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Purpose: In the context of lung cancer screening, the scarcity of well-labeled

medical images poses a significant challenge to implement supervised learning-

based deep learningmethods. While data augmentation is an effective technique for

countering the difficulties caused by insufficient data, it has not been fully explored in

the context of lung cancer screening. In this research study, we analyzed the state-

of-the-art (SOTA) data augmentation techniques for lung cancer binary prediction.

Methods: To comprehensively evaluate the efficiency of data augmentation

approaches, we considered the nested case control National Lung Screening

Trial (NLST) cohort comprising of 253 individuals who had the commonly used

CT scans without contrast. The CT scans were pre-processed into three-

dimensional volumes based on the lung nodule annotations. Subsequently, we

evaluated five basic (online) and two generative model-based offline data

augmentation methods with ten state-of-the-art (SOTA) 3D deep learning-

based lung cancer prediction models.

Results: Our results demonstrated that the performance improvement by data

augmentation was highly dependent on approach used. The Cutmix method

resulted in the highest average performance improvement across all three

metrics: 1.07%, 3.29%, 1.19% for accuracy, F1 score and AUC, respectively.

MobileNetV2 with a simple data augmentation approach achieved the best

AUC of 0.8719 among all lung cancer predictors, demonstrating a 7.62%

improvement compared to baseline. Furthermore, the MED-DDPM data

augmentation approach was able to improve prediction performance by

rebalancing the training set and adding moderately synthetic data.

Conclusions: The effectiveness of online and offline data augmentation methods

were highly sensitive to the prediction model, highlighting the importance of

carefully selecting the optimal data augmentation method. Our findings suggest

that certain traditional methods can providemore stable and higher performance

compared to SOTA online data augmentation approaches. Overall, these results

offer meaningful insights for the development and clinical integration of data

augmented deep learning tools for lung cancer screening.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1492758/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1492758/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1492758/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1492758&domain=pdf&date_stamp=2025-02-25
mailto:venkata.manem@crchudequebec.ulaval.ca
https://doi.org/10.3389/fonc.2025.1492758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1492758
https://www.frontiersin.org/journals/oncology


Jiang and Manem 10.3389/fonc.2025.1492758
Introduction

Lung cancer remains the leading mortality cause of cancer in

the North America. In 2023, an estimated 32,100 new and 20,700

deaths are expected in Canada, which makes lung cancer

accountable for approximately 1 in 4 cancer deaths (1, 2). The

patients diagnosed with distant metastatic disease (stage IV) had a

1-year survival rate of 15~19% compared with 81-85% for early

stage (stage I) (3), which emphasizes the importance and clinical

urgency for lung cancer early detection.

Low-dose computed tomography (LDCT) offers lower

radiation exposure compared to a standard CT scan, making it

an effective tool for regular lung cancer screening to improve early

detection and reduce mortality. The American Association for

Thoracic Surgery recommend annual lung cancer screening with

LDCT for adults aged 55-79 years who have a long-term smoking

history and currently smoke or have quit smoking within the past

15 years (4). The National Lung Screening Trial (NLST), a large

randomized controlled trial sponsored by the National Cancer

Institute (NCI), aimed to identify the efficacy of LDCT in lung

cancer screening compared to standard chest X-ray among high-

risk patients. It enrolled 53,454 current or former cigarette

smokers aged 55 to 74 with at least a 30 pack-year smoking

history. The study found a 20% reduction in lung cancer mortality

in the LDCT arm compared to the chest X-ray arm during the

follow-up period (5).

In this regard, the recent advances in deep learning have greatly

encouraged its applications in the medical imaging domain,

specifically in cancer diagnoses and treatments (6, 7). Despite

remarkable achievements, there are still two major issues

hindering further application of deep learning in the medical

imaging domain, and their translation to a clinical setting,

namely: a) Data shortage: The performance of deep learning-

based diagnostic models greatly depends on high-quality data, i.e.,

a well-labeled and massive dataset can significantly enhance

diagnostic capabilities. However, due to patient privacy issues and

the time-consuming labeling process, data scarcity is commonly

seen in medical imaging areas, significantly limiting the deployment

of deep learning models in lung cancer screening (8); b) Imbalanced

data: Imbalanced data, where one category is significantly

underrepresented compared to the others, can be commonly

observed in lung cancer screening trials (malignant cases are

much less prevalent than benign cases). In such circumstances,

models tend to be biased towards the majority category, resulting in

poor diagnostic performance for the minority category. This is

because, during training, overfitting is more likely to occur for the

minority category due to the limited number of samples

available (9).

To overcome the data shortage and imbalanced data problems,

data augmentation technologies have been introduced into various

computer vision areas, such as image classification, object detection,

and segmentation (10, 11). These technologies largely fall into

five categories:
Fron
1. Geometric transformations are operations that change the

position, orientation, or scale of a geometric image or shape
tiers in Oncology 02
in a coordinate plane, including rotations, translations,

reflections, and dilations.

2. Photometric transformations modify pixel intensity

without changing the geometric structure of an

image, including brightness and contrast adjustment,

color space transformation, noise addition, blurring, and

sharpening (12).

3. Mixing images, also known as image blending or

compositing, combines two or more images to create a

novel synthetic image. Recently emerged methods include

Mixup (13) and CutMix (14).

4. Random erasing randomly selects a rectangular region

within an input image and erases its pixels by replacing

them with random or specific values. It is widely applied in

tasks such as image classification (15) and object

detection (16).

5. Generative model-based methods leverage cutting-edge

generative models, such as Generative Adversarial

Networks (GANs), Variational Autoencoders (VAEs),

and diffusion models, to generate novel synthetic data for

augmenting existing datasets (17).
Although data augmentation has become an essential method

for training deep learning models in many applications, it has not

been comprehensively reviewed in the context of lung cancer

detection. In this study, we selected seven typical data

augmentation methods from the above categories: geometric data

augmentation, RandAugment (12), Mixup, Cutout, CutMix, Med-

DDPM (18), and HA-GAN (19). The first five methods were

originally designed for 2D image tasks and adjusted to 3D

volume tasks in this paper, which are for online data

augmentation, meaning they directly participate in the training

procedure and augment the dataset in parallel. The latter two

approaches are based on generative models (diffusion models and

GANs) and perform offline data augmentation, allowing them to

generate synthetic samples that can be used to augment the original

dataset before the training procedure. In the current work, we

performed a systematic comparison of the above seven data

augmentation methods on ten different deep learning-based lung

cancer predictors. Each predictor was trained and tested on a subset

of the NLST dataset, and the results were reported using different

metrics. Through the evaluation and analysis of the experiments, we

aim to identify a suitable data augmentation method that can be

used to develop a highly efficient and a clinically relevant lung

cancer screening tool.
Materials and methods

Description of cohorts

The National Lung Screening Trial (5) was a large randomized

controlled trial that studied the effectiveness of LDCT for early

detection of lung cancer in high-risk individuals. 53,454

participants aged 55 to 74 with at least 30 pack-years of smoking

history were randomly assigned to either annual LDCT or chest X-
frontiersin.org
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ray screening for a 3-year period. Previous works have stated the

detailed study design and main findings for the NLST dataset. We

were granted access to LDCT images and clinical records through

the National Cancer Institute (NCI) Cancer Image Archive. Due to

the availability of annotations, we considered the case-control

analysis of Cherezov et al. (20) to select 253 participants who had

CT scans without contrast. Among these 253 cases, 50 were from

the first follow-up screen (T1), and 103 were from the second

follow-up screen (T2). Participants from T1 were assigned to the

discovery cohort (N=150), and those from T2 were assigned to the

validation cohort (N=103) for the evaluation of lung cancer

prediction. Note that the discovery cohort was also used for

training the generative model-based data augmentation methods.

Nodule segmentation annotations were provided by Cherezov et al.

(20). To further clarify the data organization, we demonstrate the

dataset construction consort diagram of lung cancers and nodule‐

positive controls in Figure 1.
Deep learning based lung
cancer predictors

To comprehensively evaluate data augmentation methods for

lung cancer prediction, we selected 11 representative 3D deep

learning models based on their adaptability to 3D applications,

prominence in medical imaging analysis, and availability of

pretrained models, ensuring a robust and comparative assessment

of potential methodological approaches. Table 1 provides details of

the implemented architectures. The implemented lung cancer

predictors can be further categorized into the ResNet family and

efficient models.

ResNet family: As a commonly used deep learning

architecture for 3D vision applications, models from the ResNet
Frontiers in Oncology 03
family were originally designed with residual connections to

overcome the gradient vanishing problem in deep learning

models for image classification tasks. Later, the model

structures were adapted to a wide range of 3D vision

applications, such as video analysis, human action recognition,

and medical image analysis. In this paper, we consider ResNet

models with diverse depth configurations (ResNet18, ResNet50,

ResNet101) (21–23), which impacts the trade-off between model

performance and computational complexity. Additionally, an

improved ResNet structure, ‘ResNeXt101 ’ (21–23), was

considered as a predictor candidate due to its better capabilities

introduced by a split-transform-merge strategy in the lower

dimensional embeddings. Furthermore, R2Plus1D (22), a

variant of ResNet with high performance in capturing spatial

and temporal information, serves as a predictor candidate for

verifying the transferability between video analysis and lung

cancer prediction.

Efficient Architectures: Due to the high demand for computing

resources, the application of deep learning-based diagnostic models

has been limited. In this study, we included various efficient deep

learning predictors (ShuffleNetV1 (23, 24), ShuffleNetV2 (23, 25),

SqueezeNet (23, 26), MobileNetV1 (23, 27), and MobileNetV2 (23,

28)) to verify how data augmentation impacts the prediction

performance of efficient models. ShuffleNetV1 is an efficient

convolutional neural network (CNN) architecture that utilizes

channel shuffle operations to exchange information among

different group convolution branches. ShuffleNetV2 focused on

more practical scenarios and introduced channel split operations

for dense input/output while maintaining low computational

complexity. SqueezeNet, one of the earliest compact CNN

models, utilizes specially designed modules with squeeze and

expand layers to achieve better efficiency trade-offs. MobileNetV1

is a widely used network structure in edge computing and
FIGURE 1

Dataset construction consort diagram.
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embedded systems with depth wise separable convolutions, while

MobileNetV2 is improved by introducing linear bottleneck layers

and inverted residual blocks.
Data augmentation methods for lung
cancer predictors

In this subsection, we will categorize the data augmentation

candidates into two categories: online and offline data

augmentation. The key difference between them is the timing of

performing the data augmentation. Online methods perform data

augmentation while training the predictors; and the offline

approaches perform data augmentation before the training phase.

Online data augmentation: As an essential tool for training deep

learning models, online data augmentation has been widely applied

in almost every computer vision task for decades due to its

capability in augmenting data during the training phase. This

allows effectively augmenting the existing dataset while suffering

from relatively low quality in augmented data. Based on simple

geometric and photometric transformations, researchers

introduced automatic data augmentation strategy search methods,

such as AutoAugment (29) and RandAugment (12). More recently,

image mixing and random erasing-based approaches, such as

Mixup (13), Cutout (15), and CutMix (14), have gained attention

due to their high capabilities in computer vision tasks. Although

these data augmentation approaches have proven their performance

in various practical tasks, the transferability of their high capacity

from traditional areas to medical domains remain ambiguous. In

this work, we implement and adjust different online data

augmentation methods from 2D image areas to 3D CT volume

domains. Specifically, five methods were included: volume-based

geometric data augmentation (V-GDA), volume-based

RandAugment (V-Rand), volume-based Mixup (V-Mixup),

volume-based Cutout (V-Cutout), and volume-based Cutmix

(V-Cutmix).
Frontiers in Oncology 04
• V-GDA: We included two common geometr ic

transformations: RandFlip and RandRotate. The former

randomly flips the CT volumes along a random axis with

a probability of 50%. The latter randomly rotates the CT

volume 90 degrees along a random axis with a probability

of 50%.

• V-RA: We followed the algorithm and basic settings of

RandAugment (12) while adapting the operations for 3D

inputs and making them suitable for CT scans. The specific

list of operations is shown in the Supplementary Materials.

• V-Mixup, V-Cutout and V-Cutmix: The original Mixup,

Cutout, and Cutmix were designed for image classification

tasks. To apply them to the lung cancer prediction task, we

adapted the algorithms to enable them to accept 3D

CT volumes.
The discovery cohort was rebalanced simply by oversampling

the minority category then applied online data augmentation while

the training stage.

Offline data augmentation: The rapid advancements in deep

generative models have positioned offline data augmentation as a

trending research topic across various fields. The core idea behind

offline data augmentation is to augment an existing dataset prior to

the training phase. These data augmentation algorithms are

typically computationally intensive and thus impractical to use

during the training stage. However, the offline augmentation

approach allows for the generation of high-quality augmented

data at the expense of computational efficiency. In this work, we

utilize a diffusion model-based Med-DDPM (18) and a GAN-based

HA-GAN (19) to evaluate the capability of SOTA deep generative

models for data augmentation in lung cancer prediction.

Specifically, these generative models are trained on the discovery

cohort to generate synthetic lung nodule CT scans for data

augmentation purposes. Unlike online data augmentation, which

slightly modifies existing samples, deep generative model-based

offline data augmentation synthesizes novel samples.

We assess these models in two tasks: rebalancing and

incremental. In the rebalancing task, the generative models

produce synthetic minority class samples, which are then mixed

with real samples from the discovery cohort to rebalance the class

distribution. For the incremental task, the generative models

generate synthetic samples for both malignant and benign classes,

which are then added to the rebalanced discovery cohort from the

previous task. We generate additional samples amounting to 50%,

200%, and 500% of the original discovery cohort size, incorporating

these as extra data. The case numbers for each task are summarized

in Table 2. To demonstrate the performance improvement clearly,

we also setup a baseline task that involved no data augmentation or

oversampling cases.
Lung cancer prediction workflow

The workflow for lung cancer prediction using online and

offline data augmentation methods is illustrated in Figure 2. The

entire pipeline can be divided into three main parts:
TABLE 1 The summarization of the implemented deep learning-based
lung cancer predictors in this research study.

Model types Models Params (M)

ResNet family

ResNet18 33.20

ResNet50 46.20

ResNet101 85.25

ResNeXt101 47.53

R2Plus1D 46.22

Efficient models

ShuffleNetv1 3.61

ShuffleNetv2 3.41

SqueezeNet 1.84

MobileNetv1 12.88

MobileNetv2 2.36

R2Plus1D 46.22
Params refers to the number of parameters.
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Fron
1. Data Preprocessing: Nodule region-of-interest (ROI) slices

are extracted from chest CT scans in the discovery cohort

based on segmentation annotations. These slices are then

stacked into a three-dimensional CT volume.

2. Data Augmentation:
tiers in
◦ Online Data Augmentation: Augmented samples are

generated from real samples during the training

stage. Both real and augmented samples are used to

train the prediction model.
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◦ Offline Data Augmentation: Real samples were first

used to train generative models. The pre-trained

generative models then synthesize augmented

samples, which were then mixed with real samples

for training the predictors.
3. Prediction: After the training stage, the lung cancer

predictor classifies the lung nodule volumes into either

malignant or benign cases using the validation cohort.
Evaluation metrics

To comprehensively evaluate the candidate methods, we

reported the performance of the developed models using three

metrics: accuracy, F1 score, and area under the receiver operating

characteristic (AUROC) score. Specifically, accuracy and F1 score

were reported from the epoch with the highest AUROC score.

Given that both online and offline data augmentation introduce

randomness to the training stage, we reported prediction

performance with a 95% confidence interval. For the online

methods, each predictor was trained ten times using the same

data augmentation settings and training set, with performance

based on the results of these 10-fold repeated experiments. For

the offline methods, synthetic samples were generated ten times to

construct 10-fold training sets containing both synthetic and real

samples. Performance was then reported from the predictors

trained on these 10-fold training sets.

In order to provide a straightforward way for reviewing the

quality of synthetic images, we applied the multidimension scaling

(MDS) visualization to both real and synthetic samples. We firstly

used a pretrained ResNet50 model to extract feature embeddings

from 200 samples generated by each offline data augmentation

method. For reference, we also extracted features from 200 real

image samples. All feature embeddings were mapped into two-

dimensional space using MDS.
FIGURE 2

Workflow of online and offline data augmentation for lung cancer prediction using chest CT scans. The workflow is divided into three main parts:
data preprocessing (orange dashed rectangle), data augmentation (yellow and orange blocks), and predictor training stage (blue dashed block).
TABLE 2 The summarization of the case numbers of the discovery
cohort in different tasks.

Tasks

Malignant
case number

(Real/
Synthetic or
oversampled)

Benign case
number

(Real/Synthetic)

Total
number

W/o DA + w/o
oversampling
(baseline)

49/0 101/0 150

Online DA +
simple

oversampling
49/52 101/0 202

Offline DA +
Rebalance (RB)

49/52 101/0 202

Offline DA +
50%

samples
(Plus50)

49/102 101/50 302

Offline DA +
200%
samples
(Plus200)

49/252 101/100 502

Offline DA +
500%
samples
(Plus500)

49/552 101/500 1202
DA refers to data augmentation.
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Implementation details

Lung cancer predictors were trained for 120 epochs with a

learning rate of 1e-4. An Adam optimizer with parameters b1 = 0.9

and b2 = 0.99 is used for the training purpose. The batch size used

for training the 3D models is 4. All the predictors are pre-trained by

the Kinetics dataset. All experiments were run on the HPC of

Université Laval using either an Nvidia Tesla V100 16GB or an

Nvidia Tesla A100 40GB/80GB GPU.
Results

Clinical data description

The study population characteristics of discovery and validation

cohorts were summarized in Table 3. There was no significant

difference found between the discovery and validation cohorts

regarding the study population characteristics. Participants from

both discovery and validation cohorts have similar average ages,

with p=0.195. As for sex distribution, the majority of participants

were male, with 57.33% in the discovery cohort, compared to

54.37% in the validation cohort. Regarding race, the majority of

participants are white in both cohorts (94.67% vs. 93.20%). The

majority were current smokers in both cohorts, but the percentage

was higher in the validation cohort than the training cohort (58.25%

compared to 52.00%). In terms of the distribution of nodule

location, the nodules in discovery cohort tend to locate at right

lobe (58.00% vs. 53.40%) but tend to locate at left lobe (42.00% vs.

45.63%) in the validation cohort. The distribution of nodule sizes

(<6 mm, 6-16 mm, ≥16 mm) shows no significant difference

between the two cohorts, with similar percentages in each size

range. The distribution of cancer type between the discovery and

validation cohorts are close with a p=0.467. And the distribution of

cancer stages was also similar between two cohorts, with small

difference across the stages with a p=0.325.
Performance of baseline models

In this section, we present the lung cancer prediction performance

of candidate lung cancer predictors without using different data

augmentation approaches (i.e., baseline models). The performance

details were demonstrated in Figure 3. The experimental results

indicate that MobileNetv2 achieves the best performance in accuracy

(0.8010 ± 0.0115), and ShuffleNetv2 outperforms other predictors with

0.6615 ± 0.0276 F1 score. In addition, MobileNetv1 has the best

AUROC score in 0.8323 ± 0.0093. On the other hand, R2Plus1D

achieved the lowest accuracy (0.7233 ± 0.0355) and AUROC score

(0.7493 ± 0.0210). The lowest F1 score (0.5050 ± 0.1802) is obtained by

SqueezeNet. The performance among different predictors remains

stable, which reflects their capability in lung cancer prediction.

Notice that the F1 scores of SqueezeNet and MobileNetv1 are with
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TABLE 3 Study population characteristics of discovery and
validation cohorts.

Discovery
cohort
(N=150)

Validation
cohort
(N=103)

P

Age, mean (SD) 63.80 (5.05) 63.24 (5.03) 0.195

Sex, N (%) 0.321

Male 86 (57.33) 56 (54.37)

Female 64 (42.67) 47 (45.63)

Race, N (%) 0.900

White 142 (94.67) 96 (93.20)

Non-white 6 (5.33) 96 (5.83)

Smoking status,
N (%)

0.164

Former 72 (48.00) 43 (41.75)

Current 78 (52.00) 60 (58.25)

Nodule location,
N (%)

0.099

Right lobe 87 (58.00) 55 (53.40)

Left lobe 63 (42.00) 47 (45.63)

Nodule size 0.204

<6 mm 59 (39.33) 42 (40.78)

6-16 mm 66 (44.00) 49 (47.57)

≥16 mm 25 (16.67) 12 (11.65)

Malignant cases N=49 N=32

Histology, N (%) 0.467

Small Cell
Carcinoma, NOS

1 (2.04) 3 (9.38)

Non-Small Cell
Carcinoma, NOS

1 (2.04) 1 (3,13)

Squamous Cell
Carcinoma, NOS

6 (12.24) 4 (12.50)

Adenocarcinoma, NOS 22 (44.90) 14 (43.75)

Bronchiolo-
Alveolar Adenoca

10 (20.41) 4 (12.50)

Other or NOS 9 (18.37) 6 (18.75)

Stage, N (%) 0.325

I 34 (69.39) 22 (68.75)

II 5 (10.20) 3 (9.38)

III 4 (8.16) 3 (9.38)

IV 4 (8.16) 3 (9.38)

NOS 2 (4.08) 1 (3.13)
front
Continuous data were reported as mean ± standard deviation (SD), and categorical data as
counts and percentages.
iersin.org
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large error bars, which indicates their sensitivity to certain data and

potential overfitting problems.
Performance of baseline models with
online data augmentation methods

In Figure 4, we illustrate the online data augmentation

performance in lung cancer prediction. The evaluation metrics

were reported as average scores across ten predictors for each

online data augmentation method. V-Cutmix achieved the best

average accuracy (0.7879 ± 0.0196), while V-GDA showed the
Frontiers in Oncology 07
highest F1 score (0.6639 ± 0.0306) and the highest AUROC score

(0.8315 ± 0.0119). On the other hand, V-Cutout has the lowest

scores in all three metrics (accuracy: 0.7608 ± 0.0298, F1 score:

0.6105 ± 0.0460 and AUROC score: 0.7942 ± 0.0122).

The differences between the best and worst predictors are

relatively small (about 2-5%), which suggests that all approaches

have some merit, but some are slightly more suitable for the lung

cancer prediction task than others. Different methods excel in

different metrics, which indicates that the choice of online data

augmentation technique might depend on which metric is most

important for the specific scenario of lung cancer prediction in the

clinical workflow.
FIGURE 3

The demonstration of lung cancer prediction performance of baseline models.
FIGURE 4

Illustration of online data augmentation performance in lung cancer prediction.
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Performance of baseline models with
offline data augmentation methods

In Figure 5, we demonstrate the offline data augmentation

performance in lung cancer prediction. The 200% extra data from

MED-DDPM after rebalancing have the best average accuracy

(0.7840 ± 0.0195). The predictors trained with 200% extra data

from MED-DDPM after rebalancing achieved the best average F1

score (0.6453 ± 0.0329). And the predictors trained with the

training set rebalanced by MED-DDPM outperformed the other

data offline augmentation settings in AUROC score (0.8081 ±

0.0109). Please note that that the predictors trained with synthetic

data from HA-GAN have lower average performance in almost

experimental settings compared to the baseline model.

The results suggest that the quality of synthetic data is more

important than sheer quantity. MED-DDPM’s performance

plateaus or even slightly decreases with 500% extra data, which

indicates that there is an optimal point of data augmentation

beyond which returns diminish. HA-GAN’s underperformance

compared to MED-DDPM suggests that not all generative models

are equally suited for medical data augmentation. This could be due

to the potential overfitting problem that degrades the sample

diversity from HA-GAN.
Real vs. synthetic data comparison

To evaluate the diversity and fidelity of synthetic data compared

to real data, we followed HA-GAN (19) to use multidimensional

scaling (MSD) to visualize the distance between real and synthetic

samples. Figure 6 illustrates the visualization results. MSD is a

statistical technique that transforms high-dimensional data into a

lower-dimensional space while preserving the relative distances

between data points. In this study, MDS helps visualize the

similarity and distribution of real and synthetic images that are

embedded by a pretrained ResNet-50 model. The visualization

suggests that MED-DDPM generates a more diverse range of
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augmented samples compared to HA-GAN, potentially capturing

a broader spectrum of variations in the original data space.

Conversely, HA-GAN synthesizes samples that more closely align

with the distribution of real data. The experimental results highlight

that two data augmentation methods were able to generate realistic

samples, which are close to the real samples.
Discussion

Data augmentation alongside deep learning approaches and has

been developed and applied to various computer vision areas, such

as image recognition (12–15), object detection (16), and medical

imaging analysis (30). Although existing data augmentation

approaches have shown promising results in the above

applications, their performance in medical imaging analysis,

especially lung cancer prediction, remains ambiguous and

controversial. Moreover, previous studies (18, 19, 30) mainly

focused on developing novel offline data augmentation methods

but rarely compared the proposed methods to online data

augmentation methods.

For online data augmentation, it is important to investigate if a

more complex strategy approach actually benefits lung cancer

prediction performance. According to Figure 4, compared to the

baseline (no data augmentation applied), interestingly, V-GDA with

the simplest strategy introduced the highest improvements in F1 and

AUC scores, indicating that geometric transformation is an effective

data augmentation approach. It excels by preserving the intricate

anatomical structure and spatial relationships critical to medical

imaging. Unlike aggressive augmentation strategies that can

introduce artificial distortions or obscure diagnostic regions,

RandFlip and RandRotate provide controlled variability that

respects the fundamental integrity of lung tissue representations.

Their effectiveness stems from simulating realistic imaging variations

while maintaining the essential diagnostic features, making them

particularly well-suited for nuanced medical image analysis where

precision and anatomical fidelity are paramount. V-RA involves both
FIGURE 5

Demonstration of lung cancer prediction using offline data augmentation methods (left: MED-DDPM, right: HA-GAN). RB represents the rebalancing
experimental setting, and PlusN indicates N% extra data is involved after the rebalancing.
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geometric and photometric transformations, and randomly combines

them and chooses magnitudes for them. The experimental results

reveal that involving more transformations did not bring

performance improvements and instead posed negative effects.

Among the image mixing-based data augmentation methods, V-

CutMix, as the technology combination of V-Mixup and V-Cutout,

also took advantages from both and achieved improvements for all

three-evaluation metrics. Our results highlight the significance of

online data augmentation methods, which can achieve considerable

performance improvements with relatively simple strategies.

Furthermore, our findings indicate that involving more

transformations or applying more complex strategies does not

necessarily bring observable performance improvements.

We summarized the performance comparison of offline data

augmentation methods in Figure 5. We observed that MED-DDPM

offers improvements in F1 and AUC scores; however, it decreases

accuracy in the rebalance subtask, achieving similar performance to

V-GDA and V-CutMix. If we add an extra 50% and 200% training

data from MED-DDPM, we observed improvements in accuracy

and F1 score, allowing the performance to get closer to V-GDA and

V-CutMix. However, neither MED-DDPM nor HA-GAN resulted

in improvement across all three metrics. According to our results,

the diffusion model-based MED-DDPM can achieve similar

performance compared to first-class online methods with higher

stability. However, the performance of HA-GAN highlights the

importance of choosing a suitable offline data augmentation

method, which can highly impact model performance of lung

cancer prediction.

In addition, the number of synthetic samples generated by

offl ine data augmentation methods impacts the model
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performance. Although synthetic data has been shown to improve

diagnostic performance (30–32), the optimal number of synthetic

samples appears to be context-dependent. To determine the

appropriate proportion of synthetic data for lung cancer

prediction, we illustrate the performance trends when introducing

varying proportions of synthetic data into the original discovery

cohort (Figure 5). We achieved the highest accuracy by adding

200% extra synthetic data from both MED-DDPM and HA-GAN,

while performance fell below the baseline (0.7795) when adding

500% extra data samples. Regarding the F1 score, MED-DDPM

reached its highest score when adding 50% synthetic data, and HA-

GAN achieved its best F1 score with 200% synthetic data. However,

when adding 500% extra synthetic data, the F1 scores of both

methods dropped below the baseline (0.6213). The AUROC scores

of both methods decreased as more synthetic data were introduced

into the discovery cohort. The diminishing returns in synthetic data

likely stem from two key factors: model saturation and data

distribution limitations. As more synthetic data is added, the

model’s learning gains plateau because the generated samples

become increasingly redundant or less informative. In summary,

200% appears to be the optimal proportion of extra synthetic data to

introduce into the discovery cohort for lung cancer prediction. The

performance trends also highlight that too much synthetic data can

negatively impact performance, with the optimal proportion

varying depending on the generative models and specific tasks.

Too much synthetic data can introduce noise or artificial variations

that deviate from the underlying data distribution, potentially

degrading model performance.

Furthermore, it is vital to understand that the online and offline

data augmentation approaches address data shortage and
FIGURE 6

MSD visualization of offline data augmentation methods. Each point represents an image sample, with ellipses fitted to demonstrate the distribution
of samples from different approaches. Red spots (enclosed in a red ellipse) represent real samples, while synthetic samples generated by MED-
DDPM and HA-GAN are represented by orange and green spots within corresponding colored ellipses, respectively.
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imbalanced data problems in different ways. Online methods, due

to their real-time nature, often use basic oversampling techniques

and create slightly modified samples, tackling data shortage and

imbalance simultaneously. Existing studies (33) suggest that online

data augmentation may cause anatomical inconsistencies, as pixel-

level transformations can produce irrelevant images that lack

anatomical variation and disrupt the logic of medical image

structure. However, our results provide a novel viewpoint,

highlighting that some online data augmentation approaches can

effectively mitigate these issues and yield significant performance

improvements. Conversely, offline data augmentation typically

employs generative models to model the data distribution of

specific samples, then synthesize artificial data from these

distributions. While some studies (30–32) have shown that online

methods perform well in various medical tasks, our findings only

partially support these conclusions. The performance of online data

augmentation in lung cancer prediction is highly dependent on the

proportion of synthetic data mixed into the discovery cohort. An

improper proportion of synthetic data can lead to a noticeable

reduction in performance, emphasizing the need for careful

consideration of the synthetic data ratio.

There are two main factors that can be used to evaluate the

synthetic samples’ quality: diversity and fidelity. In Figure 6, as for

MED-DDPM, the synthetic samples appear to have a wider

distribution than the real data. It captures the general shape and

orientation of the real data distribution, at the same time, it

overestimates the spread. In the case of HA-GAN, the samples

have a distribution that more closely matches the real data. The HA-

GAN samples’ distribution is slightly smaller and nestled within the

real data distribution, which indicates that HA-GAN produces

samples that are more realistic and closely aligned with the real

data distribution. The apparent paradox in prediction performance

can be explained by the trade-off between diversity and fidelity.

MED-DDPM’s samples have greater diversity, despite lower

average fidelity, provides more varied training examples. This

helps the model learn more robust features and generalize better

to unseen data. HA-GAN’s high fidelity indicates its capability in

generating very realistic samples, but these may be too similar to the

existing real data. While realistic, they don’t add much new

information to improve the model’s predictive capabilities. The

experimental results highlight the importance of choosing the

offline data augmentation methods with a better trade-off between

diversity and fidelity.

Our findings have significant clinical implications for

lung cancer screening. By demonstrating improved model

performance, the research addresses critical challenges in early

detection, where traditional screening methods often struggle with

limited data and imbalanced datasets.

The improvements in model performance directly translate to

potentially clinical benefits:
Fron
• Enhanced Early Detection: The model performance

improvement means more accurate identification of
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lung nodules at earlier stages, when treatment is most

effective. Given that stage I lung cancer has an 81-85%

survival rate compared to just 15-19% at stage IV, even

marginal predictive improvements can significantly impact

patient outcomes.

• Addressing Data Scarcity: The study provides a robust

methodology for developing reliable predictive models

with limited medical imaging datasets, a persistent

challenge in healthcare AI. By demonstrating effective

data augmentation techniques, the research offers a

framework for developing more reliable diagnostic tools

across resource-constrained settings.

• Generalizability: The comprehensive evaluation of multiple

augmentation techniques provides clinicians and

researchers a nuanced approach to developing machine

learning models, emphasizing the importance of carefully

selected data enhancement strategies.
Our research study has several strengths, including a

comprehensive comparison and evaluation of modern data

augmentation approaches for lung cancer prediction. Notably, our

evaluation includes online data augmentation, which is often

overlooked in recent studies. Our findings reveal that simple

online data augmentation methods generally outperform offline

methods, although the extent of performance improvement

depends on the predictor types and the proportion of synthetic

data used. These outcomes can guide more precise model and data

augmentation selections in lung cancer prediction. However, our

study has two significant limitations. First, the number of offline

data augmentation candidates is limited due to the time-consuming

training and sampling processes required for generative models.

This limitation affects the reliability of performance evaluations for

offline data augmentation. Second, the cohort scale is relatively

limited. Due to the homogeneous backgrounds of participants, the

sensitivity and generalization capability of data augmentation

methods cannot be fully assessed. To address these issues, future

research should include more generative model-based data

augmentation approaches, conduct evaluations on larger, multi-

institutional cohorts and consider diverse evaluation metrics for

image quality, such as contrast-to-noise ratio (CNR) (34). In

summary, data augmentation can be an effective tool for

achieving better and more stable lung cancer prediction

performance using CT scans. Considering the balance between

performance and efficiency, online data augmentation is more

suitable for this task due to its simpler strategy and efficient

online training.
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