Skip to main content

ORIGINAL RESEARCH article

Front. Oncol.

Sec. Thoracic Oncology

Volume 15 - 2025 | doi: 10.3389/fonc.2025.1487126

Construction of nomogram model of poor prognosis for patients newly diagnosed with brain metastasis from non-small cell lung cancer based on clinical pathology and prognostic scores

Provisionally accepted
Zengliang Li Zengliang Li Xiaoyue Wang Xiaoyue Wang Guodong Ma Guodong Ma *
  • Nanjing Chest Hospital, Nanjing, China

The final, formatted version of the article will be published soon.

    Objective: To explore non-small cell lung cancer (NSCLC) patients with new diagnosis of brain metastasis and construct Logistic regression model based on clinical pathology and prognosis score, and verify. Methods: A total of 158 patients newly diagnosed with brain metastasis in NSCLC were retrospectively selected from March 2020 to April 2022. The clinical data of patients were collected, and Logistic regression analysis was used to analyze the influencing factors of poor prognosis for newly diagnosed NSCLC with brain metastasis.The results of univariate analysis showed that the clinical pathological features including NLR>2.94, abnormal CEA, mediastinal lymph node metastasis, symptomatic treatment with therapeutic method, extracranial metastasis and GPS1-2 score were associated with the survival and prognosis of patients with newly diagnosed brain metastasis from NSCLC (P < 0.05). Multivariate Logistic regression analysis showed that NLR>2.94, mediastinal lymph node metastasis, CEA abnormality, extracranial metastasis, and newly diagnosed NSCLC with GPS1-2 score were independent risk factors for poor prognosis of brain metastasis (P < 0.05).Internal verification using the Bootstrap method showed that the predicted curve fitted well with the standard model curve, with the average absolute error of 0.029. The ROC curve result showed that the AUC was 0.887, and the 95%CI was 0.782-0.905, with the corresponding specificity and sensitivity of 90.50% and 80.00%, respectively. This indicates that the prediction accuracy of this Nomogram model is good.: NLR, mediastinal lymph node metastasis, CEA, extracranial metastasis and GPS are risk factors for poor prognosis of newly diagnosed brain metastasis in NSCLC. The risk factor model constructed based on these risk factors has excellent prediction value for the poor prognosis of newly diagnosed brain metastasis in NSCLC. In order to reduce the risk of newly diagnosed brain metastasis in NSCLC and improve the prognosis, targeted preventive measures are taken against the above risk factors in clinical practice.

    Keywords: CLINICAL PATHOLOGY, Prognostic score, Non-small cell lung cancer, brain metastases, unfavourable prognosis

    Received: 27 Aug 2024; Accepted: 17 Feb 2025.

    Copyright: © 2025 Li, Wang and Ma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Guodong Ma, Nanjing Chest Hospital, Nanjing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more