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Purpose: To construct diagnostic models that distinguish renal oncocytoma (RO)

from chromophobe renal cell carcinoma (CRCC) using intratumoral and

peritumoral radiomic features from the corticomedullary phase (CMP) and

nephrographic phase (NP) of computed tomography, and compare model

results with manual and radiological results.

Methods: The RO and CRCC cases from five centers were split into a training set

(70%) and a validation set (30%). CMP and NP intratumoral and peritumoral (1–3

mm) radiomic features were extracted. Segmentation was performed by

radiologists and software. Features with high intraclass correlation coefficients

(ICC>0.75) were selected through univariate analysis, followed by the LASSO

method to determine the final features for the SVM model. All images were

assessed by two radiologists, and radiological reports were also examined. The

diagnostic performances of the different methods were compared using several

statistical methods.

Results: The training set had 65 cases (29 RO, 36 CRCC) and the validation set

had 27 cases (12 RO, 15 CRCC). All the training models had excellent

performance (area under the curve [AUC]: 0.828–0.942); the AUC values of

the validation models ranged from 0.900 (Model 4) to 0.600 (Model 2). CMP

models (AUC: 0.811–0.900) generally outperformed NP and fusionmodels (AUC:
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0.728–0.756). SVMmodels (sensitivity: 62.50–88.89%; specificity: 63.16–77.78%;

accuracy: 62.96–81.48%) outperformed manual diagnosis (sensitivity: 46.74–

70.59%; specificity: 41.67–46.34%; accuracy: 52.27–59.78%). The clinical reports

alone had no diagnostic value.

Conclusion: CMP intratumoral and peritumoral radiomics models reliably

distinguished RO from CRCC.
KEYWORDS
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Introduction

Renal oncocytoma (RO) is a benign eosinophilic kidney tumor

that accounts for 3 to 7% of all renal neoplasms (1). Due to its

indolent nature, surgical resection of RO is often unnecessary (2),

and nephron-sparing surgery is considered the standard treatment;

other treatment options are cryoablation, radiofrequency ablation,

high-intensity focused ultrasound, microwave thermotherapy, and

interstitial photon irradiation (3, 4). However, radiological

differentiation of RO from malignant renal tumors, particularly

chromophobe renal cell carcinoma (CRCC, which may require

nephrectomy and has a potential risk of metastasis (5)) can be

very challenging (2).

Radiomics has significant potential for classifying the nature of

lesions (6). This quantitative approach analyzes subtle but

distinctive characteristics of medical images, and can provide a

better understanding and identification of different tumor

phenotypes (7, 8). Previous research demonstrated the value of

radiomics in studies of kidney neoplasms, suggesting this approach

may also be useful in clinical settings (9–11), including the

differentiation of RO and CRCC (12–16). However, previous

radiomics studies have primarily focused on intratumoral

features, and applications to clinical settings and comparisons

with outcomes predicted by manual diagnosis have been limited.

Notably, there is evidence that a radiomics approach that also

considers the peritumoral region can significantly improve the

performance of diagnostic models (17, 18). Furthermore, the
be renal cell carcinoma;
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histochemistry; LoG,

Matrix; GLRLM, Gray-
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02
explicit comparison of different radiomics models with manual

diagnosis may provide a more intuitive and convincing assessment

of model performance (9, 10).

This study aimed to develop diagnostic models for

distinguishing RO from CRCC using the corticomedullary phase

(CMP) and nephrographic phase (NP) of intratumoral and

peritumoral computed tomography (CT)-based radiomics, and to

compare the results with those from manual diagnoses and

radiology reports.
Methods

Ethical approval and collection of cases

This multicenter retrospective study was approved by the

Medical Ethics Committee of Guangdong Provincial Hospital of

Chinese Medicine (Approval No: ZE2024-294), which waived the

need for written informed consent. Cases of RO and CRCC were

identified from the pathology reporting systems and Picture

Archiving and Communication Systems (PACS) of five centers in

Guangdong Province: Guangdong Hospital of Traditional Chinese

Medicine, Guangzhou (Center 1); Guangdong Hospital of

Traditional Chinese Medicine, Zhuhai (Center 2); The First

Affiliated Hospital of Sun Yat-sen University, Guangzhou (Center

3); The Affiliated Panyu Central Hospital of Guangdong Medical

University, Guangzhou (Center 4); and Longgang Central Hospital,

Shenzhen (Center 5). The study period was from January 2018 to

July 2024.

The inclusion criteria were availability of (a) enhanced CT

scans, including images from the CMP and NP; (b) complete

clinical data, such as age, sex, lesion location, comprehensive

operation (including radical nephrectomy or local nephrectomy),

and histopathological and immunohistochemical findings from

each center’s pathology records; and (c) intact CT images stored

in the PACS. The exclusion criteria were: (a) low-quality or

incomplete CT images; and (b) CT scans that did not fully

encompass the lesion. Application of these criteria led to

identification of 92 eligible patients, 51 with CRCC and 41 with

RO (Figure 1).
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Histological and
immunohistochemical diagnosis

All diagnoses were confirmed by hematoxylin-eosin (HE)

staining and immunohistochemistry (IHC) after tumor excision

using standard guidelines (19). The histopathological criteria for

CRCC were: pale or clear cytoplasm, distinct perinuclear halo, and

large, heterogeneous nuclei. The histopathological criteria for RO

were: eosinophilic cytoplasm, uniform nuclear morphology, and

pale brown solid or nodular structures. The immunohistochemical

diagnosis required staining for at least 2 of the 3 following specific

markers: CD117 (positive in CRCC and negative in eosinophilic

tumors), CK7 (positive in CRCC and negative or weakly positive in

eosinophilic tumors), and S-100A1 (negative in CRCC and positive

in eosinophilic tumors). Each diagnosis was reviewed and

confirmed by at least two pathologists.
Computed tomography

All included cases received unenhanced and dual-phase

contrast-enhanced CT. These CT scans were performed using five

different scanners: Definition Flash (Siemens, Germany) and IQon
Frontiers in Oncology 03
Spectral (Philips Healthcare, Netherlands) at Center 1; Aquilion

One 750 W (Canon, Japan) at Center 2; IQon Spectral (Philips

Healthcare, Netherlands) at Center 3; APEX (GE Healthcare, USA)

at Center 4; and Revolution (GE Healthcare, USA) at Center 5. The

scanning parameters were consistent across all centers, including

tube voltage (100–140 kV), tube current (100–250 mA), section

interval and thickness (1–5 mm), and matrix size (512 × 512 mm).

Following an unenhanced scan, 100 to 120 mL of contrast medium

(Ultravist 370, Bayer Schering Pharma, Germany at Centers 1 and 2;

Ioversol 350, Hengrui Medicine, China at Centers 3 and 4; and

iohexol 350, Fuan Pharmaceutical Group, China at Center 5) was

injected at a flow rate of 3 to 4 mL/s. The CMP was scanned using

an aortic monitoring trigger, and the NP was scanned after a 60 to

70 s delay. Two experienced radiologists (S.H.X and G.M.Z, with 17

and 18 years of experience, respectively) analyzed all CT images to

ensure they met the inclusion criteria.
Image segmentation

Image segmentation was performed using the open-source ITK-

SNAP software (http://www.itksnap.org) by two radiologists with

experience in abdominal radiography (T.Z.L and L.S.H, with more
FIGURE 1

Patient disposition and establishment of the training set and validation set.
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than 15 and 17 years of experience, respectively). The entire tumor

mass was meticulously segmented on the original CMP and NP CT

images to avoid over- or under-segmentation. Each radiologist

independently segmented all images. To ensure consistency,

images and masks were resampled to a voxel size of 1 × 1 × 1

mm³. Using the ‘scipy.ndimage’ package in Python, the peritumoral

regions were dilated to 1 mm, 2 mm, and 3 mm beyond the tumor

boundaries, and the resulting masks were saved for further analysis.

The ‘PyRadiomics’ package in Python was then used to extract 2260

intratumoral and 6780 peritumoral radiomic features from the

CMP and NP images. These features were: shape, texture, first-

order statistics, Laplacian of Gaussian (LoG), Gray-Level Co-

occurrence Matrix (GLCM), Gray-Level Run-Length Matrix

(GLRLM), Gray-Level Size Zone Matrix (GLSZM), Neighboring

Gray Tone Difference Matrix (NGTDM), and Gray Level

Dependence Matrix (GLDM). These features were used with 14

additional filters, including exponential, gradient, square, and

wavelet transforms. All features were normalized using z-

score standardization.

To assess the stability of the radiomic features, 40 cases were

randomly selected, and their tumors were re-segmented by

radiologists (S.H.X and G.M.Z) to evaluate intra- and inter-reader

reliability based on the intraclass correlation coefficient (ICC). Any

feature with an ICC greater than 0.75 was deemed stable and

included in the analysis. A two-sample t-test was used to identify

potentially significant radiomic features, and the least absolute

shrinkage and selection operator (LASSO) method was then used

to select the most appropriate features. LASSO was applied with 10-

fold cross-validation to determine the optimal regularization

parameter (l) (17). Coefficients for each radiomic feature were

calculated, and only those with non-zero coefficients were retained

for further analysis, ensuring the most relevant features were

included in the final model.
Model development

Nine types of radiomic models were developed: Model 1, CMP

intratumoral model; Model 2, CMP intratumoral + CMP 1 mm

peritumoral model; Model 3, CMP intratumoral + CMP 1 mm & 2

mm peritumoral model; Model 4, CMP intratumoral + CMP 1 mm,

2 mm & 3 mm peritumoral model; Model 5, NP intratumoral

model; Model 6, NP intratumoral + NP 1 mm peritumoral model;

Model 7, NP intratumoral + NP 1 mm & 2 mm peritumoral model;

Model 8, NP intratumoral + NP 1 mm, 2 mm & 3 mm peritumoral

model; and Model 9, CMP intratumoral + CMP 1 mm, 2 mm & 3

mm + NP intratumoral + NP 1 mm, 2 mm & 3 mm peritumoral

model. Support vector machine (SVM) models, which are widely

used in radiomics, were used for model classification. A 10-fold

cross-validation strategy was employed, where 9 parts were used for

training and 1 part was used for validation. A grid search method

was applied to optimize the hyperparameters. The cases were

shuffled and then divided into a training set (36 CRCC and 29

RO cases) and a validation set (15 CRCC and 12 oncocytoma cases)

in a 7:3 ratio. The workflow for the radiomic approach is illustrated

in Figure 2.
Frontiers in Oncology 04
Manual diagnosis by radiologists

The diagnostic performances of two radiologists (W.H.F. and

W.X.W, with over 8 and 7 years of experience, respectively) were also

evaluated. These radiologists were not affiliated with the study centers

and were blinded to patient demographics, clinical characteristics, and

histopathologic results. They used the open-source DICOM viewer,

MicroDicom (https://www.microdicom.com/), to evaluate the

unenhanced, CMP, and NP CT images and provided diagnoses

(benign or malignant). One radiologist (W.H.F) also noted the

maximum tumor diameter, morphology (regular or irregular),

margin clarity, necrosis (present or absent), enhancement pattern

(uniform or uneven), and invasion of surrounding structures. To

further evaluate diagnostic efficacy, CT radiology reports were

collected, and the findings were categorized as benign or

malignant. If a report suggested the possibility of malignancy, it

was classified as malignant, even if the possibility of benign was

also mentioned.
Statistical analysis

Statistical analyses were conducted using SPSS version 23.0 and

Python version 3.7.1. Python was used for feature extraction,

screening, and model development and validation, and SPSS was

used for comparative analysis between cohorts. All statistical tests

were two-sided, and a P-value less than 0.05 was considered

significant. Continuous variables are reported as mean ± standard

deviation (SD), and categorical variables as frequency and percentage.

The c2 test was used to compare categorical data, and the

independent-samples t-test or Wilcoxon test was used to compare

clinical data between groups. The ICC was used to assess the

consistency of radiomic features extracted by different radiologists.

The discriminative performance of each model was evaluated by

receiver operating characteristic (ROC) analysis, with calculation of

area under the curve (AUC), accuracy (ACC), sensitivity (SENS),

specificity (SPEC), positive predictive value (PPV), and negative

predictive value (NPV). The AUCs of the different radiomic models

were compared using the DeLong test. The importance weight of

models structured by CMP, NP, and fusion radiomic features (model 4,

model 7, and model 9) were analyzed using the ‘sklearn.ensemble’

package in Python. The ‘sklearn.calibration’ package in Python was

also used with custom code to plot calibration curves, for decision curve

analysis (DCA), and to present the SENS, SPEC, ACC, PPV, NPV, and

95% confidence intervals (CIs) obtained from ROC analysis.
Results

Patient characteristics

This study included 51 patients with CRCC and 41 patients with

RO, which we divided into a training set (n = 65) and a validation set

(n = 27) in a 7:3 ratio (Table 1). These two groups had no significant

differences in age, sex, operation type, or tumor location.
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Selection of radiomic features

We selected radiomic features from the CMP and NP CT

images using the LASSO method with 10-fold cross-validation

(Supplementary Table S1). The number of features in each model

ranged from 3 (Model 5) to 33 (Model 9). We excluded models 6

and 8 because they had no significant radiomic features in the 1 mm

or 3 mm peritumoral regions of the NP images.
Diagnostic performance of machine
learning algorithms

We then developed machine learning models using each of the

seven models that had significant radiomic features, and evaluated

their diagnostic performance using ROC analysis for the training
Frontiers in Oncology 05
set and validation set (Figures 3A, B, Table 2). In the training set,

the SVM classifiers for Model 1 (SENS: 88.89%; SPEC: 86.84%;

ACC: 87.69%; AUC: 0.927), Model 2 (SENS: 91.89%; SPEC: 92.86;

ACC: 92.30%; AUC: 0.942), Model 3 (SENS: 89.29%; SPEC:

89.19%; ACC: 89.23%; AUC: 0.938), Model 4 (SENS: 92.59%;

SPEC: 89.47%; ACC: 90.77%; AUC: 0.964), and Model 9 (SENS:

88.46%; SPEC: 84.62%; ACC: 86.15%; AUC: 0.942) demonstrated

satisfactory and comparable diagnostic performance, and slightly

poorer performance for Model 5 (SENS: 72.00%; SPEC: 72.50%;

ACC: 72.31%; AUC: 0.804) and Model 7 (SENS: 75.86%; SPEC:

80.56%; ACC: 86.15%; AUC: 0.828).

In the validation set, analysis of models derived from CMP

radiomic features showed that Model 1 (SENS: 75.00%; SPEC:

68.42%; ACC: 70.37%; AUC: 0.811), Model 3 (SENS: 80.00%;

SPEC: 76.47%; ACC: 77.78%; AUC: 0.856), and Model 4 (SENS:

88.89%; SPEC: 77.78%; ACC: 81.48%; AUC: 0.900) outperformed
FIGURE 2

Workflow used to develop and evaluate the support vector machine classifiers.
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Model 2 (SENS:62.50%; SPEC:63.16%; ACC:62.96%; AUC:0.600),

and that Model 4 was the best overall. Even after incorporating the 2

mm NP peritumoral radiomic features, Model 7 (SENS: 64.29%;

SPEC: 76.92%; ACC: 70.37%; AUC: 0.728) did not outperform

Model 4. Similarly, Model 9 (SENS: 71.43%; SPEC: 65.00%; ACC:

66.67%; AUC: 0.744), which combined CMP and NP radiomic

features, had poorer diagnostic performance than Models 1, 3, and

4, and was similar to Model 5 (SENS: 72.73%; SPEC: 72.50%; ACC:

74.07%; AUC: 0.756). Pairwise comparisons using the DeLong test

indicated significant differences between Model 2 and Models 1, 3,

and 4; and significant differences between Model 9 and Models 3

and 4 (Supplementary Table S2). The importance weight of

radiomics features in model 4, model 7 and model 9

(Supplementary Figure S1) showed that the CMP features had the

largest absolute weight in fusion models.

We also performed calibration curve analysis and DCA for the

SVM classifiers in the training and validation sets. The calibration

curves were relatively close to the ideal line in the training set

(Figure 3C), but had several notable deviations in the validation set

(Figure 3D). Specifically, the line for Model 2 deviated downward in

the last third, and the lines for Models 5, 7, and 9 deviated upward

in the first third. The DCA indicated excellent performance in the

training set for Models 1, 2, 3, 4, and 9, but poor performance for

Models 5 and 7 (Figure 3E). DCA of the validation set showed that

Models 2, 5, and 7 had poorer performance than Models 1, 3, 4, and

9 (Figure 3F).
Diagnostic performance of two radiologists
and clinical reports

We also assessed the performance of manual diagnosis by the

two radiologists and the clinical reports (Tables 2, 3). The

radiologists had accuracies of 59.78% and 46.74%, sensitivities of

70.59% and 52.27%, and specificities of 46.34% and 41.67%. There

were statistically significant differences in tumor size, morphology,
Frontiers in Oncology 06
and CMP enhancement patterns between RO and CRCC. The

clinical radiology reports aligned with the predefined criteria, in

that all RO cases were misdiagnosed and all CRCC cases were

correctly diagnosed as malignant. In other words, all 92 cases were

reported as malignant, even though 9 reports (4 for RO and 5 for

CRCC) suggested the possibility of benign lesions.
Discussion

This multicenter study explored the use of intratumoral and

peritumoral radiomic features based on the CMP and NP of CT

images to differentiate CRCC from RO. More specifically, we

compared the diagnostic performance of multiple SVM classifiers

with that of experienced radiologists. The two major findings were:

(i) most of the radiomic models had excellent diagnostic

performance and often outperformed the radiologists and (ii)

models that used CMP features generally outperformed models

using NP features and models that combined both features.

The accurate preoperative diagnosis of RO and CRCC remains a

significant challenge in clinical practice. Li et al. (20) and Zhou et al.

(21) studied these two cancers and developed models based on CT

features that had promising diagnostic efficiency (AUC: 0.923 and

0.888, respectively). Akın et al. (22) also achieved excellent

diagnostic discrimination of these cancers using MRI, particularly

in the NP (AUC: 0.881) and the excretory phase (AUC: 0.900).

Although we also identified statistically significant differences in the

visual characteristics of these tumors (20, 23) (Table 3), applying

these findings in clinical practice is challenging because these

cancers often lack obvious visual distinctions, and radiologists

may be biased toward the more cautious diagnosis of CRCC in

official reports due to medico-legal considerations.

Compared to traditional visual assessment of CT images, a

radiomics approach offers a more detailed and quantitative analysis

of tumor heterogeneity, and this may provide a more accurate

characterization of lesion pathology (9, 24, 25). This study builds
TABLE 1 Characteristics of CRCC and RO patients in the training set and validation set*.

Characteristic

Training set (n = 65) Validation set (n = 27)

CRCC (n = 36) RO (n = 29) P value CRCC (n = 15) RO (n = 12) P value

Age (years), mean ± SD 56.4 ± 15.7 51.4 ± 13.63 0.10 51.4 ± 13.63 54.5 ± 8.96 0.69

Gender, n (%)

Male 16 (17.58%) 11 (12.09%) 0.39 6 (6.60%) 5 (5.50%) 0.93

Female 20 (21.98%) 18 (19.78%) 9 (9.89%) 7 (7.69%)

Location, n (%)

Right kidney 17 (18.68%) 16 (17.58%) 0.62 8 (8.79%) 5 (5.50%) 0.42

Left kidney 19 (20.88%) 13 (14.29%) 7 (7.69%) 7 (7.69%)

Operation type

Radical nephrectomy 17 8 0.10 10 4 0.06

Local nephrectomy 19 20 5 9
*Data are expressed as mean ± standard deviation (SD) or n (%). CRCC, chromophobe renal cell carcinoma; RO, renal oncocytoma.
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upon previous research, in that it validated the combined use of

intratumoral and peritumoral radiomic features for the

discrimination of RO from CRCC. Although previous studies (1, 12,

13, 15) also demonstrated the efficacy of intratumoral radiomic features

for discrimination of RO from CRCC, the present study is the first to

integrate intratumoral and peritumoral features in CT-based radiomic

models and then compare the diagnostic performance of these models

with that of experienced radiologists and clinical radiology reports.
Frontiers in Oncology 07
Previous research also reported variability in diagnostic

performance among models that consider different peritumoral

regions (26). The poorer performance of our Model 2 might be

attributed to the smaller number of pixels within the region of

interest (ROI), leading to less stable and less representative radiomic

features (27). Conversely, our Models 3 and 4, which incorporated

larger peritumoral regions, showed excellent diagnostic

performance, and this points to the importance of having a
FIGURE 3

Evaluation of the support vector machine classifiers based on receiver operating characteristic analysis (A, B), calibration curves (C, D), and decision
curve analysis (E, F) of the training set (left) and the validation set (right).
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TABLE 2 Differentiation of RO from CRCC by SVM classifiers of radiomic features from the CMP and NP phases of CT in the training set and validation set; by two independent radiologists; and by
clinical reports.

(%), PPV (%), (95% CI) NPV (%), (95% CI) AUC (95% CI)

0.00) 82.76(75.86-96.55) 91.67(83.33-97.22) 0.927(0.846-1.00)

9.60) 89.66(85.76-93.56) 94.44(86.11-100) 0.942(0.891-0.992)

5.38) 86.20(82.76-93.10) 86.67(80.00-93.33) 0.938(0.843-1.00)

00) 86.21(79.31-93.10) 93.33(90.00-96.67) 0.964(0.886-1.00)

4.62) 62.07(55.17-75.86) 80.56(77.78-83.33) 0.804(0.752-0.855)

1.54) 75.86(72.41-79.31) 80.56(77.78-83.33) 0.828(0.775-0.880)

9.23) 79.31(74.12-84.50) 91.67(86.11-97.22) 0.942(0.851-1.00)

4.07) 50.00(43.00-66.67) 86.67(80.00-93.34) 0.811(0.683-0.940)

0.37) 41.67(25.01-58.33) 80.00(73.33-86.67) 0.600(0.518-0.682)

8.88) 86.21(82.76-93.10) 86.67(80.00-93.33) 0.856(0.731-0.980)

5.19) 66.67(58.33-75.00) 93.33(80.00-100.0) 0.900(0.792-1.00)

1.47) 66.67(58.33-75.00) 80.00(66.67-93.33) 0.756(0.674-0.837)

4.07) 75.00(66.67-83.33) 66.67(60.00-73.33) 0.728(0.644-0.812)

0.37) 41.67(25.01-58.33) 86.67(80.00-93.33) 0.744(0.634-0.855)

62.07 55.88 N/A

45.10 48.78 N/A

56.04 0 N/A

value; AUC, area under the curve; SVM, Support Vector Machine; CRCC, chromophobe cell carcinoma.
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Machine learning algorithm
/Manual analysis

Sensitivity (%),
(95% CI)

Specificity (%),
(95% CI)

Accuracy
(95% CI)

Training set

Model 1 88.89(78.57-96.55) 86.84(81.08-97.22) 87.69(96.92-8

Model 2 91.89(85.71-98.07) 92.86(82.76-100) 92.30(83.08-9

Model 3 89.29(85.71-96.42) 89.19(86.11-94.59) 89.23(86.15-9

Model 4 92.59(85.74-100) 89.47(84.21-100) 90.77(83.08-1

Model 5 72.00(65.22-80.65) 72.50(66.66-80.56) 72.31(66.16-8

Model 7 75.86(67.74-84.00) 80.56(74.29-86.85) 78.46(73.85-8

Model 9 88.46(82.76-92.59) 84.62(78.32-90.92) 86.15(84.61-8

Validation set

Model 1 75.00(66.67-77.78) 68.42(66.67-75.00) 70.37(66.67-7

Model 2 62.50(53.57-71.43) 63.16(50.59-70.59) 62.96(55.55-7

Model 3 80.00(70.00-90.91) 76.47(68.75-87.50) 77.78(66.67-8

Model 4 88.89(83.33-94.54) 77.78(73.68-82.35) 81.48(74.07-8

Model 5 72.73(66.67-78.79) 72.50(66.67-80.56) 74.07(66.67-8

Model 7 64.29(60.00-69.23) 76.92(71.43-82.41) 70.37(66.67-7

Model 9 71.43(66.67-76.92) 65.00(57.77-69.23) 66.67(62.96-7

Radiologist-1 70.59 46.34 59.78

Radiologist-2 46.74 41.67 52.27

Clinical Reports 100 0 56.04

CMP, corticomedullary phase; NP, nephrographic phase; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive
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sufficient pixel density in the ROI. The superior performance of

CMP-based models compared to NP-based models and NP-CMP

fusion models suggests that CMP-derived radiomic features alone

appear to be sufficient for developing reliable diagnostic models,

and this could also reduce computational demands. Although this

result contrasts with some previous findings (14), the multicenter

design and use of appropriate sample ratios in our study increased

the stability and generalizability of the results. On the other hand,

whether based on the diagnostic radiomics of RO, CRCC (14, 28),

and other tumors that originate in the kidneys (29, 30), the CMP

model has more texture and non-texture features with diagnostic

significance than the NP model, and this is the reason for the

superior diagnostic performance of the CMP model. Nguyen et al.

(28) suggested that the CMP and NP can both detect differences in

the nature of renal parenchymal space-occupying lesions; however,

whether based on subjective observations, objective measurements,

or screening of radiomics features, CMP provide more clinically

meaningful information. The key reason for this might be

differences in the enhancement of renal masses; CMP provides

the greatest enhancement, and can show the key features and

biological characteristics of tumors, and this is followed by

gradual washout and decreased resolution of features. Similarly,

we speculate that peritumoral radiomics features may also be

affected by the CT scanning phase. Although there have been few

relevant studies of this in patients with OR and CRCC, this was

finding was reported in studies of other tumors (31). Additionally,

the frequent use of LoG and wavelet features in these models,

coupled with their significant weight in models, aligns with previous

studies (14), and suggests their importance in differentiating RO

from CRCC.

During the selection and screening of features, we employed

several important considerations. Our original intent was to

construct models based on deep-learning features and compare

them with traditional radiomics features. Deep-learning features

can automatically capture high-level semantic information (32, 33),

but typically require large annotated datasets to prevent overfitting.

Due to the limited sample size in this study, we were unable to

utilize deep-learning features. However, we plan to explore the

application of deep-learning features in larger datasets in the future.

In addition, we employed LASSO for feature selection due to its

well-established use for analysis of high-dimensional datasets and its

ability to avoid overfitting. Moreover, LASSO produces sparse models,
Frontiers in Oncology 09
and this helps to identify the most important of the many analyzed

features. The advantages of LASSO are that it can simultaneously

perform feature selection and regularization. By adding an L1 penalty

to the regression model, LASSO increases sparsity, shrinks some

coefficients to zero, and effectively selects a subset of the most

relevant features. This makes it suitable for high-dimensional data

where the number of features exceeds the number of samples. Other

feature selection algorithms, such as Recursive Feature Elimination

(RFE), iteratively remove features by training models, and this can be

computationally intensive for large datasets. However, unlike LASSO,

RFE does not have a built-in mechanism for penalizing model

complexity. Random Forest Feature Importance ranks features based

on their contribution to model ACC by using ensemble methods and

can capture nonlinear relationships, but it does not inherently perform

feature selection and the results may be less interpretable than those

from LASSO. Based on these considerations, the main advantages of

LASSO are its computational efficiency, interpretability, and ability to

handle multicollinearity by selecting one feature from a set of

correlated features.

However, this study has several limitations. First, despite the

multicenter design, we only considered 92 patients overall and only

41 patients with RO. To address the small sample size, we divided

the data into a training set and a validation set in a 7:3 ratio, ensured

that the class distribution in the dataset was balanced, and

combined our analysis with cross-validation techniques to

minimize the risk of overfitting. Additionally, we are planning to

collect additional data from other study centers for future studies,

and then use these larger samples to validate the generalizability of

models. Second, due to certain inconsistencies in the CT scanning

protocols among the 5 centers, we excluded the excretory phase

because this phase was not universally available. Third, we excluded

unenhanced CT images because of their lower resolution, which

could lead to bias and error during image segmentation. Finally,

although we made efforts to minimize differences among CT

scanners by use of resampling and normalization, some

discrepancies may have persisted.
Conclusion

This study successfully developed intratumoral and peritumoral

radiomic models that reliably distinguished RO from CRCC using
TABLE 3 Characteristics of the CRCC and RO cases determined by visual inspection of two radiologists*.

Characteristics CRCC (n = 51) RO (n = 41) P value

Maximum diameter 31.64 (23.33, 42.19) 45.53 (31.53, 67.85) <0.01

Morphology (regular/irregular) 39/12 38/3 0.04

Necrosis (no/yes) 41/10 36/5 0.34

CMP enhancement pattern (uniform/uneven) 23/28 27/14 <0.01

NP enhancement pattern (uniform/uneven) 17/34 16/25 0.57

Invasion of surrounding structures (yes/no) 51/0 41/0 N/A
*Data are expressed as median (interquartile range) or n/n.
CRCC, chromophobe renal cell carcinoma; RO, Renal oncocytoma.
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the CMP and NP of CT images. The CMP-based radiomic models

were superior to the NP models and better than the experienced

radiologists, highlighting their potential use for screening and

diagnostic discrimination of RO and CRCC.
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