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Colorectal cancer (CRC) is a prevalent malignant tumor in the digestive system.

As reported in the 2020 global cancer statistics, CRC accounted for more than

1.9 million new cases and 935,000 deaths, making it the third most common

cancer worldwide in terms of incidence and the second leading cause of cancer-

related deaths globally. This poses a significant threat to global public health.

Early screening methods, such as fecal occult blood tests, colonoscopies, and

imaging techniques, are crucial for detecting early lesions and enabling timely

intervention before cancer becomes invasive. Early detection greatly enhances

treatment possibilities, such as surgery, radiation therapy, and chemotherapy,

with surgery being the main approach for treating early-stage CRC. In this

context, artificial intelligence (AI) has shown immense potential in

revolutionizing CRC management, serving as one of the most effective

screening tools. AI, utilizing machine learning (ML) and deep learning (DL)

algorithms, improves early detection, diagnosis, and treatment by processing

large volumes of medical data, uncovering hidden patterns, and forecasting

disease development. DL, a more advanced form of ML, simulates the brain’s

processing power, enhancing the accuracy of tumor detection, differentiation,

and prognosis predictions. These innovations offer the potential to revolutionize

cancer care by boosting diagnostic accuracy, refining treatment approaches, and

ultimately enhancing patient outcomes.
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1 Introduction

CRC originates from malignant transformations in the mucosal epithelial cells of the

colon or rectum and is one of the most prevalent malignancies within the digestive system

(1). The 2020 global cancer statistics from the International Agency for Research on Cancer

(IARC) of the World Health Organization reported more than 1.9 million new CRC cases

and 935,000 deaths, making it the third most common cancer globally in terms of incidence
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and the second leading cause of cancer-related deaths (2). Early

screening, diagnosis, and treatment can significantly extend the

survival of CRC patients and improve their prognosis. Early

screening primarily includes fecal occult blood tests, endoscopic

examinations (such as colonoscopy), and imaging tests [such

ascomputed tomography (CT) scans or magnetic resonance

imaging (MRI)]. These screening methods can help detect early

lesions of CRC, such as adenomatous polyps or precancerous

changes, allowing for intervention before the cancer progresses to

an invasive stage (3, 4). Once diagnosed with CRC, early diagnosis

provides more treatment options, including surgical resection,

radiation therapy, and chemotherapy (5). While traditional

methods have proven effective, they do have certain limitations.

For instance, colonoscopy, as outlined in the China Guideline for

the Screening, Early Detection, and Early Treatment of CRC

published in 2020 (6), may cause significant discomfort and pain

for patients during the procedure. It can also lead to complications

such as intestinal bleeding or perforation. Specifically, the incidence

of bleeding during colonoscopy screening is reported to be 22.44 per

10,000 procedures (95% CI: 19.30–26.34). This method requires

high technical proficiency from the physician, which limits its

widespread use, particularly in resource-limited settings. Although

colonoscopy is effective at detecting abnormalities, its invasiveness

and the risk of missed diagnoses remain concerns. However, with

the advancement of AI technology, there has been notable progress

in AI applications in colonoscopy. For example, a real-time, robust

AI diagnostic system for CRC developed by Yamada et al. (7)

significantly reduces the risk of missing non-polypoid lesions. These

innovations have the potential to improve screening accuracy,

reduce missed diagnoses, and alleviate patient discomfort. In

conclusion, AI technology has demonstrated its immense

potential and strong advantages in the screening, diagnosis, and

treatment of CRC.

AI is transforming modern healthcare by enhancing medical

data analysis, image recognition, disease prediction, and

personalized therapy (8). Using advanced algorithms and ML, AI

processes large-scale medical data to uncover patterns that support

early diagnosis and disease prevention (9). However, traditional ML

algorithms are increasingly inadequate to meet the demands of

complex research. DL, as an emerging research direction in AI, aims

to simulate and understand how the human brain processes

information. It represents a more sophisticated and powerful class

of ML algorithms (10). Classic DL networks consist of input layers,

hidden layers, and output layers, each composed of multiple nodes

that process information. These nodes communicate and process

information through simple yet nonlinear patterns, enabling DL

networks to efficiently learn and extract features and patterns from

complex data (11). DL has been extensively studied and reported for

its applicability in cancer diagnosis and treatment. In the diagnostic

phase, it efficiently detects and locates tumors by analyzing imaging

and pathological data, and can even differentiate between different

types of cancer. In terms of prognosis, DL algorithms utilize clinical

and molecular data to predict patients’ survival and the risk of

disease progression, providing a basis for personalized treatment

plans (12). This technology has great potential to transform cancer
Frontiers in Oncology 02
care by improving diagnostic precision, refining treatment

approaches, and enhancing patient outcomes.
2 Application of AI in CRC diagnosis

2.1 Colonoscopy

Endoscopic examination is the most sensitive method for CRC

screening, allowing direct visualization of lesions and initial

assessment of their characteristics using Narrow-Band Imaging

(NBI) technology (13). Despite significant improvements in early

tumor detection with advancements in technology, the risk of

missed diagnoses persists, particularly for certain polyps and

adenomas (14). In the context of rapid advancements in

computer science, many researchers have begun exploring the use

of AI for early detection and diagnosis of CRC. Masashi et al. (15)

developed an AI-assisted CADe system using 73 annotated

colonoscopy videos, segmented into 546 clips for ML evaluation.

The clips were randomly split into two sets: one for training

(learning samples) and the other for testing (evaluation of

performance). The CADe system calculates a probability for

polyp presence in each video frame, mimicking the confidence

level of a human endoscopist. To achieve a system sensitivity greater

than 90%, they conducted a Receiver Operating Characteristic

(ROC) analysis, establishing a probability threshold of 15% and

obtaining an area under the curve (AUC) of 0.87. To evaluate the

performance of the CADe system, sensitivity, specificity, and

accuracy were calculated for each frame. A detection was

considered positive if the probability surpassed the threshold.

Sensitivity was determined by dividing the number of correctly

identified frames by the total number of polyp frames in the test set.

The results revealed that the system achieved 90.0% sensitivity,

63.3% specificity, and 76.5% accuracy at the frame level. In a polyp-

based analysis, the system detected 94% of the polyps (47/50), with a

false positive rate of 60% (51/85). A high false positive rate may lead

to unnecessary tests and treatments, increasing patient discomfort,

anxiety, and medical costs, while also exacerbating the strain on

medical resources. Kudo et al. (16) evaluated the performance of the

AI system EndoBRAIN in distinguishing between tumor and non-

tumor lesions in colonoscopy images. The system was trained using

69,142 endoscopic images, and its diagnostic performance was

compared with that of 30 endoscopists, including 20 trainees and

10 experts. In the analysis of chromoendoscopic images,

EndoBRAIN reached a sensitivity of 96.9%, specificity of 100%,

and accuracy of 98%. For NBI, the system achieved a sensitivity of

96.9%, specificity of 94.3%, and accuracy of 96.0%. Overall,

EndoBRAIN’s performance was significantly better than that of

tra inees and comparable to that of experts in both

chromoendoscopic and NBI. Jin et al . (17) created a

convolutional neural network (CNN) to assess small colorectal

polyps. The network was trained on images of 1100 adenomatous

and 1050 hyperplastic polyps sourced from 1379 patients, and it was

tested on 300 images. The CNN demonstrated an accuracy of 86.7%

in differentiating adenomatous polyps from hyperplastic ones.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1499223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1499223
Compared to the CNN, 22 endoscopists’ accuracy improved from

82.5% to 88.5%, with novice endoscopists’ accuracy increasing to

85.6%. The CNN also significantly reduced the diagnostic time from

3.92 seconds to 3.37 seconds (P = 0.042). These results demonstrate

that the CNN significantly enhances the accuracy and efficiency of

novice endoscopists, reducing reliance on skill levels. In summary,

the use of AI in colonoscopy is proving to be a valuable

advancement in CRC screening. AI systems, such as CADe,

EndoBRAIN, and CNNs, have demonstrated the ability to

improve the detection of polyps and lesions with high sensitivity

and accuracy. These systems not only support experienced

endoscopists but also assist novice practitioners by reducing

diagnostic time and increasing overall detection rates. As AI

technology advances, its incorporation into clinical practice could

improve early detection, minimize missed diagnoses, and ultimately

lead to better patient outcomes in CRC screening.
2.2 Pathological diagnosis

Pathological diagnosis is regarded as the “gold standard” in

cancer diagnosis because it accurately determines tumor type and

stage by examining cells and tissues under a microscope. However,

this standard relies on traditional microscopy techniques, which

result in inefficiencies and limitations in information processing. To

enhance the efficiency and accuracy of pathology, the integration of

digital pathology and AI is increasingly recognized as a crucial

advancement. Väyrynen et al. (18) conducted a computational

analysis of H&E-stained slides to identify various immune cells in

CRC and assessed their impact on survival using multivariable Cox

regression. The results revealed that high densities of stromal

lymphocytes and eosinophils were associated with improved

cancer-specific survival, with these findings validated in an

independent cohort. Additionally, GTumor: Immune cellfunction

analysis further confirmed the association between high immune

cell densities and better prognosis. These findings demonstrate the

potential of ML in assessing immune cells in H&E-stained slides for

precision medicine. Analyzing glandular morphology in colorectal

pathological images is essential for CRC grading; however, manual

segmentation is labor-intensive and prone to variability between

observers. To address these challenges, Graham et al. (19) designed

a fully CNN that minimizes information loss by reintegrating the

original image at various stages and utilizing dilated spatial pyramid

pooling to preserve resolution. They incorporated uncertainty

through random transformations and generated uncertainty maps

to boost segmentation and prediction accuracy. Their approach

outperformed all other methods on the 2015 MICCAI GlaS

Challenge dataset, achieving state-of-the-art results. Moreover,

they introduced MILD-Net+ for the simultaneous segmentation

of glands and lumens, further improving diagnostic performance.

Kiehl et al. (20) trained a CNN using histological whole-slide images

from the DACHS cohort to predict lymph node metastasis (LNM)

in CRC. They combined this with clinical data for logistic regression

analysis. In the internal test set, slide-based AI predictor (SBAIP)

achieved an AUROC of 71.0%, which improved to 74.1% when

combined with the clinical classifier. However, in the external
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TCGA test set, SBAIP’s AUROC decreased to 61.2%. This

suggests that while DL image analysis combined with clinical data

can aid in predicting LNM, improving SBAIP’s performance on

external data is necessary. These advancements highlight the

revolutionary potential of integrating digital pathology and AI in

cancer diagnosis. By improving diagnostic accuracy, efficiency, and

speed, these innovations offer new pathways for achieving more

precise and timely patient care in oncology.
2.3 CRC staging diagnosis

Currently, imaging methods for staging CRC in clinical practice

mainly include CT, MRI, and endorectal ultrasound (ERUS) (21).

MRI is the preferred imaging method for rectal cancer (RC)due to

its ability to clearly assess tumor location, depth, LNM, and invasion

of surrounding organs (22). While MRI provides detailed images, its

diagnostic accuracy depends on the physician’s experience and can

vary. In contrast, AI enhances diagnostic accuracy and consistency

by analyzing extensive image data and detecting subtle changes. AI

reduces human error, improves staging efficiency, and supports

more objective treatment decisions, ultimately benefiting patient

outcomes. Shu et al. (23) analyzed data from 317 patients using

various ML algorithms to predict preoperative extramural venous

invasion (EMVI) in rectal cancer via multiparametric MRI

radiomics. Among the algorithms, the Bayesian model showed

good performance with an AUC of 0.744 (training set) and 0.738

(test set). However, the best results were achieved by a combined

model using clinical and imaging features, which had an AUC of

0.839 (training set) and 0.835 (test set), indicating excellent

diagnostic potential for individualized EMVI prediction. Zhao

et al. (24) created a radiomics nomogram using relaxation

imaging to predict EMVI in rectal cancer (RC). The study

involved 94 RC patients who had surgery, with 65 patients used

for training and 29 for validation. Feature selection was carried out

using the Least Absolute Shrinkage and Selection Operator

(LASSO), and the nomogram was developed through

multivariable logistic regression. The radiomics model achieved

areas under the ROC curve (AUC) of 0.912 and 0.877 for the

training and validation groups, respectively, while the nomogram

showed AUCs of 0.925 and 0.899. The model outperformed

radiologists’ subjective assessments in terms of diagnostic

performance. Jia and his team’s study assessed a nomogram

combining IVIM-DWI and radiomics for preoperative

identification of non-enlarged lymph node metastases (N-LNM)

in 126 rectal adenocarcinoma patients. The model, which used

measures of ADC, D, D*, and f, showed that the LN+ group had

lower D* and higher f values compared to the LN- group. It

performed well in predicting N-LNM, with an AUC of 0.864 in

the training cohort (25). These studies indicate that the

combination of AI and radiomics significantly enhances the

accuracy and reliability of staging CRC. By integrating clinical

and imaging data, advanced predictive models not only optimize

the diagnostic process but also provide more precise guidance for

personalized treatment.
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3 Application of AI in the treatment
of CRC

3.1 Surgical therapy

Surgical treatment is considered the primary and most effective

method for managing patients with CRC. Because it has the

potential to completely remove the tumor and, in many cases,

offer a cure (26). Laparoscopic surgery has become a primary

method for treating CRC, accounting for more than half of all

CRC surgeries (27). Despite benefits like reduced trauma and faster

recovery, laparoscopic surgery has notable limitations. Traditional

systems may suffer from unstable camera support, affecting image

quality and field of view. Two-dimensional imaging limits depth

perception, and equipment mobility constraints can impact surgical

flexibility. Additionally, the ergonomic design often neglects

surgeon comfort, leading to fatigue during long procedures (28).

With the advancement of AI, CRC surgery has entered a new era,

exemplified by the significant progress made with the da Vinci

Surgical System. The da Vinci Surgical System is an advanced

robotic-assisted surgery platform that significantly enhances the

safety and effectiveness of surgeries by providing higher precision

and better visualization. This system allows surgeons to perform

operations using minimally invasive techniques, through several

small incisions rather than traditional large ones. This approach not

only reduces postoperative pain and recovery time but also lowers

the risk of complications (29, 30). Kim et al. (31) evaluated the

safety and performance of the da Vinci SP® surgical system in 50

colorectal surgery patients. The study found that with increasing

surgical experience, operation times significantly decreased, all

surgeries were successfully completed, with only 6 minor adverse

events reported within 3 months post-surgery, and no local

recurrences within 1 year, with only 1 case of systemic

recurrence. Jung et al. (32) evaluated short-term outcomes of

robotic-assisted colon cancer surgeries using the da Vinci SP and

Xi systems at two tertiary centers from November 2020 to

December 2022. Patients using the SP system had shorter incision

lengths (5.0 cm vs. 9.4 cm), lower pain scores at 8 hours (3.0 vs. 3.5)

and 24 hours post-operation (2.9 vs. 3.3), and shorter hospital stays

(5 days vs. 6 days). Postoperative complication rates were similar

(SP: 7.5% vs. Xi: 13.2%). The da Vinci SP system showed benefits in

cosmesis, pain, and recovery duration compared to the Xi system.

This robotic-assisted technology offers promising improvements in

both precision and surgeon comfort. In conclusion, while

traditional laparoscopic surgery remains a primary treatment for

CRC, robotic-assisted systems like the da Vinci Surgical System

offer significant advantages. These systems enhance precision,

visualization, and surgeon comfort, leading to reduced trauma,

faster recovery, and lower complication rates.
3.2 Radiotherapy

Radiotherapy is the preferred neoadjuvant treatment for

intermediate and locally advanced RC because it effectively
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reduces tumor size, alleviates local burden, increases surgical

success rates, lowers the risk of recurrence, and improves patient

quality of life (33, 34). Magnetic Resonance-Guided Radiation

Therapy (MRgRT) is a major advancement in radiation therapy,

using real-time MRI for precise tumor and organ visualization.

MRgRT allows doctors to monitor tumors and surrounding tissues

dynamically, improving treatment accuracy and personalization

while minimizing damage to healthy tissues. It is particularly

effective for complex soft tissue tumors, offering superior image

resolution and localization compared to traditional imaging-guided

radiation therapy (35). Ferrari et al. created an AI model utilizing

high-resolution T2-weighted MRI texture analysis to predict

pathological complete response (CR) and identify non-responders

(NR) in patients with locally advanced rectal cancer (LARC). The

study involved 55 patients who underwent MRI during

chemoradiotherapy, with histopathology as the reference. A

random forest classifier, trained on 28 patients, achieved average

AUCs of 0.86 for CR and 0.83 for NR in a validation cohort of 27

patients, surpassing the performance of standard care (36).

Research shows that online adaptive radiotherapy (ART) can

dynamically adjust treatment plans using real-time imaging

information, effectively reducing radiation therapy side effects for

RC patients by optimizing target areas and minimizing unnecessary

radiation exposure (37). Jong et al. (38) studied cone-beam CT

(CBCT) for online ART in 12 rectal cancer patients receiving

preoperative 5 × 5 Gy radiotherapy. They used a 5 mm PTV

margin (8 mm for head and tail) and integrated software for

planning and adjustments. Average treatment time was 34

minutes, with 20 minutes for adjustments, and manual target

volume adjustments were needed in 50% of cases. Results

indicated excellent plan quality, target coverage, and patient

compliance, confirming the method’s clinical feasibility. In

summary, radiotherapy plays a crucial role in the treatment of

intermediate and locally advanced rectal cancer, especially when

combined with MRgRT and online ART, which significantly

improve treatment accuracy and personalization. AI, particularly

in the application of MRI texture analysis, aids in predicting

treatment response and optimizing treatment plans, further

enhancing the outcomes and prognosis of rectal cancer patients.

The integration of these innovative technologies is driving the

precision and intelligence of radiotherapy treatment forward.
4 Application of AI in prognostic
prediction for CRC

Traditional prognostic methods for CRC primarily rely on

clinical data and pathological indicators, such as tumor staging,

grading, and biomarkers. While these methods can provide some

prognostic information, they are limited by subjective judgment

and the finite nature of data samples, which results in certain

constraints (39, 40). In recent years, the rise of AI has provided new

solutions to these issues. Through DL and data mining techniques,

AI can process large amounts of complex clinical data and uncover

potential prognostic information, leading to more precise
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predictions. Zhao et al. (41) developed a DL model that can

automatically quantify the tumor-stroma ratio (TSR) in CRC

from HE-stained whole slide images (WSI). Using CNNs and

transfer learning, the model segments WSIs and computes TSR.

In two test cohorts (discovery cohort N=499, validation cohort

N=315), high TSR was associated with lower overall survival (OS).

Integrating TSR with other risk factors in the Cox model

demonstrated improved prognostic capability. Kather et al. (42)

investigated the use of deep CNNs in extracting prognostic factors

for CRC. They trained a CNN using 86 tissue samples and over

100,000 HE image patches, achieving an accuracy of over 94%.

Using this tool, they analyzed 862 HE slices from 500 CRC patients

and calculated a “deep stroma score,” which was found to be an

independent prognostic factor for OS (HR 1.99 [1.27-3.12], p =

0.0028). This finding was also validated in the DACHS independent

cohort, showing that the score has independent prognostic

significance for OS, CRC-specific OS, and RFS (p < 0.01). This

indicates that CNNs can effectively assess the tumor

microenvironment and predict prognosis, although further

validation is needed before clinical application. In conclusion, AI,

particularly DL techniques, has shown great promise in overcoming

the limitations of traditional prognostic methods in CRC. By

processing large and complex clinical datasets, AI can identify key

prognostic factors, such as the TSR and deep stroma scores, which

provide more accurate and reliable predictions of patient outcomes.

These advancements highlight the potential of AI in improving the

precision of CRC prognosis, offering significant clinical value in

personalized treatment planning and patient management.
5 Summary and outlook

AI, particularly DL, has greatly advanced CRC diagnosis and

treatment by revolutionizing medical data analysis. AI algorithms

uncover key patterns for early CRC screening, enhancing accuracy

and enabling precision diagnostics and personalized treatment

strategies. For example, AI analysis of pathological images can

detect abnormalities earlier and make more precise diagnoses,

leading to more personalized treatment plans. These

advancements, however, come with challenges and limitations.

First and foremost, the cost-effectiveness of AI implementation

must be considered. During the initial development phase, training

AI models requires large amounts of high-quality data, the

collection and processing of which often incur significant

expenses. Additionally, the applicability and generalizability of AI

models across different populations is a critical issue. While many

AI models perform excellently on specific training sets, differences

in demographics and environments may affect their performance.

Furthermore, the source and diversity of training data are crucial to

the external validity of AI models. If an AI model is trained solely in

a particular region or population without accounting for global

diversity, its widespread application may be limited. Moreover, in

resource-poor settings, there may be insufficient funds to acquire

and maintain high-end AI equipment, and training healthcare
Frontiers in Oncology 05
professionals to use these systems requires both time and

resources. Data privacy and security concerns may also pose

significant barriers in certain regions. To address these challenges,

future research should focus on several key areas: constructing more

diverse and high-quality training datasets to ensure that AI systems

can better adapt to the diagnostic needs of different populations

worldwide; optimizing AI algorithms and hardware to reduce

reliance on expensive equipment; developing more reliable

validation methods to ensure the effectiveness and safety of

models in various clinical environments; ensuring that patient

data protection complies with international privacy and security

regulations to prevent misuse or leakage of personal information;

enhancing physician training to ensure they can effectively use AI-

assisted diagnostic tools; and fostering greater understanding and

trust in AI technology among patients. In the future, AI can provide

more accurate diagnoses, optimize treatment plans, and offer better

treatment outcomes and higher survival rates for patients.

Continued advancement in AI research and application will

contribute to more personalized and precise medical services,

ultimately improving patients’ overall health and quality of life.
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