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Engeng Chen*, Li Chen and Wei Zhang

Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of
Medicine, Hangzhou, China
Colorectal cancer (CRC) remains a formidable global health challenge, ranking

among the most prevalent malignancies and a principal contributor to cancer-

associated mortality. While traditional open surgery has historically been the

cornerstone of CRC treatment, the advent of minimally invasive techniques,

particularly robotic-assisted colorectal surgery (RACS), has garnered significant

momentum owing to technological advancements in the field. Robotic

platforms, exemplified by the da Vinci Surgical System, offer superior three-

dimensional visualization, enhanced dexterity, and heightened precision, yielding

improved perioperative outcomes, particularly in anatomically intricate regions

such as the pelvis. This review provides a critical appraisal of the current

landscape of RACS, emphasizing its superiority over conventional open and

laparoscopic approaches. The increased control and precision afforded by

robotic surgery have been shown to optimize outcomes in complex

procedures such as total mesorectal excision, with evidence indicating

reduced intraoperative blood loss, shortened hospital stays, and improved

functional recovery. Nonetheless, challenges persist, including absence of

haptic feedback, prohibitive costs, and steep learning curve associated with

robotic systems. Despite these limitations, RACS has demonstrated

considerable promise in sphincter-preserving and function-preserving

procedures, ultimately enhancing postoperative quality of life. Beyond the

surgical field, this review also investigates the integration of robotic surgery

within multidisciplinary treatment strategies for CRC, particularly in the context

of locally advanced rectal cancer. The combination of robotic techniques with

total neoadjuvant therapy and immunotherapy—especially in tumors

characterized by mismatch repair deficiency or high microsatellite instability

has shown notable clinical efficacy. Furthermore, emerging personalized

therapeutic approaches, including immunotherapies and targeted

chemotherapeutic agents, emphasize the transformative potential of RACS in

delivering superior oncologic outcomes. Looking towards the future, innovations

in robotic platforms, including intraoperative imaging, artificial intelligence, and

augmented reality, herald new possibilities for further enhancing the precision

and efficacy of colorectal surgeries. The standardization of RACS protocols,

alongside ongoing training and robust clinical research, will be critical to fully
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realizing the benefits of these advancements across diverse clinical settings. By

incorporating cutting-edge technologies and personalized treatment methods,

robotic-assisted surgery is prepared to become a cornerstone in future of CRC

management, with the potential to significantly improve both survival outcomes

and patient quality of life.
KEYWORDS
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1 Introduction

Colorectal cancer (CRC) remains a significant global health

burden, ranking among the most prevalent malignancies and

contributing to a substantial number of cancer-related deaths (1).

According to the International Agency for Research on Cancer,

CRC accounts for more than 1.9 million new cases annually, with an

estimated 900,000 fatalities, representing 9.3% of all cancer-

associated mortalities (2). Traditionally, open colorectal resection

has been the cornerstone of surgical intervention for CRC (3).

Although effective in achieving tumor resection and improving

survival outcomes, open surgery is accompanied by notable

limitations, including extensive surgical trauma, increased

complication rates, and prolonged postoperative recovery (4).

Over the past few decades, advances in medical technology have

catalyzed the widespread adoption of minimally invasive surgery

(MIS) (5). Laparoscopic surgery, as the foundation of MIS, has

gained considerable traction in the management of CRC (6).

Compared to conventional open approaches, laparoscopic

techniques offer several distinct advantages, such as reduced

intraoperative trauma, diminished postoperative pain, accelerated

recovery, and improved cosmetic outcomes (7). However, despite

these benefits, laparoscopic surgery has inherent drawbacks,

including a two-dimensional (2D) visual field, restricted

instrument dexterity, and a steep learning curve, all of which can

compromise surgical accuracy and hinder its broader

implementation in clinical practice (8, 9).

To address these limitations, robot-assisted surgical systems

have emerged as a transformative innovation. The da Vinci Surgical

System, for instance, has revolutionized the surgical landscape by

introducing robot-assisted surgery (RAS) into clinical practice,

offering enhanced capabilities such as high-definition three-

dimensional (3D) visualization, instruments with seven degrees of

freedom, and tremor suppression, significantly augmenting surgical

precision (10). In the context of CRC surgery, RAS holds promise

for improving lymph node dissection quality, reducing

perioperative complications, and optimizing functional outcomes,

particularly in sphincter-preserving procedures (11). (Figure 1).

As a narrative review, our objective is to synthesize the current

body of evidence on robotic-assisted colorectal surgery and its
02
integration into multidisciplinary treatment strategies for CRC.

This format allows for a comprehensive examination of both

established and emerging data, enabling us to provide a critical

overview without restricting the scope to predefined methodological

criteria, as might be required in a systematic review. By

presenting the literature in this narrative format, we aim to

highlight the nuanced clinical insights, evolving technologies, and

multidisciplinary considerations that shape the use of robotics in

CRC management.
2 Robotic-assisted colorectal surgery

2.1 Current status and trends

The landscape of robotic-assisted colorectal surgery has

witnessed remarkable growth in recent years, primarily fueled by

continuous innovations in robotic technology (12). These

advancements have significantly enhanced the precision and

efficacy of surgical interventions, especially in intricate or

technically demanding cases (13). Central to this paradigm shift is

the advent of high-definition, three-dimensional imaging and fully

articulating robotic instruments, which afford surgeons

unprecedented dexterity and spatial awareness (14). These tools

enable the execution of complex procedures with heightened

control, mitigating the limitations inherent to traditional open or

laparoscopic techniques.

Recent studies emphasize the increasing utilization of robotic

platforms in colorectal surgeries that have historically posed

considerable challenges (15–17). Notably, robotic systems are now

routinely employed for lateral lymph node dissections and multi-

visceral resections involving adjacent organs, both critical for

addressing locally advanced malignancies (18–21). This evolution

mirrors growing confidence within the surgical community

regarding the capabilities of robotic systems in managing complex

colorectal pathologies (22). Such advancements are contributing to

the broader adoption of robotic-assisted surgery across diverse

colorectal cancer cases, particularly within specialized, high-

volume centers where the requisite infrastructure and expertise

are readily available (23).
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2.2 Comparison with conventional
methods

Robotic-assisted colorectal surgery offers a range of advantages

over conventional open and laparoscopic approaches, while also

presenting unique challenges (24, 25). Laparoscopic surgery, long

regarded as the cornerstone of minimally invasive colorectal

surgery, is limited by two-dimensional imaging and a constrained

range of motion due to rigid, non-articulating instruments (26, 27).

These limitations can impede precise dissection, particularly within

confined anatomical spaces such as the pelvis (28). Open surgery,

while providing direct tactile feedback and a broader operative field,

is associated with increased morbidity, including greater

postoperative pain, prolonged hospitalization, and slower

recovery (29).

Robotic systems bridge these gaps by offering the enhanced

dexterity of wristed instruments and superior visualization through

high-definition, three-dimensional imaging (30). This capability

facilitates more refined dissections in anatomically complex
Frontiers in Oncology 03
regions, such as during total mesorectal excision (TME) for rectal

cancer (31, 32). Comparative studies demonstrate that robotic-

assisted surgery can lead to reduced intraoperative blood loss, lower

rates of conversion to open surgery, and shorter hospital stays

relative to both laparoscopic and open procedures (33).

Nonetheless, robotic surgery is not without drawbacks, including

extended operative times and higher upfront costs related to the

acquisition and maintenance of robotic platforms (34). While long-

term oncological outcomes remain comparable between robotic and

conventional methods, further research is necessary to determine

whether robotic systems offer superior long-term survival or

recurrence rates for patients with colorectal cancer (35, 36).
2.3 Challenges in robotic surgery

Despite the clear advantages of robotic-assisted colorectal

surgery, several technical and operational challenges persist. A

major limitation is the absence of haptic feedback, which is
FIGURE 1

General timeline for modern colorectal surgery. It illustrates the progression of surgical techniques for colorectal cancer treatment from the pre-
1990s era of open colorectal resection, through the development of laparoscopic colorectal tumor resection in the 1990s, to the introduction of
robotic-assisted colorectal surgery in the 2000s. Before the 1990s, open colorectal resection was the standard procedure, characterized by
extensive surgical trauma, higher complication rates, and prolonged postoperative recovery. In the 1990s, laparoscopic colorectal tumor resection
emerged, offering advantages such as reduced intraoperative trauma, diminished postoperative pain, and accelerated recovery. However, challenges
included the limitations of a two-dimensional visual field, restricted instrument dexterity, and a steep learning curve for surgeons. Since the 2000s,
robotic-assisted colorectal surgery has provided superior three-dimensional visualization, enhanced dexterity, and heightened precision, marking a
significant advancement in the field of minimally invasive surgery.
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integral for surgeons to gauge tissue tension and resistance during

dissection (37). The lack of tactile sensation can impair the

precision of critical maneuvers, particularly when working near

delicate structures. Additionally, the considerable size of robotic

systems and the complexity of docking procedures can prolong

operative times, particularly in centers where robotic surgery has

not yet become routine (38). (Figure 2A).

The high cost of robotic platforms, both in terms of initial

investment and ongoing maintenance, also represents a significant

barrier, especially for smaller hospitals or those in resource-

limited settings (39, 40). The cost-effectiveness of robotic

surgery remains a subject of ongoing debate, particularly in

scenarios where laparoscopic techniques can achieve comparable

outcomes at a fraction of the cost (41). Furthermore, the learning

curve associated with robotic-assisted surgery is steep (42).

Mastery of these systems requires specialized training and

substantial experience, which can delay widespread adoption

and potentially lead to variability in outcomes during the initial

phase of implementation. Addressing these challenges through

enhanced system designs, cost-reduction initiatives, and the

development of more comprehensive training programs will be

critical to improving the accessibility and efficacy of robotic-

assisted colorectal surgery.
3 Multidisciplinary management of
locally advanced rectal cancer

3.1 Total Neoadjuvant Therapy

Total Neoadjuvant Therapy (TNT) has emerged as a pivotal

strategy in the management of locally advanced rectal cancer

(LARC), integrating both preoperative chemoradiotherapy and

systemic chemotherapy prior to surgical resection (43–45). The

primary objective of TNT is to optimize oncological outcomes by

enhancing tumor downstaging, increasing the rates of pathological

complete response (pCR), and improving both disease-free survival

(DFS) and overall survival (OS) (46). In contrast to traditional

treatment methods, where adjuvant chemotherapy follows surgical

intervention, TNT prioritizes systemic chemotherapy in

conjunction with neoadjuvant radiotherapy before surgery (47).

This approach increases the likelihood of achieving negative

surgical margins and addresses micrometastatic disease early in

the treatment course.

Administering systemic chemotherapy prior to surgery confers

multiple advantages, particularly in controlling micrometastatic

disease at an earlier stage, which may reduce the risk of distant

metastasis (48). Moreover, completing chemotherapy preoperatively

ensures that patients—especially those at heightened risk of

postoperative complications or those less likely to tolerate adjuvant

therapy due to delayed recovery—receive the full therapeutic benefit.

Clinical trials have consistently demonstrated TNT’s efficacy in

increasing pCR rates, a surrogate marker strongly correlated with

improved long-term outcomes, thereby cementing its clinical value

(49, 50).
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3.2 Role of immunotherapy

In the evolving treatment landscape of rectal cancer, the

integration of immunotherapy, particularly immune checkpoint

inhibitors (ICIs), represents a significant advancement, especially

for tumors characterized by mismatch repair deficiency (dMMR) or

high microsatellite instability (MSI-H) (51). These tumors, known

for their high mutat ional burden, exhibi t enhanced

immunogenicity, making them highly susceptible to T-cell-

mediated cytotoxicity via immunotherapy (52, 53). For patients

with dMMR/MSI-H rectal cancer, ICIs have demonstrated

remarkable clinical efficacy, often yielding profound radiologic

and clinical responses, with some cases obviating the need for

conventional chemoradiotherapy or surgery (54).

Agents such as pembrolizumab and nivolumab have shown

high response rates in dMMR/MSI-H patients, enabling treatment

de-escalation and significantly improving quality of life by sparing

patients from the morbidity associated with traditional, more

aggressive treatments (51). These responses are supported by the

immune system’s enhanced ability to recognize and eliminate

cancer cells in dMMR/MSI-H tumors, driven by their inherent

genomic instability. This paradigm shift has fundamentally altered

the therapeutic approach for this subset of patients.

Nonetheless, successful immunotherapy hinges on precise

patient selection. dMMR or MSI-H status must be confirmed

through comprehensive genomic profiling, as patients without

these molecular features—namely those with microsatellite-stable

(MSS) tumors—derive minimal benefit from ICIs (55). Ongoing

research is exploring combinatorial strategies, such as pairing

immunotherapy with chemotherapy or radiotherapy in MSS

tumors, with the aim of broadening the applicability of ICIs and

improving outcomes for a wider patient cohort (56).
3.3 Necessity of personalized therapeutic
approaches

Given the rapid advancements in rectal cancer treatment, the

imperative for individualized therapeutic strategies has never been

more critical (57). While both TNT and immunotherapy represent

significant progress, their optimal implementation demands careful

tailoring to each patient’s unique clinical and molecular characteristics.

Personalizing treatment necessitates consideration of several factors,

including tumor genetics, patient comorbidities, and the tumor’s

responsiveness to initial therapeutic interventions (58).

In elderly or frail patients, for instance, the intensity of TNT

may require modification to reduce treatment-related toxicity while

maintaining therapeutic efficacy (59). Conversely, younger or more

resilient patients may be candidates for aggressive multimodal

approaches aimed at maximizing oncological control (60). The

role of multidisciplinary teams—comprising surgical oncologists,

medical oncologists, radiation oncologists, and genetic counselors—

is indispensable in crafting these individualized treatment regimens,

which strive to balance optimal oncological outcomes with quality-

of-life considerations.
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FIGURE 2

Challenges, innovations, and multimodal roles of robotic-assisted surgery in colorectal cancer treatment. (A) Challenges in Robotic Surgery: This panel
illustrates the three primary challenges associated with robotic-assisted surgery: Technical Limitations: Including the lack of haptic feedback, bulky
instrumentation, and limited operating space. Cost-Effectiveness: Highlighting the high initial equipment costs, expensive surgical consumables, and high
maintenance fees. Learning Curve: Emphasizing the long training times, the need for specialized training teams, and longer initial surgery times for surgeons
adopting this technology. (B) Innovation Flowchart of Robotic-Assisted Surgery: This panel presents the technological advancements driving the evolution of
robotic surgery: Development of New Robotic Systems: Focused on creating more compact designs and enhancing instrument flexibility. Integration of
Imaging and Navigation Technologies: Including real-time 3D imaging and intraoperative navigation and positioning. Combination of Artificial Intelligence
and Robotics: Introducing intraoperative decision support systems and automated surgical processes. Remote Surgery: Enabling remote control and
overcoming geographical limitations for surgical interventions. (C) Comprehensive Multimodal Treatment: A Venn diagram representing the role of robotic-
assisted surgery in the context of multimodal treatment strategies for colorectal cancer. The three intersecting circles represent: Surgical Treatment,
Chemoradiotherapy, and Immunotherapy. The overlap between these treatment modalities highlights the integration of robotic surgery in Surgery with
Immunotherapy, Combined Surgery and Chemoradiotherapy. The center of the diagram emphasizes the importance of Comprehensive Multimodal
Treatment in optimizing patient outcomes for colorectal cancer treatment.
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Advancements in surgical technology, particularly robotic-

assisted techniques, further enhance the capacity for personalized

care. This is especially pertinent for patients with low rectal tumors,

where function-preserving procedures are a priority (61, 62). The

integration of these technologies with personalized preoperative

and postoperative strategies enables improved functional outcomes

while maintaining rigorous cancer control.
4 Innovations and standardization in
robot-assisted colorectal surgery

4.1 Technological advancements

Recent advances in robot-assisted colorectal surgery (RACS)

have marked the dawn of a new era in surgical precision and patient

safety, with next-generation robotic platforms like the da Vinci Xi

system at the forefront of these developments (63). These systems

offer superior dexterity, enhanced stability, and refined tactile

feedback, features that are particularly vital for executing intricate

colorectal procedures in anatomically restrictive regions such as the

pelvis (64). The expanded range of motion and more intuitive user

interface afforded by these platforms have not only improved

surgical precision but also enabled surgeons to navigate

challenging anatomical planes with greater ease, thereby reducing

the technical complexity inherent in operations such as low anterior

resection and TME.

Among the most transformative innovations is the integration

of intraoperative fluorescence imaging, a method that allows real-

time visualization of tissue perfusion, enhancing the surgeon’s

ability to delineate resection margins with unparalleled accuracy

(65, 66). This technology is pivotal in reducing the risk of

anastomotic leaks—one of the most feared complications in

colorectal surgery. Additionally, the advent of 3D imaging and

augmented reality (AR)-based navigation systems has significantly

augmented the surgeon’s capacity to visualize and manipulate

within the operative field (67), particularly in the dense and

complex anatomy of the pelvis. These tools have refined the

precision of resection planes, minimized collateral damage to

adjacent tissues, and improved oncological clearance, especially in

minimally invasive surgical contexts. (Figure 2B).
4.2 Standardization efforts

With the increasing adoption of RACS across diverse clinical

settings, variability in surgical techniques and patient outcomes

remains a pressing concern. In response, considerable efforts have

been made to standardize the practice of robotic-assisted colorectal

surgery (9, 68). Professional organizations and surgical societies have

developed comprehensive guidelines designed to harmonize key

aspects of robotic surgery, including preoperative planning, patient

selection, and intraoperative procedures (69). These guidelines seek
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to ensure the consistent application of critical steps—such as optimal

patient positioning, standardized port placement, and robotic

docking techniques—across institutions, thereby enhancing the

reproducibility and quality of surgical outcomes.

In tandem with these procedural guidelines, the establishment

of rigorous training and accreditation frameworks has further

bolstered the standardization of RACS. Simulation-based training

programs offer a safe and controlled environment where surgeons

can refine their technical skills before transitioning to live surgery

(70). Competency evaluations, coupled with proctored surgeries,

form an integral part of certification processes, ensuring that only

those surgeons who have demonstrated both technical proficiency

and adherence to standardized protocols are entrusted with

performing robotic procedures independently. Furthermore,

continued medical education (CME) requirements ensure that

surgeons remain abreast of the latest technological innovations

and procedural refinements, fostering a culture of continuous

improvement in surgical practice (71).
4.3 Function-preserving techniques

In colorectal surgery, particularly in the management of

malignancies located in the lower rectum, there has been a

growing emphasis on techniques that preserve function, aiming to

improve outcomes not only in terms of oncological control but also

in the quality of life for patients (72). One notable advancement in

this regard is the development of sphincter-preserving procedures,

such as intersphincteric resection (ISR) (73). ISR allows for the

excision of rectal tumors while preserving the sphincter complex,

thereby avoiding the need for permanent colostomies and

significantly enhancing patient quality of life. The enhanced

precision provided by robotic systems is particularly beneficial in

these cases, enabling the meticulous dissection required to protect

critical structures such as the sphincter complex and pelvic nerves.

Robotic platforms have also revolutionized the performance of

TME, which remains the cornerstone of rectal cancer surgery (74).

TME demands exacting dissection to maintain the integrity of the

mesorectal fascia while ensuring comprehensive oncological

resection (75). The fine motor control and superior visualization

offered by robotic systems minimize the risk of inadvertent nerve

damage, thereby preserving essential pelvic functions such as

urinary and sexual function (76). This heightened precision is

directly correlated with improved postoperative functional

outcomes, translating into both enhanced cancer cure rates and

better overall quality of life for patients following surgery.

Therefore, the integration of state-of-the-art robotic technologies

into colorectal surgery, alongside concerted efforts to standardize

surgical protocols and embrace function-preserving techniques,

heralds a paradigm shift in the treatment of colorectal diseases.

These advancements not only offer superior oncological outcomes

but also foster improved functional recovery, addressing critical

issues related to postoperative morbidity and long-term quality of life.
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5 Minimally invasive surgery: curative
and functional outcomes

5.1 Oncological outcomes

MIS has become integral to the treatment of colorectal cancer,

with robotic-assisted techniques representing a considerable leap

forward in surgical innovation. The primary oncological

benchmarks used to assess the efficacy of these methods include

survival rates and local recurrence rates, both of which are pivotal in

determining long-term disease control (77).

In terms of survival outcomes, current evidence suggests that

RACS achieves comparable, if not superior, OS and DFS rates when

measured against conventional laparoscopic techniques (78). The

heightened precision afforded by robotic systems facilitates more

accurate dissection and resection, potentially enhancing oncological

clearance, especially in challenging rectal cancer cases where

meticulous pelvic dissection is crucial. Moreover, robotic

platforms have demonstrated superior accuracy in performing

TME, a procedure essential for reducing local recurrence rates—

an important indicator of surgical success (79). The reduction in

positive circumferential resection margins (CRM) observed in some

robotic-assisted procedures further emphasizes the potential of

these technologies to improve oncological outcomes (80).
5.2 Functional outcomes

While achieving oncological control is paramount in colorectal

cancer management, postoperative functional outcomes are

increasingly recognized as essential to optimizing patient quality

of life (81, 82). Factors such as postoperative recovery, bowel

function, and patient-reported outcomes serve as critical

measures of the success of MIS in preserving physiological

function while ensuring therapeutic efficacy (83).

Robotic-assisted surgery has been consistently associated with

shorter hospital stays, reduced postoperative pain, and a quicker

return to routine activities, reflecting its superiority in immediate

recovery compared to traditional open surgery (84). These

advantages are largely attributable to smaller incisions, reduced

intraoperative blood loss, and the enhanced precision of robotic

systems, all of which contribute to minimizing surgical trauma.

Furthermore, the preservation of long-term bowel function is a

crucial consideration. Robotic platforms, with their ability to enable

precise nerve-sparing techniques, play a pivotal role in maintaining

autonomic nerve integrity, thereby reducing the risk of

postoperative complications such as urinary incontinence, fecal

incontinence, and sexual dysfunction (72, 85, 86). These

considerations are particularly relevant in procedures such as low

anterior resection and TME, where preserving pelvic nerve function

through accurate mesorectal fascia dissection is critical.

Patient-reported quality of life (QoL) following robotic-assisted

colorectal surgery consistently shows improvements across key
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domains, including physical health, mental well-being, and social

functioning (87, 88). The minimally invasive character of robotic

procedures, combined with their function-preserving capabilities,

results in fewer disruptions to daily life and enhanced long-term

satisfaction. Notably, robotic systems enable sphincter-preserving

procedures, which markedly improve quality of life by avoiding the

need for permanent colostomies and preserving bowel

continuity (89).
5.3 Comparison of surgical approaches

The evolution of minimally invasive techniques in colorectal

surgery has led to the development of various approaches, each with

distinct advantages and limitations. Robotic-assisted surgery,

laparoscopic surgery, and transanal total mesorectal excision

(taTME) are three key methods currently employed in clinical

practice (90).

Laparoscopic colorectal surgery has long been established as a

standard minimally invasive approach, offering reduced

postoperative pain, shorter hospital stays, and quicker recovery

compared to open surgery (91). However, laparoscopic techniques

are often constrained by limited dexterity and two-dimensional

visualization, which can impede precision, particularly in

anatomically complex regions such as the pelvis (92). In contrast,

robotic-assisted surgery overcomes these limitations by offering

enhanced 3D visualization, superior dexterity via wristed

instruments, and improved ergonomics for the surgeon (93).

These advantages translate into greater precision, particularly in

deep pelvic dissections, and potentially superior oncological and

functional outcomes.

TaTME is a relatively novel approach that has garnered

attention for its ability to achieve high-quality mesorectal excision

in patients with mid-to-low rectal cancer (94). The transanal

approach offers enhanced visualization of the distal rectum,

facilitating more precise dissection and allowing for highly

accurate resections. While taTME holds promise, particularly for

difficult-to-reach tumors, it also presents challenges, including a

steep learning curve and concerns regarding increased recurrence

rates in some studies (95, 96). Compared to both laparoscopic and

robotic techniques, taTME may offer unique advantages in select

cases, but its risk-to-benefit ratio must be carefully evaluated in light

of these concerns (97).

In summary, the landscape of minimally invasive colorectal

surgery has evolved considerably, with robotic-assisted techniques

offering distinct advantages in both oncological and functional

outcomes. The comparison of surgical approaches emphasizes the

importance of individualized treatment planning, wherein the

choice of technique is driven by patient-specific factors, tumor

characteristics, and the expertise of the surgical team. As the field

continues to advance, ongoing research and refinement of these

techniques will further clarify the optimal strategies for achieving

both curative and functional success in colorectal cancer surgery.
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6 Complications and management
strategies in robotic-assisted
colorectal surgery

6.1 Current complications

Despite the numerous advantages offered by RACS,

complications remain an inevitable risk, as with any complex

surgical intervention. These complications are typically classified

into intraoperative and postoperative challenges, each presenting

distinct obstacles that may hinder optimal surgical outcomes.

Intraoperatively, the steep learning curve associated with robotic

surgery presents a significant challenge, even for seasoned surgeons (98,

99). Issues such as suboptimal port placement, technical malfunctions,

and difficulty in navigating intricate anatomical regions can lead to

prolonged operative times and increased intraoperative blood loss.

Additionally, the dependence on advanced technology introduces the

potential for system failures, which may necessitate conversion to open

or laparoscopic techniques, thereby diminishing the anticipated

benefits of a minimally invasive approach. Pelvic surgery, particularly

in the context of rectal cancer, is especially fraught with technical

difficulties due to the constrained operative field, heightening the risk of

vascular and nerve injury, which can have profound postoperative

implications (100).

Postoperatively, patients undergoing RACS are susceptible to a

range of complications, some of which are unique to the robotic

platform. Anastomotic leaks, one of the most dreaded complications in

colorectal surgery, carry serious implications for morbidity and

mortality (101). Other postoperative concerns include infections,

particularly deep surgical site infections, delayed bowel function

recovery (ileus), and thromboembolic events (102). Although robotic

techniques have demonstrated a reduction in wound infections and

shorter hospitalizations, these benefits do not entirely negate the

possibility of postoperative complications, which demand vigilant

surveillance and timely intervention to prevent escalation.
6.2 Prevention techniques

The prevention of complications in RACS hinges on meticulous

preoperative planning and precise intraoperative management

(103). Preoperative risk assessment is critical in identifying

patients who may be more vulnerable to complications, thus

enabling the customization of surgical strategies. This process

typically involves comprehensive imaging to assess tumor location

and complexity, along with thorough evaluations of patient

comorbidities, which can significantly influence intraoperative

decisions and postoperative recovery.

Intraoperatively, the prevention of complications is closely linked

to the deployment of advanced monitoring technologies and strict

adherence to well-established surgical protocols (104). For instance, the

integration of intraoperative imaging methods, such as fluorescence-

guided surgery, enables real-time visualization of tissue perfusion,

facilitating the accurate assessment of anastomotic viability and
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reducing the likelihood of leaks (105, 106). Furthermore,

intraoperative neurophysiological monitoring serves a vital role in

safeguarding pelvic nerves during dissection, which is crucial for

preserving postoperative urinary and sexual function (107). The

precision inherent in robotic platforms enhances the implementation

of these preventive strategies, thereby contributing to superior

clinical outcomes.

Additionally, strict adherence to standardized protocols—

encompassing optimal port placement, efficient robotic docking,

and stringent adherence to oncological principles such as ensuring

negative circumferential resection margins—can substantially

reducing the risk of intraoperative complications (108). Proactive

measures, including the use of hemostatic agents and preemptive

fluid management strategies, further reduce intraoperative risk and

enhance surgical safety (109, 110).
6.3 Management protocols

When complications do arise, prompt detection and timely

intervention are imperative to limit their impact on patient

outcomes. Early identification of postoperative complications,

such as anastomotic leaks or infections, requires a high level of

clinical vigilance (111). This is often facilitated by the adoption of

enhanced recovery after surgery (ERAS) protocols, which

emphasize close postoperative monitoring, early mobilization, and

active patient participation in their recovery process (112). The use

of standardized postoperative care pathways allows for early

detection of warning signs, enabling swift diagnostic imaging and

laboratory investigations to confirm the presence of complications

and guide appropriate therapeutic interventions.

The management of complications in RACS is further optimized

through a multidisciplinary approach, in which surgeons collaborate

with anesthesiologists, radiologists, and specialized nursing teams to

provide comprehensive patient care. For instance, the management of

anastomotic leaks may necessitate both surgical and non-surgical

interventions, ranging from percutaneous drainage and antibiotic

therapy to reoperation, depending on the severity of the complication

(113, 114). Similarly, the management of thromboembolic events

requires coordinated efforts between the surgical and hematology

teams to ensure timely anticoagulation, while carefully balancing the

risk of bleeding (115–117). This multidisciplinary approach ensures

that complications are addressed holistically, encompassing not only

immediate clinical needs but also the long-term implications for

patient recovery and quality of life.
7 Future directions and new treatment
strategies in robotic-assisted
colorectal surgery

7.1 Emerging therapies

The landscape of chemotherapeutic agents is progressively

advancing to selectively target molecular pathways integral to the
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pathogenesis of colorectal cancer, including those regulating

angiogenesis, programmed cell death (apoptosis), and the tumor

microenvironment (118, 119). Notably, inhibitors of vascular

endothelial growth factor (VEGF) and epidermal growth factor

receptor (EGFR) have demonstrated significant efficacy when

employed in conjunction with robotic-assisted surgical

techniques, particularly in advanced or recurrent cases where

conventional chemotherapy alone proves inadequate (120). This

synergistic approach augments the precision of tumor excision,

offering the potential to enhance both oncological outcomes and

overall patient survival (121).

Immunotherapy, particularly immune checkpoint inhibitors

targeting programmed cell death protein 1 (PD-1) and cytotoxic T-

lymphocyte-associated antigen 4 (CTLA-4), has emerged as a

cornerstone of colorectal cancer treatment (122). These inhibitors

restore the immune system’s capacity to recognize and eliminate

cancer cells, especially in patients with MSI-H tumors, which exhibit

heightened sensitivity to immunotherapy (123). The integration of

robotic-assisted surgery, facilitating meticulous tumor excision, in

conjunction with immunotherapy may reduce recurrence rates and

improve long-term survival outcomes. (Figure 2C).
7.2 Personalized medicine

The advent of personalized medicine has ushered in a paradigm

shift in the management of colorectal cancer (124). Advances in

genomic sequencing now permit the identification of critical

mutations—such as those in KRAS, NRAS, and BRAF—enabling

the customization of therapeutic strategies (125). The incorporation

of this molecular insight into robotic-assisted surgery allows for

highly tailored surgical interventions, informed by the tumor’s

unique genetic profile. For instance, patients harboring specific

mutations may benefit from more extensive resections, while others

may be candidates for minimally invasive procedures that prioritize

functional preservation (126).

Pharmacogenomics further complements personalized medicine

by elucidating how individual genetic variability modulates responses

to therapeutic agents (127, 128). This knowledge enables clinicians to

optimize drug dosages and reduce adverse effects, thereby enhancing

the efficacy of both chemotherapeutic and immunotherapeutic

regimens. Such personalized approaches markedly improve survival

outcomes and quality of life by reducing treatment-related toxicity.
7.3 Research and clinical trials

Clinical trials remain indispensable in the evolution of robotic-

assisted colorectal surgery and treatment paradigms. Ongoing studies

are evaluating the combination of robotic surgery with neoadjuvant

immunotherapy, investigating whether such regimens can downstage

tumors and facilitate less invasive surgical interventions (35, 129).

Additionally, research on oligometastatic colorectal cancer is

exploring the potential for robotic precision to achieve complete
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resection of metastatic lesions, potentially prolonging disease-free

survival (130).

Further investigation is dedicated to refining perioperative care

through ERAS protocols, specifically adapted for robotic-assisted

procedures. These efforts are crucial in minimizing complication

rates, shortening hospital stays, and accelerating postoperative

recovery, thereby improving patient outcomes in the colorectal

cancer cohort.
8 Conclusion

Robotic-assisted colorectal surgery has emerged as a pivotal

innovation in the contemporary management of colorectal cancer,

offering unmatched precision and flexibility, particularly in

anatomically complex areas such as the lower rectum. Numerous

studies consistently affirm the advantages of robotic platforms,

highlighting their superior control and enhanced visualization,

which significantly enhance the surgeon’s ability to navigate

the intricacies of confined pelvic spaces. When compared with

conventional laparoscopic techniques, robotic-assisted approaches

have demonstrated reduced intraoperative blood loss, shortened

hospital stays, and expedited patient recovery, all while maintaining

the oncological rigor required to secure clear resection margins

and low recurrence rates (131). The corresponding improvements

in postoperative quality of life further emphasize the superiority

of robotic-assisted methods, especially for complex colorectal

cancer surgeries (132).

The efficacy of robotic surgery is further magnified when

embedded within a multidisciplinary treatment framework (133).

This comprehensive approach, uniting the expertise of oncologists,

radiologists, pathologists, and surgeons, ensures that all facets of a

patient’s disease are thoroughly addressed. Such a collaborative strategy

enhances decision-making, reduces perioperative risks, and contributes

to better survival outcomes. This teamwork is particularly

indispensable in the management of colorectal cancer, where

personalized treatment plans tailored to the patient’s unique disease

characteristics can optimize both immediate and long-term outcomes.

To fully harness the benefits of robotic-assisted colorectal surgery,

the development and widespread adoption of standardized protocols

are crucial. The current variability in surgical techniques and

perioperative management across institutions emphasizes the need

for universally accepted, evidence-based guidelines (134).

Standardizing practices will ensure consistent delivery of high-quality

care, reducing discrepancies in outcomes and enhancing patient safety.

Moreover, ensuring uniform and comprehensive training in robotic

techniques is crucial to ensuring that surgeons across institutions are

proficient in the use of these advanced systems (135).

Ongoing innovation and research are critical to further refining

robotic surgery. Technological advancements, such as enhanced

haptic feedback, machine learning-assisted decision support, and

the integration of artificial intelligence, hold tremendous potential

to improve the precision and efficiency of robotic procedures.

Furthermore, long-term oncological studies are essential to
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conclusively determine the superiority of robotic-assisted surgery

over alternative approaches, particularly concerning survival

outcomes, recurrence rates, and sustained quality of life.

Looking to the future, several areas merit focused investigation

to strengthen the role of robotics in colorectal cancer surgery.

Advanced intraoperative imaging, including fluorescence-based

visualization and artificial intelligence-driven data analytics, may

enable surgeons to refine resection margins while identifying critical

structures in real time, thereby reducing complications and

improving oncological control (136, 137). Augmented reality

applications promise an additional layer of precision, allowing

overlays that highlight blood vessels, nerves, and tumor borders,

which can guide more precise dissections (138). As genomic

profiling of colorectal cancer continues to elucidate tumor-specific

characteristics, integrating these insights with the dexterity of

robotic platforms could permit targeted resections that maintain

organ function. Simultaneously, combining robotic surgery with

cutting-edge immunotherapies—such as checkpoint inhibitors—

and highly selective chemotherapeutic agents has the potential to

address residual disease more effectively, shortening recovery times

and prolonging survival. Finally, the establishment of uniform

training curricula and certification standards across institutions

will help ensure equitable access to these technologies and uphold

consistently high levels of surgical care.
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Santarrufina Martıńez S. Robotic surgery for colorectal cancer. Ann Gastroenterol Surg.
(2020) 4:646–51. doi: 10.1002/ags3.12401

10. Sterk MFM, Crolla R, Verseveld M, Dekker JWT, van der Schelling GP, Verhoef
C, et al. Uptake of robot-assisted colon cancer surgery in the Netherlands. Surg Endosc.
(2023) 37:8196–203. doi: 10.1007/s00464-023-10383-5

11. Dhanani NH, Olavarria OA, Bernardi K, Lyons NB, Holihan JL, Loor M, et al.
The evidence behind robot-assisted abdominopelvic surgery: A systematic review. Ann
Internal Med. (2021) 174:1110–7. doi: 10.7326/M20-7006

12. Chatterjee S, Das S, Ganguly K, Mandal D. Advancements in robotic surgery:
innovations, challenges and future prospects. J Robotic Surg. (2024) 18:28. doi: 10.1007/
s11701-023-01801-w

13. Wu H, Xue D, Deng M, Guo R, Li H. Progress, challenges, and future perspectives
of robot-assisted natural orifice specimen extraction surgery for colorectal cancer: A
review. BMC Surg. (2024) 24:255. doi: 10.1186/s12893-024-02538-5

14. Wang Y, Cao D, Chen SL, Li YM, Zheng YW, Ohkohchi N. Current trends in
three-dimensional visualization and real-time navigation as well as robot-assisted
technologies in hepatobiliary surgery. World J Gastrointest Surg. (2021) 13:904–22.
doi: 10.4240/wjgs.v13.i9.904

15. Laredo JA, Torres-Small S, Patel D, Byerly S, Filiberto DM, Wood EH. Recent
patterns in minimally invasive colectomies: where are we now? Laparoscopic
Endoscopic Robotic Surg. (2024) 8(1):23–7. doi: 10.1016/j.lers.2024.09.003

16. Piozzi GN, Subramaniam S, Di Giuseppe DR, Duhoky R, Khan JS. Robotic
colorectal surgery training: portsmouth perspective. Ann Coloproctol. (2024) 40:350–
62. doi: 10.3393/ac.2024.00444.0063
frontiersin.org

http://www.biorender.com
https://doi.org/10.3322/caac.21772
https://doi.org/10.3322/caac.21834
https://doi.org/10.1056/NEJMoa1414882
https://doi.org/10.1001/jamaoncol.2022.4079
https://doi.org/10.1001/jamaoncol.2022.4079
https://doi.org/10.3748/wjg.v30.i12.1676
https://doi.org/10.1007/s00464-020-08026-0
https://doi.org/10.1007/s00464-024-11210-1
https://doi.org/10.1007/s11864-022-00984-y
https://doi.org/10.1002/ags3.12401
https://doi.org/10.1007/s00464-023-10383-5
https://doi.org/10.7326/M20-7006
https://doi.org/10.1007/s11701-023-01801-w
https://doi.org/10.1007/s11701-023-01801-w
https://doi.org/10.1186/s12893-024-02538-5
https://doi.org/10.4240/wjgs.v13.i9.904
https://doi.org/10.1016/j.lers.2024.09.003
https://doi.org/10.3393/ac.2024.00444.0063
https://doi.org/10.3389/fonc.2025.1502014
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1502014
17. Gauci C, Ravindran P, Pillinger S, Lynch AC. Robotic surgery for multi-visceral
resection in locally advanced colorectal cancer: techniques, benefits and future
directions. Laparoscopic Endoscopic Robotic Surg. (2023) 6:123–6. doi: 10.1016/
j.lers.2023.11.001

18. Alipouriani A, Gorgun E. Robotic rectal cancer surgery: current controversies.
Curr Surg Rep. (2024) 12:122–8. doi: 10.1007/s40137-024-00397-w

19. Kim HJ, Choi G-S. Single-port robotic low anterior resection with lateral pelvic
node dissection in locally advanced rectal cancer. Dis Colon Rectum. (2021) 64:e718.
doi: 10.1097/DCR.0000000000002170

20. Solbakken AM, Sellevold S, Spasojevic M, Julsrud L, Emblemsvåg H-L, Reims
HM, et al. Navigation-assisted surgery for locally advanced primary and recurrent
rectal cancer. Ann Surg Oncol. (2023) 30:7602–11. doi: 10.1245/s10434-023-13964-9

21. Bae JH, Song J, Yoo RN, Kim JH, Kye B-H, Lee IK, et al. Robotic lateral pelvic
lymph node dissection could harvest more lateral pelvic lymph nodes over laparoscopic
approach for mid-to-low rectal cancer: A multi-institutional retrospective cohort study.
Biomedicines. (2023) 11:1556. doi: 10.3390/biomedicines11061556

22. Ravendran K, Abiola E, Balagumar K, Raja AZ, Flaih M, Vaja SP, et al. A review
of robotic surgery in colorectal surgery. Cureus. (2023) 15:e37337. doi: 10.7759/
cureus.37337

23. Schootman M, Hendren S, Ratnapradipa K, Stringer L, Davidson NO. Adoption
of robotic technology for treating colorectal cancer. Dis Colon Rectum. (2016) 59:1011–
8. doi: 10.1097/DCR.0000000000000688

24. Grass F, Hahnloser D. On-demand robotics—the best of both worlds for robotic-
assisted laparoscopic surgery. Surgery. (2024) 176(5):1534–7. doi: 10.1016/
j.surg.2024.07.051

25. Rouanet P, Bertrand MM, Jarlier M, Mourregot A, Traore D, Taoum C, et al.
Robotic versus laparoscopic total mesorectal excision for sphincter-saving surgery:
results of a single-center series of 400 consecutive patients and perspectives. Ann Surg
Oncol. (2018) 25:3572–9. doi: 10.1245/s10434-018-6738-5

26. Köckerling F. Robotic vs. Standard laparoscopic technique–what is better? Front
Surg. (2014) 1:15.

27. Trinh BB, Jackson NR, Hauch AT, Hu T, Kandil E. Robotic versus laparoscopic
colorectal surgery. JSLS: J Soc Laparoendoscopic Surgeons. (2014) 18(4). doi: 10.4293/
JSLS.2014.00187

28. Han J. Can robotic surgery lead the way in the treatment of rectal cancer? Ann
Coloproctol. (2024) 40:87.

29. Morino M, Allaix ME, Giraudo G, Corno F, Garrone C. Laparoscopic versus
open surgery for extraperitoneal rectal cancer: A prospective comparative study. Surg
Endoscopy And Other Interventional Techniques. (2005) 19:1460–7. doi: 10.1007/
s00464-004-2001-1

30. Cepolina F, Razzoli R. Review of robotic surgery platforms and end effectors. J
Robotic Surg. (2024) 18:74. doi: 10.1007/s11701-023-01781-x

31. Larach JT, Kong J, Flynn J, Wright T, Mohan H, Waters PS, et al. Impact of the
approach on conversion to open surgery during minimally invasive restorative total
mesorectal excision for rectal cancer. Int J Colorectal Dis. (2023) 38:83. doi: 10.1007/
s00384-023-04382-0

32. Wang Y, Zhao G-H, Yang H, Lin J. A pooled analysis of robotic versus
laparoscopic surgery for total mesorectal excision for rectal cancer. Surg Laparoscopy
Endoscopy Percutaneous Techniques . (2016) 26:259–64. doi : 10.1097/
SLE.0000000000000263

33. Violante T, Ferrari D, Mathis KL, D’Angelo A-LD, Dozois EJ, Merchea A, et al.
Robotic-assisted surgery conversion: the sooner, the better? Insights from a single-
center study. J Gastrointest Surg . (2024) 28(7):1158–60. doi: 10.1016/
j.gassur.2024.04.003

34. Childers CP, Maggard-Gibbons M. Estimation of the acquisition and operating
costs for robotic surgery. Jama. (2018) 320:835–6. doi: 10.1001/jama.2018.9219

35. Shin JK, Kim HC, Lee WY, Yun SH, Cho YB, Huh JW, et al. Is robotic surgery
beneficial for rectal cancer patients with unfavorable characteristic after neoadjuvant
chemoradiotherapy? Ann Surg Oncol. (2024) 31:3203–11.

36. DiBrito SR, Manisundaram N, Kim Y, Peacock O, Hu CY, Bednarski B, et al.
Perioperative and oncological outcomes following robotic en bloc multivisceral
resection for colorectal cancer. Colorectal Dis. (2024) 26(5):949–57. doi: 10.1111/
codi.16964

37. Awad MM, Raynor MC, Padmanabhan-Kabana M, Schumacher LY, Blatnik JA.
Evaluation of forces applied to tissues during robotic-assisted surgical tasks using a
novel force feedback technology. Surg Endoscopy. (2024) 38(10):6193–202.
doi: 10.1007/s00464-024-11131-z

38. Cofran L, Cohen T, Alfred M, Kanji F, Choi E, Savage S, et al. Barriers to safety
and efficiency in robotic surgery docking. Surg Endosc. (2022) 36:206–15. doi: 10.1007/
s00464-020-08258-0

39. Mehta A, Cheng Ng J, Andrew Awuah W, Huang H, Kalmanovich J, Agrawal A,
et al. Embracing robotic surgery in low- and middle-income countries: potential
benefits, challenges, and scope in the future. Ann Med Surg. (2022) 84:104803.
doi: 10.1016/j.amsu.2022.104803

40. Lawrie L, Gillies K, Duncan E, Davies L, Beard D, Campbell MK. Barriers and
enablers to the effective implementation of robotic assisted surgery. PloS One. (2022)
17:e0273696. doi: 10.1371/journal.pone.0273696
Frontiers in Oncology 11
41. Guerrero-Ortiz MA, Sánchez-Velazquez P, Burdıó F, Gimeno M, Podda M,
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RACS robotic-assisted colorectal surgery
TME total mesorectal excision
TNT total neoadjuvant therapy
dMMR mismatch repair deficiency
MSI-H high microsatellite instability
MIS minimally invasive surgery
RAS robot-assisted surgery
3D three-dimensional
LARC locally advanced rectal cancer
pCR pathological complete response
DFS disease-free survival
OS overall survival
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ICIs immune checkpoint inhibitors
MSS microsatellite-stable
AR augmented reality
CME continued medical education
ISR intersphincteric resection
CRM circumferential resection margins
QoL quality of life
TaTME transanal total mesorectal excision
ERAS enhanced recovery after surgery
VEGF vascular endothelial growth factor
EGFR epidermal growth factor receptor
PD-1 programmed cell death protein 1
CTLA-4 cytotoxic T-lymphocyte-associated antigen 4
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