbalance. In this study, we used

several data augmentat ion methods , such as gamma

transformation and horizontal flipping, which do not affect the
Frontiers in Oncology 05
vertical orientation of the nasopharyngeal X-rays. Although CNNs

require large labeled medical datasets for training, which can be

challenging to create due to time and labor costs, recent research

suggests that transfer learning can be a solution for small

dataset issues.

In transfer learning (TL), convolutional neural networks

(CNNs) are first trained to learn features from a broad domain,
FIGURE 4

Performance metrics of the ResNet18 model on training and validation sets. (A) Training and validation accuracy curves. (B) Training and validation
loss curves. (C) Calibration curves. (D) Confusion matrices. (E) ROC curves.
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such as ImageNet. The trained features and network parameters are

then transferred to a more specific domain. In CNN models, low-

level features like edges, curves, and corners are learned in the initial

layers, while more specific high-level features are learned in the final

layers. Among various TL models, we selected seven CNN models,

including ResNet18, ResNet34, ResNet50, DenseNet121,

EfficientNet-B0, VGG16, and AlexNet, to compare their

performance using different metrics. Ultimately, we chose to

combine the ResNet18 with the YOLOv8n model. ResNet-18 is a

convolutional neural network with 18 layers that addresses the issue

of training deep networks by introducing residual blocks. Its

architecture includes an initial convolutional layer, four stages of

residual blocks (each stage containing two 3x3 convolutional

layers), a global average pooling layer, and a fully connected layer.

This design allows the network to effectively train deep models

while maintaining relatively low computational complexity. A

recent study (24) evaluated the performance of several neural

networks with a softmax output layer and ReLU activation,

confirming the superior performance of softmax with ReLU in

classification tasks. Therefore, to obtain probabilistic predictions,

we used a fully connected layer as the output layer and modified it

for four-class classification. We chose the cross-entropy function as

the loss function, which inherently includes the Softmax operation,

eliminating the need for an explicit softmax definition. The

structure of ResNet18 incorporates a key design feature known as

residual blocks. These blocks allow the model to use ‘skip

connections’ to pass inputs directly to subsequent layers,

bypassing some intermediate layers of neurons. This design helps

to mitigate the vanishing and exploding gradient problems that can

arise as the network depth increases, which makes it easier for the

network to learn deep representations without degradation.

Through this structure, ResNet18 can effectively capture both
Frontiers in Oncology 06
low-level and high-level features in images, leading to excellent

performance in image classification tasks. In the process of transfer

learning and fine-tuning, we initially froze the first four modules of

the model and gradually unfroze all layers during training. During

training, we calculated the output and loss through forward

propagation and updated the weights via backpropagation. We

also dynamically adjusted the learning rate to avoid catastrophic

forgetting. Additionally, we modified the output of the fully

connected (FC) layer to accommodate a four-class classification

task. After testing various optimizers, we selected the “Adam”

optimizer for its superior performance among all those studied.

Consequently, we applied this optimizer during the model training

process. To understand the model’s attention to different regions of

the images, we employed a visualization tool called Gradient-

weighted Class Activation Mapping (2D-Grad-CAM) (25) to

analyze the interpretability of the five fused deep learning models.

This tool visually identifies the correspondence between the regions

of interest in the pathological area and the model’s prediction

attention. In this study, we focused on whether the models not

only paid attention to the tonsil and adenoid areas but also

evaluated the regions of the airway.

The collected lateral nasopharyngeal X-rays were first converted

from DICOM files to JPG images using Python’s PIL package.

Then, experienced radiologists annotated the target detection boxes

using the LabelImg software, marking the tonsil and adenoid

detection regions on each X-ray. The annotations were completed

collaboratively by two experts. For images where there was

disagreement, the experts engaged in discussions to reach a

consensus and ensure the accuracy of the classifications. The

adenoid region was defined from the upper edge of the

nasopharynx to the palatal plane, from the posterior edge of the

hard palate to the posterior pharyngeal wall and the anterior aspect
TABLE 1 Performance metrics of different secondary models on training and validation sets.

Model_Name Phase Roc_Auc Accuracy Precision Recall F1 Logloss

resnet18

train {0: 0.995, 1: 0.993, 2: 0.994, 3: 0.997} 0.941 0.941 0.941 0.941 0.169

val {0: 0.990, 1: 0.990, 2: 0.986, 3: 0.989} 0.895 0.895 0.895 0.895 0.250

resnet34

train {0: 0.994, 1: 0.994, 2: 0.998, 3: 0.997} 0.936 0.936 0.936 0.936 0.152

val {0: 0.993, 1: 0.992, 2: 0.981, 3: 0.991} 0.926 0.927 0.926 0.926 0.239

resnet50

train {0: 0.996, 1: 0.995, 2: 0.994, 3: 0.996} 0.935 0.935 0.935 0.935 0.157

val {0: 0.993, 1: 0.993, 2: 0.982, 3: 0.991} 0.907 0.908 0.907 0.907 0.238

densenet121

train {0: 0.907, 1: 0.876, 2: 0.885, 3: 0.939} 0.693 0.692 0.693 0.686 0.776

val {0: 0.932, 1: 0.897, 2: 0.907, 3: 0.937} 0.698 0.713 0.698 0.691 0.759

efficientnet_b0

train {0: 0.897, 1: 0.871, 2: 0.845, 3: 0.912} 0.666 0.683 0.666 0.655 0.848

val {0: 0.938, 1: 0.879, 2: 0.857, 3: 0.870} 0.630 0.663 0.630 0.601 0.908

vgg16

train {0: 0.967, 1: 0.964, 2: 0.965, 3: 0.977} 0.824 0.825 0.824 0.824 0.412

val {0: 0.969, 1: 0.961, 2: 0.966, 3: 0.970} 0.815 0.823 0.815 0.812 0.452

alexnet

train {0: 0.968, 1: 0.959, 2: 0.963, 3: 0.974} 0.828 0.829 0.828 0.828 0.422

val {0: 0.976, 1: 0.955, 2: 0.969, 3: 0.966} 0.812 0.814 0.812 0.812 0.432
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of the C1 vertebra. The tonsil detection region was defined from the

palatal uvula level to the posterior aspect of the tongue, from the

anterior aspect of the C3 vertebra to the aryepiglottic fold. The

detection boxes were rectangular regions determined by vertical and

horizontal lines passing through these anatomical landmarks,

ensuring that the entire airway cross-sectional content of the

tonsil or adenoid was included in the training images and
Frontiers in Oncology 07
improving the localization accuracy of the YOLO model’s

detection boxes.

After defining the detection boxes, we devised a two-stage

detection + diagnosis method to diagnose whether children had

tonsil lar or adenoid hypertrophy on the same lateral

nasopharyngeal X-ray. First, we fine-tuned the pre-trained

YOLOv8m model on ImageNet to learn the detection box
FIGURE 5

Performance metrics of the ResNet18 model on test sets. (A) Calibration curves. (B) Confusion matrices. (C) Visualization heatmaps of the tonsil
region. (D) Visualization heatmaps of the adenoid region.
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locations, adjusting model parameters and hyperparameters

through iterative training. After 135 epochs, we controlled the

box loss error range within 0.5%, using IOU-based evaluations to

improve detection accuracy. The model’s final weights were saved

corresponding to the lowest box loss during the last training

iteration. For the training and evaluation of the secondary

classification model, we first used the trained YOLO model to

predict and crop the original images from the training and

validation sets. The highest-confidence detection boxes for the

predicted tonsil and adenoid regions were selected as the final

detection boxes. These final detection boxes were then used to crop

the original images, resulting in predicted cropped images. These

cropped images were categorized into four classes: normal tonsils,

enlarged tonsils, normal adenoids, and enlarged adenoids. We then

re-established the training and validation sets, and the cropped

images were fed into the secondary classification models, pretrained

on ImageNet, to learn image features for classification. This process

generated the optimal model weight files for different base models

and organs.

During the evaluation on the independent test set, we repeated

the same procedure, using the secondary classification models to

predict and obtain the labels for the cropped images. These

predicted labels were compared with the true labels for the

independent test set. We utilized two methods for correction:

first, we evaluated the predicted cropped images and true labels

from the independent test set; second, we cropped the original

images using the true labels and input these into the secondary

classification models for performance evaluation.

The results from these two evaluation methods were used to

assess the secondary classification models, determining the optimal

models for classifying tonsil and adenoid images. This approach
Frontiers in Oncology 08
ensured the overall performance of the combined YOLOmodel and

secondary classification model was optimal.
Statistical analysis

We use the following indicators to evaluate the performance of

the model and select the best model: ROC AUC,accuracy,

sensitivity, specificity, F1 score, Confusion Matrix Visualization

images. This study used the following tools: Python 3.7.16 (https://

www.python.org/downloads/release/python-3716/) and PyTorch

third-party libraries(Version: 1.13.1)on Windows 11 operating

system ([MSC v.1916 64 bit (AMD64)]).
Results

By comparing performance metrics across the training,

validation (Figure 4, Table 1), and independent test sets (Figure 5,

Table 2), along with visualizing confusion matrices and the regions

of interest highlighted by the models, we concluded that the fusion

model consisting of YOLOv8n as the front-end model for object

detection and localization, combined with the fine-tuned ResNet18

as the back-end secondary classification model, demonstrates

significant advantages in diagnosing conditions using lateral

nasopharyngeal X-ray images.

In this experiment, we explored the use of YOLOv8n for object

detection and localization, combined with various deep learning

models like ResNet18 for secondary classification. YOLOv8n

accurately identifies the regions of interest, while the subsequent

classification is performed by models such as ResNet18. The goal of

this approach was to improve classification accuracy for four
TABLE 2 Performance metrics of different secondary models on test sets.

Model_Name Phase Accuracy Precision Recall F1
Score

Log
Loss

ROC
AUC

Cohen
Kappa

Matthews Correlation
Coefficient

resnet18 Test1 0.878 0.879 0.878 0.878 0.389 0.975 0.836 0.836

Test2 0.880 0.882 0.880 0.880 0.345 0.979 0.838 0.839

resnet34 Test1 0.871 0.872 0.871 0.871 0.453 0.972 0.826 0.826

Test2 0.872 0.875 0.872 0.871 0.368 0.981 0.827 0.829

resnet50 Test1 0.851 0.858 0.851 0.849 0.468 0.974 0.798 0.801

Test2 0.867 0.875 0.867 0.864 0.421 0.978 0.819 0.823

densenet121 Test1 0.415 0.555 0.415 0.350 1.260 0.814 0.187 0.257

Test2 0.403 0.548 0.403 0.336 1.295 0.808 0.171 0.238

efficientnet_b0 Test1 0.406 0.457 0.406 0.358 1.219 0.763 0.181 0.216

Test2 0.440 0.516 0.440 0.395 1.171 0.783 0.227 0.268

vgg16 Test1 0.851 0.853 0.851 0.851 0.397 0.973 0.799 0.800

Test2 0.857 0.860 0.857 0.856 0.367 0.978 0.807 0.809

alexnet Test1 0.844 0.848 0.844 0.842 0.429 0.972 0.788 0.791

Test2 0.845 0.855 0.845 0.844 0.399 0.978 0.790 0.794
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categories: normal adenoid, normal tonsil, enlarged adenoid, and

enlarged tonsil. The results showed that the combination of

YOLOv8n and ResNet18 performed exceptionally well across

several key metrics. On the independent test set, our combined

model achieved an impressive classification accuracy of 97%, with

AUC values above 0.95 for each category. These results were further

corroborated by the ROC curves, which demonstrated strong

discriminatory power between the different classes. While other

models like AlexNet, VGG16, DenseNet121, EfficientNet-B0,

ResNet34, and ResNet50 also performed well, especially in certain

complex classification tasks, they generally fell short of ResNet18’s

performance. Despite having ROC AUC values close to or reaching

0.95, the confusion matrices and calibration curves revealed that

these models had slightly higher misclassification rates and

calibration inaccuracies in some categories. In particular,

DenseNet121 and EfficientNet-B0, while stable in classification

tasks, showed some limitations in fine-grained classification

compared to ResNet18. In summary, through a comprehensive

analysis of the classification reports, ROC curves, calibration curves,

and confusion matrices across the training, validation, and

independent test sets, we found that the combination of

YOLOv8n and ResNet18 outperformed the other models in this

four-classification task. This model structure not only improved

classification accuracy and stability but also demonstrated good

generalization capability, making it suitable for practical

applications. Therefore, we ultimately chose the YOLOv8n and

ResNet18 fusion model as the integrated approach for diagnosing

tonsil and adenoid enlargement based on lateral nasopharyngeal

radiographs. Currently, the treatment standards for tonsillar and

adenoid hypertrophy are based on the presence of clinical

symptoms. For patients with clinically significant symptoms or

recurrent inflammation due to hypertrophic tonsils or adenoids,

tonsillectomy and adenoidectomy are recommended. Our deep

learning model can play a role in large-scale screenings and help

avoid unnecessary surgical interventions caused by diagnostic

variability among individuals.
Discussion

Diagnostic approach

Lateral nasopharyngeal X-rays offer convenience, low cost, high

repeatability, and ease of operation. Compared to maxillofacial CT

scans (14), they have a lower radiation dose, making them less harmful

to children. Additionally, they provide better standardization and

operability compared to ultrasound examinations, which often

depend on the skill and subjective judgment of the ultrasonographer

and lack the standardization of nasopharyngeal X-rays (26, 27).

Currently, clinical practice often involves diagnosing based on

nasopharyngeal X-rays combined with clinical symptoms. We

selected children who already exhibited symptoms and underwent X-

ray imaging to ensure diagnostic accuracy.

Previous studies on deep learning have primarily focused on the

diagnosis of adenoid enlargement, without including tonsillar
Frontiers in Oncology 09
hypertrophy. In contrast, our study addresses the diagnosis of

both tonsillar and adenoid enlargement. Many of the earlier

studies on diagnosing adenoid enlargement using X-ray

nasopharyngeal lateral films relied on manual annotation (28),

which could lead to inconsistent diagnostic quality due to

variability in annotation skills, and the process is often time-

consuming. Some studies have used CT images for automated

adenoid enlargement diagnosis (29); however, CT scans involve

higher radiation doses than X-rays, making them less suitable for

routine screening. More recent studies have employed region-of-

interest (ROI) delineation followed by deep learning models for

automated diagnosis (30), but this still requires preprocessing of the

X-ray nasopharyngeal lateral films. Other research has focused on

detecting anatomical landmarks on nasopharyngeal lateral images

to automatically diagnose adenoid enlargement (31–33). Although

these methods have demonstrated strong diagnostic performance,

they are less intuitive in their presentation and still require

preprocessing of the nasopharyngeal lateral films.
Reducing error transmission impact

In this stepwise model architecture, errors in the target

detection phase can propagate to the classification phase. If

YOLOv8 fails to accurately locate the target area or mistakenly

detects background regions, the subsequent classification model will

process incorrect input data, reducing classification accuracy. To

mitigate this impact, we corrected the performance evaluation

results using real cropped images during the evaluation phase,

ensuring accurate prediction and classification by the model.
Handling complex scenarios

In medical images, the positions and shapes of tonsils and

adenoids may vary due to patient differences and imaging angles.

YOLOv8, as a powerful object detection tool, can adapt to these

variations and accurately locate targets, which is crucial for

handling complex scenarios and ensuring precise localization. The

subsequent convolutional neural network can then perform fine-

grained classification based on these accurate localization results.

This ability to handle complex scenarios enhances the robustness

and reliability of the entire system in practical applications.
Limitations of our study

This study has several limitations. It is a single-center study with

a relatively small sample size, and the sample type (lateral

nasopharyngeal X-rays) limits the amount of information that

can be obtained from the images. Additionally, the 8:2 ratio for

training and validation sets results in a small number of validation

images. Accurate diagnosis and treatment of tonsillar and adenoid

hypertrophy require consideration of clinical symptoms, and

relying solely on X-rays is inappropriate. Although Resnet18
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performed well compared to other models, the accuracy curve

showed some fluctuations in the later stages of training. An ideal

model would have high and closely aligned accuracy curves,

ensuring both fitting capability and generalization ability. This

fluctuation might indicate variable performance during each

training epoch, especially when using small batch sizes.

In the future, we plan to expand the sample size, closely monitor

changes in loss and accuracy curves, and collaborate with multiple

centers to collect more lateral nasopharyngeal X-rays. This will

increase the number of images in the training and validation sets

and add additional test sets to validate the model’s prediction ability

on unseen images, aiming to develop a more accurate disease

diagnosis model. We will also explore using more advanced front-

end models to replace YOLOv8 for target detection, further

reducing error transmission. Additionally, we will attempt to use

more lightweight models and optimize them for operation on

mobile devices, making the model more convenient and effective

for use in primary healthcare settings.
Conclusion

The deep learning model combining YOLOv8n and ResNet18

based on lateral nasopharyngeal X-rays demonstrates significant

advantages in diagnosing pediatric tonsillar and adenoid hypertrophy.
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