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Introduction: Precise understanding of proliferative activity in breast cancer

holds significant value in the monitoring of neoadjuvant treatment, while current

immunostaining of Ki-67 from biopsy or resected tumour suffers from partial

sampling error. Multi-compartment model of transverse relaxation time has been

proposed to differentiate intra- and extra-cellular space and biochemical

environment but susceptible to noise, with recent development of Bayesian

algorithm suggested to improve robustness. We hence hypothesise that intra-

and extra-cellular transverse relaxation times using Bayesian algorithm might be

sensitive to proliferative activity.

Materials and methods: Twenty whole tumour specimens freshly excised from

patients with invasive ductal carcinoma were scanned on a 3 T clinical scanner.

The overall transverse relaxation time was computed using a single-

compartment model with the non-linear least squares algorithm, while intra-

and extra-cellular transverse relaxation times were computed using a multi-

compartment model with the Bayesian algorithm. Immunostaining of Ki-67 was

conducted, yielding 9 and 11 cases with high and low proliferating

activities respectively.

Results: For single-compartment model, there was a significant higher overall

transverse relaxation time (p = 0.031) in high (83.55 ± 7.38 ms) against low (73.30

± 11.30 ms) proliferating tumours. For multi-compartment model, there was a

significant higher intra-cellular transverse relaxation time (p = 0.047) in high

(73.52 ± 10.92 ms) against low (61.30 ± 14.01 ms) proliferating tumours. There

was no significant difference in extra-cellular transverse relaxation time (p =

0.203) between high and low proliferating tumours.

Conclusions: Overall and Bayesian intra-cellular transverse relaxation times are

associated with proliferative activities in breast tumours, potentially serving as a

non-invasive imaging marker for neoadjuvant treatment monitoring.
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1 Introduction

New pharmaceutical options and the improvement in screening

services have improved the 5-year survival rate of breast cancer (1, 2),

the most prevalent cancer worldwide (3), from 79.9% between 2000 –

2004 to 86.3% between 2014 – 2018 in the UK. Neoadjuvant therapies,

often a combination of chemotherapy and hormonal therapy, are

increasingly used to improve surgical outcomes by downstaging large

tumours to facilitate breast conservation surgery (4). Neoadjuvant

therapy is typically lengthy and costly, exposing non-responding

patients to unnecessary potential adverse effects (5, 6). Rapid

tumour growth, a central prognostic indicator of breast cancer, can

be estimated using the proliferative activitymarker Ki-67, highlighting

nuclear protein expressed during cell division (7). However, Ki-67

using biopsy is invasive with narrow spatial coverage, suboptimal for

accurately estimating intrinsically heterogeneous proliferative activity

across the whole tumour during treatment (8, 9). Hence, an imaging

marker of proliferative activity is central to effective neoadjuvant

treatment monitoring in breast cancer.

PET tracer of 3’-deoxy-3’-[18F] fluorothymidine (FLT) has

been shown to correlate with Ki-67 in breast cancer (10), but

causes myelosuppression, peripheral neuropathy and nausea at

high doses (7). Peri-tumoural texture features of kurtosis,

skewness and entropy, based on maximum enhancement from

dynamic contrast-enhanced (DCE) MRI are associated with

proliferative activity in large cohorts (11, 12), but the primary

sensitivity of DCE MRI towards angiogenesis compromises

specificity (13). Apparent diffusion coefficient from diffusion

weighted imaging (DWI) can distinguish between low and high

proliferating breast tumours (11, 14), but is susceptible to biological

noise (15). Both peri-tumoural lipid composition from chemical

shift-encoded imaging (CSEI) (16) and perfusion fraction from

intravoxel incoherent motion (IVIM) MRI (17) have shown

correlations against proliferative activity, but the primary

sensitivity to tissue composition and perfusion limits specificity

(18). Hence, an imaging approach specific to proliferative activity

with low susceptibility to biological noise is highly desirable.

Transverse relaxation time mapping has been shown to highlight

tumour pathology (19), but only offers a crude picture of tissue

microenvironment (20). Rapidly proliferating tumours are associated

with elevated angiogenesis to support accelerated metabolic activities

(21) exacerbating vascular permeability and fluid efflux (22), and the

consequent increased free water pool and a diluted biochemical

microenvironment (21, 23) lead to elevated transverse relaxation

time in high proliferating breast tumours as observed in vivo (24).

Intra-cellular transverse relaxation time, although more susceptible to

noise compared to overall transverse relaxation time, is more specific to

alterations in intra-cellular processes (25), potentially revealing tumour

response to chemotherapy targeting at rapid cell division at an early

stage (26). Recent application of multi-compartment model

differentiates lumen, intra- and extra-cellular spaces, as demonstrated

in luminal water imaging in prostate cancer (27), classification of

adipocytic tumour in soft tissue (28), differentiation of layers in

articular cartilage (29) and estimation of myelin volume in the brain

(30). Although multi-compartment model has been suggested as a
Frontiers in Oncology 02
marker of proliferative activity in breast cancer (31), the susceptibility

to erroneous attribution of noise (20, 29) significantly curtailed the

clinical application. Bayesian algorithm, using probabilistic constraints

between neighbouring image voxels, was subsequently developed to

reduce susceptibility to noise (32–34), and we have recently

demonstrated the value in improving imaging methods for

neoadjuvant treatment monitoring (17). We hence hypothesise that

multi-compartment model of transverse relaxation time mapping

using Bayesian algorithm might be a sensitive marker of

proliferative activity.
2 Materials and methods

To probe this hypothesis, a cross-sectional study was conducted

on 20 breast tumour specimens freshly excised from patients. Multi-

compartment model of transverse relaxation time maps using

Bayesian algorithm was performed to derive the intra- and extra-

cellular transverse relaxation times and the volume ratio of each

breast tumour specimen (Figure 1). The study was approved by the

North-West – Greater Manchester East Research Ethics Committee

(REC Reference: 16/NW/0221), and signed written informed

consent was obtained from all participants prior to the study.
2.1 Clinical procedure

Fresh tumour specimens were excised from twenty female

patients (age mean 57 years, range 35 to 78 years) with invasive

ductal carcinoma (IDC) (10 grade II and 10 grade III). The study

included patients with tumour size larger than 1.5 cm in diameter

on mammography. Patients with previous malignancies and

undergoing chemotherapy or radiotherapy prior to surgery were

excluded from the study. Upon excision, the tumour specimens

were immobilised in a 10% buffered formalin solution in a sealed

container before imaging. Routine histopathological examination

was performed to determine the histological tumour diameter,

grade and Nottingham Prognostic Index (NPI), with oestrogen

receptor (ER), progesterone receptor (PR) and human epidermal

growth factor receptor 2 (HER2) (35). Tumour cellular proliferation

activity marker Ki-67 (36) was assessed semi-quantitatively after

single-batch immunostaining, with high Ki-67 indicating that more

than 14% (37) of tumour cell nuclei staining positive above the

background (38, 39), and there were 9 and 11 cases with high and

low proliferative activities respectively.
2.2 Transverse relaxation time mapping

Quantitative transverse relaxation time images were acquired from

each specimen on a clinical 3T MRI scanner (Achieva TX, Philips

Healthcare, Netherlands) using a 32-channel receiver coil for signal

detection and the body coil for uniform transmission. The images were

acquired using a multishot gradient and spin echo (GRASE) sequence

(40), with 24 echoes, initial echo time of 13 ms, echo spacing of 13 ms,
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repetition time of 9943 ms, field of view of 141 × 141 mm2, slice

thickness of 2.2 mm, and image resolution of 2.2 × 2.2 mm2. The

overall transverse relaxation time was computed voxel-wise using

single-compartment model with the non-linear least squares method

inMATLAB (R2021a, MathWorks Inc., Natick, MA, USA). The intra-

and extra-cellular transverse relaxation times and volume ratio were

calculated voxel-wise using the multi-compartment model with the

Bayesian algorithm (33). The whole tumour was delineated for each

specimen using MRIcron (v1.0.20190902, University of South

Carolina, Colombia, USA) on conventional DWI images acquired at

b value at 800 smm-2 using pulsed gradient spin echo (PGSE)

sequence, with the necrotic regions excluded from the analysis. The

overall transverse relaxation time, intra- and extra-cellular transverse

relaxation times, and intra- and extra-cellular volumes were computed

as themean within the whole tumour from corresponding quantitative

maps for each specimen, and the volume ratio subsequently calculated

as the ratio between intra-cellular volume against combined intra- and

extra-cellular volumes (27).
2.3 Statistical analysis

All statistical analysis was performed in the SPSS software 27.0

(IBM Corp, Armonk, NY, USA). Shapiro-Wilk test for normality
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was performed on all the outcome measures. Independent sample t-

tests or Mann-Whitney U tests were conducted to compare the

overall, intra- and extra-cellular transverse relaxation times and

volume ratio between tumours with high and low proliferative

activities. Pearson’s correlation tests were performed between the

overall transverse relaxation time, intra-cellular transverse

relaxation time and volume ratio against the tumour diameter,

with Spearman’s rank correlation test performed between the extra-

cellular transverse relaxation time against the tumour diameter.

Spearman’s rank correlation tests were performed between the

transverse relaxation times and volume ratio against NPI.

A p-value < 0.05 was considered statistically significant.
3 Results

The patient demography and statistical findings are shown in

Tables 1, 2 respectively. There were no significant differences in

patient characteristics between the high and low Ki-67 groups.

There was a significant higher overall transverse relaxation time

(p = 0.031, Figure 2A) in high Ki-67 tumours (83.55 ± 7.38 ms)

against low Ki-67 tumours (73.30 ± 11.30 ms). There was a significant

higher intra-cellular transverse relaxation time (p = 0.047, Figure 2B)

in high Ki-67 tumours (73.52 ± 10.92 ms) against low Ki-67 tumours
FIGURE 1

Study design. Twenty specimens freshly excised from patients with invasive ductal carcinoma grades II and III were imaged on a clinical 3T MRI
scanner using quantitative transverse relaxation time mapping, with subsequent histopathological confirmation of low and high cellular proliferation
activity. The overall transverse relaxation time was computed voxel-wise using a single-compartment model, while the intra- and extra-cellular
transverse relaxation times and volume ratio were calculated voxel-wise using a multi-compartment model.
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(61.30 ± 14.01 ms). There was no significant difference (p = 0.203,

Figure 2C) in the extra-cellular transverse relaxation time between

high Ki-67 tumours (147.38 ± 8.84 ms) and low Ki-67 tumours

(156.56 ± 19.16 ms). There was no significant difference (p = 0.073,

Figure 2D) in volume ratio between high Ki-67 tumours (33.64 ±

8.33%) and low Ki-67 tumours (41.65 ± 10.08%).

Against tumour diameter, there was a significant negative

correlation in extra-cellular transverse relaxation time (r = -0.50,

p = 0.025, Figure 3A), but not in intra-cellular transverse relaxation

time (p = 0.979), volume ratio (p = 0.922) and overall transverse

relaxation time (p = 0.360) (Figure 3). There were no significant

correlations between extra-cellular transverse relaxation time (p =

0.947), intra-cellular transverse relaxation time (p = 0.828), volume

ratio (p = 0.473) and overall transverse relaxation time (p = 0.806)

against NPI (Figure 4). Typical breast tumour specimens of high

and low Ki-67 expression and the corresponding maps of overall

and intra-cellular transverse relaxation times are shown in Figure 5,

and maps of extra-cellular transverse relaxation time and volume

ratio are shown in Supplementary Figure S1 (Supplementary

Material 1).
TABLE 1 Patient demography.

Demographic
All
(n = 20)

Ki-67 expression

p-valueLow
(n = 11)

High
(n = 9)

Age (years)^ 58 ± 14 63 ± 11 51 ± 12 0.052

Tumour
Size (mm)^

24.9 ± 5.7 24.1 ± 6.6 25.9 ± 4.7 0.489

Nottingham
Prognostic Index
(NPI) †

4.44 (3.50
– 4.59)

3.70 (3.50
– 4.57)

4.44 (4.42
– 4.60)

0.199

Histological grade*

II 10 8 2
0.070

III 10 3 7

Lymphovascular Invasion (LVI)*

LVI Positive 12 7 5
1

LVI Negative 8 4 4

Necrosis*

Present 9 6 3
0.406

Absent 11 5 6

Tumour Infiltrating Lymphocytes (TILs)*

Low 13 7 6 1

Intermediate 4 3 1 0.591

High 3 1 2 0.566
F
rontiers in Oncology
^Independent samples t-test for continuous variables; †Mann-Whitney U-test for continuous
non-parametric variables; *Fisher's exact test for categorical variables.
Breast cancer patients with high and low proliferative activity marker Ki-67 expression are
shown for each group and the entire cohort. Values are expressed as mean and standard
deviation for normally distributed data, and median and interquartile range for non-normally
distributed data. Histopathological entries are expressed as the number of
positive observations.
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4 Discussion

In this study, we found significant differences between high and

low proliferating tumours in overall and intra-cellular transverse

relaxation times, but not in extra-cellular transverse relaxation time

and volume ratio. We found a significant negative correlation of the

extra-cellular transverse relaxation time against tumour diameter,

but not in the remaining three relaxometry properties. No

significant correlation of the four relaxometry properties against

NPI was found.

The elevated overall transverse relaxation time in high

proliferating tumours indicates a reduced rate of signal

dissipation potentially due to a diluted biochemical environment

(23). The rapid metabolic activity in high proliferating tumours

results in increased free water pools in the tumour (21), while the

enhanced angiogenesis exacerbates vascular permeability and fluid
Frontiers in Oncology 05
leakage into the tumour (22). Hence, the central characteristics of

rapidly proliferating tumours (41), of increased metabolic activity

and enhanced angiogenesis, contribute to the diluted biochemical

environment in high proliferating tumours (42). The elevated intra-

cellular transverse relaxation time in high proliferating tumours

indicates a reduced rate of signal dissipation potentially due to a

diluted intra-cellular biochemical environment (43). The rapid cell

division in high proliferating tumours, as highlighted by Ki-67 (21),

demands upregulated transportation of amino acids from the

cytoplasmic space to sustain biosynthesis in the nucleus (44),

leading to a diluted intra-cellular biochemical environment. The

stronger statistical significance in overall transverse relaxation time

compared to intra-cellular transverse relaxation time might be the

result of lower intra-cellular signal as a fraction of the overall signal,

but might also indicate the presence of feedforward and feedback

pathways. Angiogenesis exacerbates vascular permeability to
FIGURE 2

Group comparison of relaxometry properties between low and high Ki-67 expression group in breast cancer (n = 11, 9). (A) Overall transverse
relaxation times (T2, MONO) are significantly higher in high proliferating tumours than in low proliferating tumours, potentially indicating a diluted
biochemical environment. (B) Intra-cellular transverse relaxation times (T2S) are significantly higher in high proliferating tumours than in low
proliferating tumours, potentially indicating a dilution of the intra-cellular biochemical environment. (C) There was no significant difference in extra-
cellular transverse relaxation times (T2L) between high and low proliferating tumours, suggesting biochemical homeostasis. (D) The near-significantly
higher volume ratio (f), in low proliferating tumours than in high proliferating tumours, suggests possible physical homeostasis between intra- and
extra-cellular fluid volumes. Each dot represents the mean ROI of the parameter, arranged by low (Ki-67 ≤ 14%) and high (Ki-67 > 14%) proliferative
activity. Error bars represent the mean ± standard deviation. Two-tailed independent t-tests were conducted, with p-values provided; statistically
significant results (p < 0.05) are marked by ‘*’.
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support accelerated metabolic activity, compounding fluid efflux in

both the intra- and extra-cellular compartments (22), potentially

leading to a more significant elevation in the overall transverse

relaxation time in high proliferating tumours (23). In contrast, the

elevated transportation of amino acids into the nucleus from the

cytoplasmic space of the intra-cellular compartment to support

accelerated biosynthesis in rapidly proliferating tumours partially

cancels out the fluid efflux, potentially leading to a more subdued

increase in the intra-cellular transverse relaxation time (44).

Chemotherapies, targeting at rapid cell division, significantly alter

the intra-cellular biochemical environment (26), hence sensitive

imaging markers might contribute to early response monitoring

(25). The lack of significant difference in the extra-cellular

transverse relaxation time indicates an undisturbed rate of signal

dissipation potentially reflecting biochemical homeostasis, although

unnaturalised free radicals as by-products from aerobic glycolysis

(45) are actively expelled to extra-cellular volume (46), promoting

fibrosis (47), angiogenesis (22) and reduction of free water (48). The

lack of significant difference in the volume ratio reflects the physical

homeostasis of intra- and extra-cellular fluid volumes (49) critical

for minimal disruption of osmotic pressure and transportation
Frontiers in Oncology 06
across cellular compartments in tumours (21). Vesicles, carrying

oxidative stress signal transmitters, are released in the extra-cellular

volume, but are actively transported back into the intra-cellular

volume to modulate oxidative stress and fluid imbalance (50). The

near-significant difference in the volume ratio compared to the

significant difference in overall and intra-cellular transverse

relaxation times might be the result of intrinsic lower effect size

compared to measurement error, but might potentially indicate the

secondary effects of structural changes (51) following biochemical

alteration (52). Protective homeostatic mechanism (49), modulating

fluid exchange through vesicles between the compartments (50),

may dampen the effects of proliferative activities on the volume

ratio with the same trend but weaker significance against transverse

relaxation times (53).

The negative correlation between extra-cellular transverse

relaxation time and tumour diameter might be due to the increased

cellularity and reduced extra-cellular free water pools associated with

larger tumours (48). The significant negative correlation between

extra-cellular transverse relaxation time and tumour size indicates a

more concentrated biochemical environment or less free water at

larger tumour size. Larger tumours suffer from hypoxia due to
FIGURE 3

Correlation analysis between relaxometry properties and breast tumour diameter (n = 20). (A) Extra-cellular transverse relaxation time (T2L). (B) Intra-
cellular transverse relaxation time (T2S). (C) Volume ratio (f). (D) Overall transverse relaxation time (T2, MONO). Statistically significant correlations (p <
0.05) are marked by ‘*’.
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inadequate vascular supply (54) and extra-cellular matrix remodelling

(55), and the increase in the macromolecules to water ratio in the

extra-cellular compartment (56) lead to a reduction in extra-cellular

transverse relaxation time (57). There was no significant correlation

between overall transverse relaxation time, intra-cellular transverse

relaxation time and volume ratio with tumour diameter, reflecting the

insensitivity of the three relaxometry properties to morphological

tumour size. The lack of significant correlation between overall

transverse relaxation time, intra-cellular and extra-cellular transverse

relaxation times and volume ratio against NPI indicated that the four

relaxometry properties, although potential treatment monitoring

markers, might not be sensitive to recurrence and metastatic risks

revealed by NPI (58).

Although an understanding of the heterogeneity in the overall

and intra-cellular transverse relaxation times required thorough

quantitative analysis across the whole tumour using appropriate

texture features, however conjectural visual exploration might

serve to develop future hypothesis. Intra-cellular transverse

relaxation time showed sparse focal elevation at the edges of high

proliferating tumours but more homogeneity in low proliferating

tumours, while overall transverse relaxation time showed more

homogeneous elevation in high proliferating tumours but
Frontiers in Oncology 07
exhibited bands of elevation at the edges of low proliferating

tumours (Figure 5). The focal increase in intra-cellular free water

content, manifested as a lengthening of intra-cellular transverse

relaxation time, in high proliferating tumours might reflect the

elevated transportation of amino acids into the nucleus from the

cytoplasmic space to sustain biosynthesis in the nucleus at the

advancing edge of the tumour (44). The bands of increased free

water content, manifested as the elevation of overall transverse

relaxation time, at the edge of low proliferating tumours might

reflect the presence of angiogenesis and oedema concentrated at

the tumour margin (22, 42), in contrast to their widespread

presence across the whole tumour in high proliferating tumours

(24). Precise spatial correlation between imaging and pathology,

demanding co-localisation at a fine cellular resolution, was

not feasible during this study, and should be performed in

future investigations.

To our knowledge, this is the first study investigating the

relaxation properties as a marker of breast tumour proliferative

activity using Bayesian algorithm in conjunction with multi-

compartment model to mitigate the impact from noise. This

study only recruited patients with large breast tumours to take

into account the reliance of Bayesian algorithm on neighbouring
FIGURE 4

Correlation analysis between relaxometry properties and Nottingham Prognostic Index (NPI) in breast cancer (n = 20). (A) Extra-cellular transverse
relaxation time (T2L). (B) Intra-cellular transverse relaxation time (T2S). (C) Volume ratio (f). (D) Overall transverse relaxation time (T2, MONO).
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voxels, and necrotic tumour cores were excluded from analysis to

avoid confounding factors from non-viable tissue in large tumours.

The tumours were freshly excised to eliminate biological noise and

further improve analysis accuracy, and imaging was performed

immediately to avoid the alteration to relaxation properties from

formalin submersion (59). The cohort size was small due to

inclusion criteria on large tumour to accommodate novel imaging
Frontiers in Oncology 08
methods, and future large cohort studies on patients are critical to

fully understand the value of the imaging marker. Future simulation

study on the variability and high resolution imaging from ultra-high

field MRI can support the establishment of a confidence range in

sensitivity and an estimation of the highest effective image

resolution, allowing studies to be carried out at a higher image

resolution and in smaller tumours.
FIGURE 5

High (Ki-67 > 14%) and low (Ki-67 ≤ 14%) proliferating breast tumour specimens in haematoxylin and eosin (H & E) staining and the corresponding
transverse relaxation time maps. Sections are taken from the greatest dimension of the tumour diameter. Magnification, x20. (A) A high Ki-67
expression of 49.18%. (B) A low Ki-67 expression of 4.96%. (C) Overall transverse relaxation time (T2, MONO) map of the high Ki-67 specimen. (D) T2,
MONO map of the low Ki-67 specimen. (E) Intra-cellular transverse relaxation time (T2S) map of the high Ki-67 specimen. (F) T2S map of the low Ki-
67 specimen.
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5 Conclusions

Overall and Bayesian intra-cellular transverse relaxation times are

associated with proliferative activities in breast tumours, potentially serving

as a non-invasive imaging marker for neoadjuvant treatment monitoring.
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