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Skin microbiome differences in
pancreatic adenocarcinoma,
other cancers, and healthy
controls: a pilot study
Taylor Davis1†, Katherine T. Decker2†, Dana Hosseini2,
Gayle Jameson1 and Erkut Borazanci1*

1Department of Oncology, HonorHealth Research Institute, Scottsdale, AZ, United States,
2ProdermIQ, Inc., San Diego, CA, United States
Introduction: Many studies have reported the importance of the human

microbiome in relationship to the overall health of its host. While recent

studies have explored the microbiome’s role in various types of cancer

compared to healthy patients, this pilot study is the first to investigate

differences in the skin microbiome composition among pancreatic

adenocarcinoma patients, individuals with other cancers, and cancer-

free controls.

Methods: The study characterizes the skin microbiome’s potential associations

with cancer status by analyzing skin swabs from the forehead and cheek of 58

participants using Next Generation Sequencing (NGS), differential abundance

analysis, and machine learning techniques.

Results: The study results indicated that the cancer group displayed a

significantly higher mean alpha diversity compared to the control group.

Additionally, a machine learning classification model achieved a mean F1 Score

of 0.943 in predicting cancer status, indicating measurable differentiation in the

skin microbiome between the study groups. This differentiation is supported by

differential abundance methods, including ANCOM-BC and MaAsLin2.

Discussion: This pilot study suggests that skin microbiome profiling could serve

as a non-invasive biomarker for cancer detection and monitoring, which

warrants a larger, longitudinal study to validate these results.
KEYWORDS

skin microbiome, pancreatic adenocarcinoma, dysbiosis, machine learning,
alpha diversity
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1 Introduction

The human skin, the body’s largest organ, functions as the

protective barrier against external elements and hosts a diverse

community of microorganisms collectively known as the skin

microbiota. These microorganisms, which inhabit sebaceous, dry,

and moist microenvironments, are primarily harmless or even

beneficial, although some can pose a threat (1, 2). The collective

genetic material, or genome, of these microbes is defined as the skin

microbiome (3). Differences in the microbiome can be influenced

by many factors such as age, occupation, sex, and geographical

location (4). The microbiome has many functions, such as

developing the immune system, digesting food, and maintaining a

protective barrier. Disruptions to the microbiome, or dysbiosis,

have been implicated in various diseases, reinforcing the

importance of understanding its characteristics and functions in

health and disease (5).

Previous research has demonstrated that the human

microbiome plays a significant role in the overall fitness of the

host. The microbiome has been linked to a broadening array of

health issues, including, but not limited to: inflammatory bowel

disease (IBD), Crohn’s disease, eczema, psoriasis, autism,

depression, anxiety, obesity, acne, diabetes, hypertension, chronic

sinusitis, dental caries, and bacterial vaginosis (5). In addition to

these health issues, recent studies have explored the microbiome’s

role in various types of cancer compared to healthy patients. For

example, patients with conventional adenoma and colorectal cancer

have shown to have less diversity in gut microbiota than that of

healthy patients, whereas those with sessile serrated adenoma had

more diversity in gut microbiota than that of healthy patients (6).

Evidence also suggests that the gut and skin microbiome are critical

in regulating the ability of immune checkpoint inhibitors in the

treatment of skin cancers (7). Additionally, some studies have

reported significant differences in microbial diversity between

patients with breast cancer and healthy individuals (8). Building

on these insights, this study narrows its focus to pancreatic cancer.

Alterations in microbiome diversity, proportions, and dominant

species have been associated with pancreatic cancer development

(9), and indirect evidence suggests a potential link specifically

between the skin microbiome and pancreatic cancer (10),

highlighting the importance of further investigation into its

specific microbial dynamics.

The purpose of this study was to characterize the skin

microbiomes on the forehead and cheek of individuals with

pancreatic adenocarcinoma compared to those with other forms

of cancer and individuals without cancer. The skin profiling

platform developed by ProdermIQ, Inc. was used to explore the

differences in bacterial diversity and composition of the skin

microbiome between the study groups. The goal of this pilot

study was to determine if results from this trial could provide

insight on the associations between microbial flora and cancer

status. Future studies will aim to explore the links between the

microbiome and cancer severity, status of host immune system,

progress of an ongoing therapy, and implications for

therapeutic applications.
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2 Methods

2.1 Study subjects and clinical examination

The study received Institutional Review Board (IRB), and all

participants provided informed consent prior to enrollment.

Patients, staff, and family members within the Debi and Jerry

Research Bisgrove Research Pavilion at HonorHealth Research

Institute (Scottsdale, Arizona) were invited to participate.

Following consent, individuals were assigned an identification

number to maintain deidentification, which was linked to their

skin swab sample. Participants also completed a questionnaire that

collected their age, gender, ethnicity, race, weight, and height, as

well as details regarding current skin conditions, medications, and

skincare product use.

To supplement the study, an additional 60 healthy control

samples were drawn from an existing broader database of

ProdermIQ’s healthy skin samples that were generated with the

same experimental protocol as the samples in this study. These

control samples were carefully chosen to minimize confounding

variables, ensuring that the age and gender distribution of these

additional samples closely matched that of the cancer group.

A total of 58 study participants were divided into three groups:

cancer patients with pancreatic adenocarcinoma (n=23), cancer

patients with other types of cancer (n=21), and individuals without

cancer (n=14). The other forms of cancer included breast cancer

(n=13), head and neck cancer (n=1), rectal cancer (n=1), colon

cancer (n=1), peritoneal cancer (n=1), sarcoma (n=1), lung cancer

(n=1), endometrial cancer (n=1), and unspecified cancer (n=1).

Enrolled individuals met the following inclusion criteria: (i)

adults at least 18 years of age; (ii) the ability to understand the

requirements of the study, and provide written informed consent;

(iii) for subjects defined as pancreatic adenocarcinoma must have a

histological confirmed diagnosis of pancreatic adenocarcinoma; (iv)

for subjects defined as other cancer, must have a histological

confirmed diagnosis of a malignancy other than pancreatic

adenocarcinoma; (v) for subjects defined as no malignancy, these

individuals must no history of any type of cancer. Exclusion criteria

included: (i) patients with a rash or skin disorder of any kind on

their face; (ii) allergy to cotton swabs.
2.2 DNA preparation and sequencing

ProdermIQ provided sample collection kits to HonorHealth.

Each kit contained one vial of sterile water (indicated with a “W” on

the lid), two vials of fixative solution (one labeled “FH” for the

forehead and one labeled “CK” for the cheek), and sterile cotton

swabs. Prior to the day of collection, participants were instructed

not to wash their face, wear any makeup, or use any facial cleansers

and lotions at least 8 hours prior to collection. Using the provided

swabs, patients were instructed to swab their forehead and cheek in

a circular fashion about the size of a quarter prior to placing each

swab into the corresponding fixative solution. Once collected, the

swab samples were stored in a freezer with a temperature between 4°
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F-32°F. The samples were then shipped to ProdermIQ for Next

Generation Sequencing (NGS) amplicon sequencing to characterize

the skin microbiomes.

The methods of sequencing are described in detail elsewhere

(11). Briefly, samples were processed using a proprietary skin

microbiome profiling panel (ProdermIQ) that targeted multiple

regions of the 16S rRNA gene, including the V1, V2, V4, V6, V7,

V8, and V9 regions. Sequencing was performed on the Illumina

MiSeq platform using 300 base pair paired-end reads. ProdermIQ’s

custom quality control and read processing steps were used to

preprocess the raw sequencing data and identify amplicon sequence

variants (ASVs). Taxonomic classification was performed using

ProdermIQ’s reference database, which is based on the Integrated

Microbial Genomes (IMG) database (12).
2.3 Data analysis

The analysis of skin microbiome samples incorporated diversity

metrics, statistical methods, and machine learning (ML) techniques.

2.3.1 Microbiome diversity
2.3.1.1 Alpha diversity

Alpha diversity, representing the microbial diversity within

individual samples, was assessed through three measures:

1. Observed Features: The total number of distinct taxa.

2. Shannon’s Diversity Index: A measure including both

richness and evenness, which is calculated as:

H  =   −o
S

i=1
pi log2 pi

where S is the total number of taxa, and pi is the proportion of

each taxa i in the sample.

3. Simpson’s Diversity Index: A measure which similarly

includes richness and evenness, and emphasizes evenness by

evaluating the likelihood that two randomly chosen individuals

originate from different taxa:

D  =  1  −  oS
i=1p

2
i

To compare alpha diversity metrics between groups (cancer

versus control), the Mann-Whitney U test was applied.

2.3.1.2 Beta diversity

Beta diversity, quantifying the differences in microbial

community composition between samples, was assessed using

two measures:

1. Jaccard Distance: The proportion of taxa that do not have the

same binary presence/absence value between two samples.

2. Bray-Curtis Dissimilarity: A measure that assesses the

microbial abundance differences across two samples, u and v:

d(u, v)   =  
o
i
ui + vij j

o
i
ui + vij j
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The resulting distance matrices were visualized using Principal

Coordinate Analysis (PCoA), and the differences between the control

and cancer samples were statistically evaluated using Permutational

Multivariate Analysis of Variance (PERMANOVA). Pseudo-F

statistics and p-values were reported to assess group differences.

The diversity metrics were computed using the “skbio.diversity”

module in Python.

2.3.2 Statistical analysis of subject characteristics
Statistical comparisons of subject characteristics, including age

and the number of medications, were conducted to investigate

differences between pancreatic cancer and other cancer groups. The

Mann-Whitney U test was used for both analyses. Specifically, the

age distributions and number of medications taken by subjects were

compared between the two groups under the null hypothesis that

their distributions are identical.

2.3.3 Multiple testing correction
Given the multiple comparisons made across the different

metrics, the Bonferroni correction was applied to adjust the

significance levels. Corrected p-values were calculated using the

multipletests function from the “statsmodels.stats.multitest”module

in Python.
2.3.4 Machine learning using taxonomic
count data

To differentiate between cancer (all types) and healthy control

statuses, machine learning classification models were developed using

a Support Vector Machine (SVM) framework. The models were

trained on the relative abundance of taxa in the skin microbiome to

identify key microbial features associated with the cancer and control

cohorts. Prior to analysis, the relative abundance data was cleaned to

include only taxa present in at least five samples, a threshold chosen to

balance the exclusion of rare taxa that may represent noise or

sequencing artifacts with the retention of taxa likely to provide

meaningful biological insights. Potential contaminants were

identified and removed based on a reference database of expected

skinmicrobes. However, taxa with relative abundances exceeding 30%

were retained, regardless of their presence in the skin reference

database, to ensure biologically relevant signals were not excluded.

Feature selection was performed using Recursive Feature

Elimination with Cross-Validation (RFECV) to reduce

dimensionality and improve model performance. RFECV

iteratively removed less informative features while retaining those

that provided the most predictive power. Comparing 150 random

seeds of RFECV feature selection led to the identification of a robust

set of 41 taxa.

To evaluate the models’ effectiveness, 10-fold cross-validation

was repeated over 1,000 iterations of random train-test splits. In

each iteration, group-stratified sampling ensured that both cancer

and control groups were proportionally represented in the training

and test sets. Model performance metrics were calculated using the

“sklearn” module in Python, and the mean and standard deviation

of the metrics across the iterations were calculated.
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2.3.5 Differential abundance
2.3.5.1 ANCOM-BC

Differential abundance analysis was performed using the

ANCOM-BC (Analysis of Compositions of Microbiomes with

Bias Correction) (13) method through the QIIME2 (14) plugin.

ANCOM-BC was applied to the unnormalized, cleaned taxa counts

to identify taxa with significant differences in abundance between

the cancer and control groups. A q-value threshold of 0.05 was used

to determine statistical significance.

2.3.5.2 MaAsLin2

Differential abundance analysis was also performed using

MaAsLin2 (Microbial Multivariable Association with Linear

Models) (15) to identify taxa significantly associated with cancer

and control groups. MaAsLin2 was run with default parameters,

except for the q-value threshold, which was adjusted to 0.05 for

statistical significance. The model included fixed effects for class

(study group: cancer or control), sample origin (this study or

broader ProdermIQ healthy dataset), age, and gender. To account

for repeated measures and variability in sampling location, random

effects were applied for subject and swab site.
3 Results

3.1 Study participants and
cohort characteristics

A total of 58 participants were enrolled in this study to

characterize the skin microbiomes across three cohorts:

pancreatic adenocarcinoma, other cancer, and no cancer

(controls). Characteristics of the subjects within each cohort,

including average age, gender, smoking status, and ethnicity, are

summarized in Table 1. Among the no cancer cohort, 4 participants

did not indicate their age, gender, smoking status, or ethnicity. A

total of 150 samples were analyzed, including 79 samples from

subjects with cancer and 71 from control subjects. Of the 71 control

samples, 60 were sourced from a broader database of ProdermIQ

healthy skin samples that were generated using the same

experimental protocol as this study. These 60 additional samples

were selected to minimize bias in comparing healthy and cancer-
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affected skin microbiomes by focusing on subjects in good health,

matching swab sites from this study (cheek and forehead), and

balancing age and gender distributions to mirror those of the

cancer group.

Within the cancer group, the pancreatic adenocarcinoma

cohort contained 44 samples and the other cancer cohort

contained 35 samples. There were significant differences between

the two cancer groups in terms of gender distribution, mean age,

and medication count. The pancreatic adenocarcinoma cohort was

predominantly male with 52.3% male subjects and 47.7% female

subjects. In contrast, the other cancer group was predominantly

female with 77.1% female subjects and 22.9% male subjects. The

mean age of the pancreatic adenocarcinoma group trended higher

with a mean age 65.8 years and 59.8 years for the other cancer

group. The difference in the number of medications between the

groups also showed significance. At the time of sampling, the

pancreatic adenocarcinoma group was taking an average of 7.1

medications while the other cancer group was taking an average of

3.7 medications (p=1.57x10-6), as shown in Figure 1.
3.2 Diversity measures

A total of 11,268 amplicon sequence variants (ASVs) were

identified following ProdermIQ’s custom preprocessing pipeline.

Of these, 11,109 ASVs (98.6%) were successfully mapped to a

microbial taxon at the domain level, including 10,839 Bacteria

and 270 Archaea. At the subspecies level, 9,931 ASVs (88.1%)

were assigned, representing nearly all of the sequencing reads

(99.33%). These subspecies-level assignments corresponded to

2,736 unique taxa, which were used as the basis for following

diversity analyses and other investigations. However, it is

important to note that the subspecies-level assignments represent

the closest known strains based on the available reference database

and may not correspond to the exact strains present in situ.

Microbial diversity within and between samples was assessed

using alpha and beta diversity metrics. Alpha diversity metrics,

which evaluate the richness and evenness of microbial taxa within

individual samples, were significantly higher in the cancer group

compared to the control group (Figures 2A–C). This trend was

consistent across all three metrics used: observed features (p-value
TABLE 1 Demographic and clinical characteristics of subjects.

Pancreatic
Adenocarcinoma
(n=23)

Other Cancer
(n=21)

No Cancer,
HonorHealth
subjects (n=14)

No Cancer,
ProdermIQ (n=41)

Characteristics of subjects

Average Age (yr.) 65.8 59.8 39.6 58.0

Gender (M/F/Unlisted) 12/11/0 5/16/0 3/7/4 18/23/0

Smoker (Y/N/Unlisted) 1/22/0 0/21/0 0/10/4 0/22/19

Ethnicity (Caucasian/Hispanic or Latino/Asian/African
American/Native American/Unlisted

20/1/0/1/0/0 13/5/3/0/0/0 8/0/0/1/1/4 39/0/1/0/0/1
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FIGURE 1

(A) Bar graph depicting number of samples in each cancer group. (B) Stacked bar graph representing gender percentage for each cancer group.
(C) Boxplots representing age distribution including the mean age and the Bonferroni corrected Mann-Whitney U test p-value for the two cancer
groups. (D) Boxplots representing the number of medications including the mean number of medications and the Bonferroni corrected Mann-
Whitney U test p-value for the two cancer groups.
FIGURE 2

Comparison of alpha and beta diversity measures for control (no cancer) and cancer groups. Alpha diversity measures include: (A) the number of
observed features, (B) the Shannon Index, and (C) the Simpson Index. Bonferroni-corrected p-values for statistical differences between the two
groups were calculated using the Mann-Whitney U test and are displayed on the plots. Beta Diversity PCoA plots are based on (D) the Jaccard
Distance and (E) the Bray-Curtis Dissimilarity, with ovals representing a 95% confidence interval. Statistical significance for beta diversity differences
was assessed using PERMANOVA and p-values are shown on the plots.
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=2.49x10-4), Shannon Diversity Index (p-value=1.95x10-3), and

Simpson Diversity Index (p-value=5.42x10-3). These results

indicate a greater variety of microbes on the skin of cancer subjects.

Beta diversity analyses, which evaluate differences in microbial

community composition between samples, further supported the

distinction between the cancer and control skin microbiomes. Both

a presence/absence based method (Jaccard distance) and an

abundance-based method (Bray-Curtis dissimilarity) were used to

calculate dissimilarity matrices that were visualized using PCoA in

Figures 2D, E. PERMANOVA tests reported statistically significant

differences between the cancer and control groups for both metrics

(Jaccard: pseudo-F = 5.09, p-value = 0.0005; Bray-Curtis: pseudo-F

= 5.18, p-value = 0.0005).

The beta diversity PCoA plots showed that the control group

included a broader spread of data points, reflected by the larger 95%

confidence interval ovals. In contrast, the cancer group displayed

tighter clustering, which suggests less variability among cancer-

associated skin microbiomes. Notably, the cancer group oval

appeared to be a subset of the larger control group oval for both

metrics, indicating the microbial communities associated with

cancer could represent a subset of the broader beta diversity

in controls.

In an additional analysis, the diversity metrics and statistical

analyses were conducted on various other subject metadata fields,

including gender, age, and number of medications. For all three of

these subject metadata fields, significant differences in alpha

diversity were not consistently detected across the various alpha

diversity metrics. However, female samples were found to be more
Frontiers in Oncology 06
diverse using the Shannon and Simpson Indices, and age showed

positive Spearman correlation with the observed numbers of

features. In contrast, all three subject metadata fields were found

to have consistently significant differences in beta diversity using

PERMANOVA. This result suggests that these subject

characteristics do influence the overall composition of

the microbiome.
3.3 Top abundance organisms

Our analysis showed that the following organisms were the

most abundant across all samples: Cutibacterium acnes PMH5,

Streptococcus sanguinis SK353, Staphylococcus aureus subsp. aureus

NN50, Streptococcus mitis SK642, Snograssella alvi wkB12,

Staphylococcus epidermidis NW32, Streptococcus anginosus ChDC

B695, Streptococcus gordonii Challis CH1, Kingella oralis UB-38,

Streptococcus porci DSM 23759, Cutibacterium acnes HL411PA1,

Corynebacterium kroppenstedtii DSM 44385, Corynebacterium

diphtheriae sv. mitis B-D-16-78, Gardnerella vaginalis 315-A, and

Cutibacterium acnes HL053PA1, as shown in Figure 3. Organisms

such as Gardnerella vaginalis 315-A and Cutibacterium acnes

HL053PA1 were seen in abundance within the no cancer group.

Other organisms such as Streptococcus mitis SK642, Snograssella

alvi wkB12, and Streptococcus gordonii Challis CH1 were seen in

abundance within the pancreatic adenocarcinoma and other cancer

groups but not within the no cancer group. Streptococcus porciDSM

23759 and Kingella oralis UB-38 were seen significantly within the
FIGURE 3

Stacked bar graph representing the ten most abundant organisms in the skin microbiome within each group.
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pancreatic adenocarcinoma and no cancer groups but not within

the other cancer group. Corynebacterium kroppenstedtii DSM

44385 and Corynebacterium diphtheriae sv. mitis B-D-16-78 were

seen significantly in the other cancer and no cancer groups but not

within the pancreatic adenocarcinoma group. Streptococcus

anginosus ChDC B695 was seen in abundance only within the

pancreatic adenocarcinoma group. Cutibacterium acnes HL411PA1

was seen in abundance only within the other cancer group.
3.4 Machine learning classifier

To assess the predictive capability of the skinmicrobiome for cancer

detection, amachine learningbinary classificationmodelwasdeveloped,

utilizing the relative abundances of the skin microbiome bacterial

composition. Pancreatic adenocarcinoma and other cancer types were

combined into a single “cancer” group to ensure sufficient data for

training the model, while the no cancer samples were categorized as the

“control” group. The model achieved a mean F1 score of 0.943 in a 10-

fold cross validation process across 1,000 randomly generated training

and testing splits. For each of these splits, group-stratified splitting

ensured an approximately equal number of cancer and control samples

in each test set. Classification performance was similarly strong across

other metrics, including accuracy, sensitivity, specificity, error rate, and

receiver operating characteristic (ROC) area under the curve (AUC)

(Table 2). The classification model’s strong proficiency was enabled by

recursive feature elimination (RFE),which identifiedanoptimal set of 41

taxa to minimize noise while preserving key signals (Figure 4A). The

average ROC curves from 1,000 iterations with the selected 41 taxa

indicates strong performance for both training and test data (Figure 4B).
3.5 Key members of skin microbiome
associated with cancer and control

Themachine learning classificationmodel described in Section 3.4

identified and ranked the key microbial features, or “biomarkers,”
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distinguishing the cancer group from the control group. To further

investigate the key microbes, the machine learning results have been

integrated with differential abundance approaches, including

ANCOM-BC and MaAsLin2, and the superset of significant results

across the three methods are visualized in Figure 5.

3.5.1 Machine learning-derived biomarkers
Recursive feature elimination with cross-validation (RFECV)

identified a set of 41 taxa that provided sufficient predictive

information while minimizing noise. Across the 1,000 iterations

of train-test splits used to rank the 41 taxa, Cutibacterium acnes

SK182, associated with the control group, consistently ranked at or

near the top for feature importance. In contrast, the highest-ranking

cancer-associated taxon was a distinct strain of the same species,

Cutibacterium acnes PMH5. The feature importances for the 41

selected taxa are available in Supplementary Table S1.

3.5.2 Differential abundance analysis with
ANCOM-BC

ANCOM-BC identified 21 taxa with significant differences in

abundance between the cancer and control groups. Taxa with

positive log-fold changes (LFC) were enriched in the control
frontiersin.o
TABLE 2 Machine learning classification performance using 10-fold
cross validation across 1,000 random seeds of train/test data splitting.

Training Data
(Mean ± Std Dev)

Testing Data
(Mean ± Std Dev)

Metric

Accuracy 0.978 ± 0.008 0.943 ± 0.059

Sensitivity 0.966 ± 0.012 0.930 ± 0.090

Specificity 0.992 ± 0.008 0.959 ± 0.075

Error Rate 0.022 ± 0.008 0.057 ± 0.059

ROC AUC 0.998 ± 0.001 0.976 ± 0.046

Weighted F1 Score 0.978 ± 0.008 0.943 ± 0.060
FIGURE 4

(A) RFECV results showing the weighted F1 score for the training and test datasets as a function of the number of features included in the model.
The purple dashed line indicates the number of features (41 taxa) that achieved the maximum F1 score and was selected for additional analysis.
(B) ROC curves for the training and test datasets, averaged across 1,000 iterations. The diagonal dashed line represents random classification
performance (AUC = 0.5). Shaded regions represent ±1 standard deviation for both panels.
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group, while taxa with negative LFC values were enriched in cancer

samples. Consistent with the machine learning findings,

Cutibacterium acnes SK182 showed the largest enrichment in the

control group (LFC = 2.01, q-value = 3.36x10-5). Notably, all

remaining significantly differential taxa were associated with the

cancer group, with Streptococcus suis YS16 showing the largest

negative LFC (LFC = -1.50, q-value = 2.63x10-6). All significant

results from ANCOM-BC are available in Supplementary Table S2.

3.5.3 Differential abundance analysis
using MaAsLin2

MaAsLin2 analysis identified 15 taxa as significantly associated

with the cancer and control groups while accounting for covariates

including age and gender. The directionality of the associations was

determined by the sign of the coefficients, where positive values

indicated enrichment in the control group and negative values
Frontiers in Oncology 08
indicated enrichment in the cancer group. Cutibacterium acnes

SK182 emerged as the top control-associated taxon (coefficient =

3.51, q-value = 1.72x10-4), which aligns with findings from both the

machine learning analysis and ANCOM-BC. The MaAsLin2 results

also mirrored the trend observed in ANCOM-BC, with most

significant taxa being cancer-associated, except for Cutibacterium

acnes SK182. For the cancer group, Veillonella atypica ACS-134-V-

Col7a was the enriched taxon with the largest difference between the

groups (coefficient = -2.40, q-value = 1.22x10-2). The significant

MaAsLin2 results for all fixed effect covariates are available in

Supplementary Table S3.

The combined results from machine learning, ANCOM-BC,

and MaAsLin2, summarized in Figure 5, highlights areas of

agreement and method-specific findings. Cutibacterium acnes

SK182 was consistently identified as a control-associated taxon

across all three methods, emphasizing its robustness as a key

biomarker. For the cancer group, Veillonella atypica ACS-134-V-

Col7a, Corynebacterium ureicelerivorans IMMIB RIV-2301,

Streptococcus suis YS16, Klebsiella pneumoniae S_49BG, and

Prevotella melaninogenica D18 were enriched for all three

methods. While overlap was observed across methods, especially

between the two differential abundance methods, certain taxa were

uniquely identified by individual approaches. These unique features

reflect differences in sensitivity and modeling assumptions for

the three.
4 Discussion

The analysis conducted for this study revealed significant

differences in the skin microbiome between cancer patients and

individuals without cancer. Notably, the cancer groups exhibited

increased alpha diversity compared to the control group. This

observation aligns with broader research findings, where various

studies have found elevated alpha diversity in non-skin

microbiomes of cancer patients compared to controls (16, 17).

Beta diversity analysis further supported these differences, with

PERMANOVA results demonstrating statistically significant

clustering between cancer and control groups.

In addition to the diversity measures, the machine learning

model corroborated the differences in the study groups by achieving

a mean F1 score of 0.943, which falls within the upper end of

reported F1 scores (0.63 to 0.95) in recent microbiome sequencing

studies (18–20). This performance highlights the model’s

effectiveness in capturing relevant biological signals and suggests

a significant distinction in the skin microbiomes of control and

cancer subjects. Differential abundance analysis using ANCOM-BC

and MaAsLin2 identified several taxa that were significantly

enriched in either the cancer or control groups, supporting the

machine learning findings and providing additional insights into

the microbial shifts associated with cancer. The significant

distinction observed between these groups supports the

hypothesis that cancer is associated with dysbiosis in the skin

microbiome. Dysbiosis, defined as an imbalance in the natural

microflora of an individual, has been associated with a range of
FIGURE 5

Organism directionality and normalized metrics across various
methods. Each row represents a unique organism identified across
the three analyses, with columns corresponding to the methods
used: ML-derived biomarker selection, ANCOM-BC, and MaAsLin2.
The color of each cell indicates the direction of association (red for
cancer-associated, gray for no significant association, and blue for
control-associated), with darker pigments corresponding to larger
normalized values of biomarker importance, LFC for ANCOM-BC,
effect size (coefficient) for MaAsLin2. The arithmetic mean of the
normalized values is displayed in the rightmost column (“Average of
Methods”), which was also used to sort the rows of the heatmap.
For organisms not identified as significantly associated by a method,
their values were set to zero before averaging. Y-axis labels are
formatted to highlight taxa appearing in multiple analyses (bold and
dark green for all three, bold and lighter green for two out of three).
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noncommunicable diseases in existing research. Further research

could yield new therapeutic approaches for these diseases (21).

Of the three methods for identifying key taxa, including

biomarker detection, ANCOM-BC, and MaAsLin2, six bacterial

taxa were consistently identified across all methods. Cutibacterium

acnes SK182 was the sole organism to be more strongly associated

with the control group than the cancer group among these six key

taxa. Furthermore, Cutibacterium acnes SK182 represented the

highest magnitude of importance for all three analyses. The

strain-level variations of Cutibacterium acnes (C. acnes) between

the control and cancer group were particularly notable in the ML-

derived biomarker detection results. C. acnes PMH5, a Type III C.

acnes strain, was significantly associated with the cancer group.

Type III strains are less commonly found on facial skin (22), such as

the forehead and cheek swab sites used in this study. In contrast,

Type IA strains, like C. acnes SK182, which are typically prevalent

on the face (23), were strongly associated with the control group

across all analyses. This shift in C.acnes phylotypes may suggest

dysbiotic changes in the facial skin microbiome associated with

cancer. However, the presence of another Type IA strain, C. acnes

HL411PA1, in the cancer group indicates that these microbiome

changes are complex and not uniform.

The five remaining key taxa, including Veillonella atypica,

Corynebacterium ureicelerivorans, Streptococcus suis, Klebsiella

pneumoniae, and Prevotella melaninogenica, were more strongly

associated with the cancer group. Among these, Veillonella atypica

has been previously linked to pancreatic cancer in studies of the gut

microbiome, where it was enriched in pancreatic ductal

adenocarcinoma (PDAC) patients compared to healthy controls

(24). The identification of V. atypica in both gut and skin

microbiomes suggests a potential systemic role for this taxon in

pancreatic cancer. Similarly, Prevotella melaninogenica has been

implicated in both oral cancer, where it has been proposed as a

salivary biomarker for early detection (25), and in pancreatic cystic

neoplasms, which may progress to pancreatic cancer through

neoplastic transformation (26). These findings suggest that P.

melaninogenica may have a broader role in cancer-associated

dysbiosis across multiple cancer types, particularly in the early

stages of disease progression.

Other identified key taxa may reflect opportunistic pathogenicity

in immunocompromised cancer patients. In individuals undergoing

chemotherapy, Klebsiella pneumoniae has been identified as a major

complication, with mortality rates due to bacteremia ranging from

18% to 30% (27). Similarly, Streptococcus suis, although not

commonly linked to human infections, has been associated with

severe infections in immunosuppressed cancer patients (28). The

final species, Corynebacterium ureicelerivorans, lacks specific links to

cancer in the literature; however, at the genus level, Corynebacterium

abundance has been observed to decrease in PDAC patients

compared to healthy controls (29). The lack of specific findings at

the species level demonstrates the need for further research.

While the data presents encouraging findings, this pilot study

has several limitations. The sample size was small, and variations in

the subject metadata may have introduced bias into the analysis, as

suggested by the differences in beta diversity for age, gender, and
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number of medications. Additionally, some alpha diversity

measures indicated higher diversity in samples from female

subjects and those with higher chronological age, aligning with

prior studies (30, 31). Further studies should account for these

differences by incorporating a larger sample size with more

uniformity in the subject demographics among the control and

disease group.

The cheek and forehead microbiome profiling provided

objective measurements; however, patient-reported information

collected through the questionnaire, such as height and weight,

may be subject to inaccuracy or variability, as this information was

not supervised by medical personnel. While this patient-reported

information was verified for completion upon submission, no

additional steps were taken to assess its accuracy. Additionally,

the status of skin health was documented in the patient

questionnaire, but this data was not further analyzed. Skin health,

in addition to current skin products and concrete medications,

could have affected the microbiome at the time of collection.

Current and previous therapeutic protocols, including

chemotherapy, radiotherapy, and surgery, were also documented

but not further analyzed. The time of sampling in relation to

surgical and non-surgical therapy may have also affected the

microbiome at the time of collection. Additionally, certain

medications, such as antibiotics, greatly impact the microbiome

and may have influenced the results reported in this study. Future

larger studies should include additional analyses to investigate the

relationship between skin health, other patient-reported factors,

therapeutic interventions, medications, and the skin microbiome in

both cancer and control cohorts.

This study relied on a single snapshot of the skin microbiome

and lacked longitudinal data to observe changes over time with

treatment or disease progression. Consistent staging of the

condition may provide a clearer understanding of the skin

microbiome during each stage of disease progression. Future

research should prioritize multiple collections, including baseline

or pre-treatment data, to better characterize skin microbiome shifts

throughout treatment and disease progression. Additionally, further

research is needed to investigate the underlying mechanisms that

drive microbiome differences across various cancer stages, types,

and microbiome sites. Such studies could provide opportunities to

develop microbiome-based biomarkers that can identify pancreatic

adenocarcinoma and other types of cancer.

In conclusion, analyzing the skin microbiome provides valuable

insight into the diversity of organisms that are present in a person’s

microflora and offers a framework to further examine the impact of

dysbiosis in cancer.
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Maistrenko OM, et al. A faecal microbiota signature with high specificity for
pancreatic cancer. Gut. (2022) 71:1359–72. 10.1136/gutjnl-2021-324755
Frontiers in Oncology 11
25. Chocolatewala N, Chaturvedi P, Desale R. The role of bacteria in oral cancer.
Indian J Med Paediatr Oncol. (2010) 31:126–31. doi: 10.4103/0971-5851.76195

26. Binda C, Gibiino G, Sbrancia M, Coluccio C, Cazzato M, Carloni L, et al.
Microbiota in the natural history of pancreatic cancer: From predisposition to therapy.
Cancers (Basel). (2022) 15:1. doi: 10.3390/cancers15010001

27. Santos ALSD, Rodrigues YC, de Melo MVH, Silva Dos Santos PA, Oliveira TN
da C, Sardinha DM, et al. First insights into clinical and resistance features of infections
by Klebsiella pneumoniae among oncological patients from a referral center in Amazon
region, Brazil. Infect Dis Rep. (2020) 12:110–20. doi: 10.3390/idr12030021
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