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Circular RNAs (circRNAs) are non-coding RNAs that exist naturally in various

eukaryotic organisms. The majority of circRNAs are produced through the

splicing of exons, although there are a limited number that are generated

through the circularization of introns. Studies have shown that circRNAs play

an irreplaceable role in the pathogenesis, disease progression, diagnosis, and

targeted therapy of motor system tumors (osteosarcoma), metabolic diseases

(osteoporosis), and degenerative diseases (osteonecrosis of the femoral head,

osteoarthritis, intervertebral disc degeneration). This review summarizes the

advancements in circRNA detection techniques and the research progress of

circRNAs in orthopedic diseases.
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1 Introduction

Circular RNAs (circRNAs) are a unique subclass of noncoding RNA characterized by

their covalently closed loop structure, which connects from the 3’ to 5’ end. The existence of

circRNAs was first confirmed by electron microscopy in 1976 in viroids and Sendai viruses

by Sanger and Kolakofsky et al. (1, 2). However, due to limitations in detection techniques

and research methods, circRNAs were initially believed to be low-abundance nonfunctional

byproducts or “splicing noise” (3). With the advent of high-throughput sequencing

technology (RNA-seq) and bioinformatics, it has been demonstrated that circRNAs are

highly conserved and widely expressed in numerous cells and tissues (4–6). In fact, Guo (7)

and colleagues discovered that over 10% of the tested cells and tissues’ expressed genes

could generate circRNAs. Recent research has revealed that circRNAs may function

through the following ways: (i) regulating gene transcription and RNA splicing (8, 9);

(ii) regulating gene expression post-transcriptionally by competitively binding miRNAs

through the competitive endogenous RNA (ceRNA) mechanism (10, 11); (iii) binding to

RNA-binding proteins (RBPs) to modulate their activity (12); and (iv) encoding functional

peptides directly (13). Recent studies have established the atypical expression of circRNAs
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in different diseases, including neoplasms like lung cancer (14), liver

cancer (15), gastric cancer (16), and osteosarcoma (OS) (17).

Additionally, circRNAs have been found to be involved in

cardiovascular diseases (18), respiratory diseases (19), and

reproductive system diseases (20). These abnormally expressed

circRNAs have the potential to play a role in the onset and

progression of diseases. Additionally, these molecules could

potentially function as indicators for diagnosis or objectives for

treatment of specific ailments. Here, we present a summary of the

ongoing investigations regarding circRNAs in connection with

bone-related diseases (Figure 1), including OS, osteoporosis (OP),

osteonecrosis of the femoral head (OFNH), osteoarthritis (OA), and

intervertebral disc degeneration (IDD).
2 Search strategy

This review is based on an extensive literature search conducted to

compile the latest advancements in circular RNA (circRNA) research,
Frontiers in Oncology 02
specifically in the context of bone-related diseases. Articles

were identified through a systematic search of electronic databases,

including PubMed, Scopus, and Web of Science, using keywords

such as “circular RNA,” “non-coding RNA,” “osteosarcoma,”

“osteoporosis,” “osteonecrosis of the femoral head,” “osteoarthritis,”

and “intervertebral disc degeneration.” Publications from 2000 to 2024

were considered, with priority given to peer-reviewed studies, high-

impact journals, and recent advancements. Non-English publications,

conference abstracts, and studies unrelated to the core focus of

circRNA in orthopedic diseases were excluded. The titles and

abstracts of identified articles were screened for relevance. Full-text

articles were assessed to ensure alignment with the review’s objectives.

Additional studies were included through manual screening of

references in selected articles. The selection criteria focused on

studies elucidating circRNA mechanisms, detection technologies, and

their roles in orthopedic disease pathogenesis, diagnosis, and

therapeutic targeting. Key information was extracted from the

selected studies, including experimental methods, circRNA targets,

disease contexts, and clinical implications.
FIGURE 1

CircRNAs are associated with bone-related diseases, including osteosarcoma (OS), osteoporosis (OP), osteonecrosis of the femoral head (OFNH),
osteoarthritis (OA), and intervertebral disc degeneration (IDD).
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3 Overview of circRNAs

3.1 Biogenesis of circRNAs

CircRNAs are primarily formed through back-splicing of

mRNA precursor (pre-mRNA) (10) and are categorized into

three groups based on their source sequences: exonic circRNAs

(EcRNAs), intronic circRNAs (IcRNAs), and exon-intron circRNAs

(EIcRNAs) (6). There are four main looping models reported:

spliceosome-dependent lasso-driven circularization, intron reverse

complementary pairing-driven circularization, RBPs-driven

circularization, and tRNA precursor splicing pathway.
3.2 Biological characteristics of circRNAs

CircRNAs display the subsequent biological features: (1)

Diversity: In the circBase database, in 2014, 140,000 circRNAs

were incorporated for humans, surpassing the number of protein-

coding genes by over 30,000 (21). (2) Stability: The absence of a

polyadenylate tail structure prevents circRNAs from degradation by

ribonucleic acid exonuclease (RNaseR) due to their characteristic

closed-loop structure with covalently linked 3’ and 5’ ends (5, 22).

(3) High species conservation: A recent study revealed that 72.6% of

all circRNAs identified in humans, macaques, and mice were highly

conserved throughout evolution (23). Furthermore, the DNA

sequences encoding circRNAs are more conserved than the non-

coding flanking sequences (24). Additionally, circRNAs

demonstrate distinct tissue and cell specificity, rendering them

promising biomarkers for diagnosing certain diseases (3, 17, 25).
3.3 Degradation of circRNAs

CircRNAs are relatively stable with a half-life of 18.8-23.7 hours,

which is much higher than that of their linear transcripts (4.0-7.4

hours) (26). The degradation mechanism of circRNAs is not clear,

and there are four reported modes of circRNA degradation. (1)

MiRNA sequence-dependent AGO2-mediated degradation. For

example, CDR1as/ciRS-7, through recruitment and complementary

pairing withmiR-671, causes AGO2 endonuclease cleavage to disrupt

the closed-loop structure. Subsequently, the endonuclease further

degrades the linear RNA (27). (2) Methylation modification of

circRNAs (m6A) induces sequence-dependent degradation by

endonucleases RNase P/MRP. Park et al. (28) found that circRNAs

containing m6A methylation modification can recruit YTHDF2 and

HRSP12 proteins. These proteins act as a bridge between RNase P/

MRP and circRNA-specific sequences, facilitating circRNA

degradation. (3) PKR-activated RNase L-mediated degradation. Liu

et al. (29) found that the protein kinase PKR was abnormally

activated during the course of systemic lupus erythematosus.

Subsequently, the cytoplasmic endonuclease RNase L was activated

and degraded circRNAs. (4) UPF1- and G3BP1-dependent

degradation. UPF1 and G3BP1 degrade circRNAs by recognizing

the higher-order structure of circRNAs and activating the helicase
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and endonuclease. This degradation mode is known as structure-

mediated RNA degradation because the entire RNA structure is

recognized, not just the nonlinear primary structure (30). (5)

GW182-mediated degradation. Jia et al. (31) found that circRNAs

are directed into specific degradation pathways by the evolutionarily

conserved factor GW182.
4 Technology of circRNAs

Advances in technology have greatly facilitated circRNA

research by enabling their detection, analysis, and functional

investigation (32–35). This section compares key technologies in

circRNA studies, emphasizing their respective strengths and

limitations, as well as their scope of application.
4.1 Genome-wide analysis of circRNAs

Genome-wide detection methods, including RNA sequencing

(RNA-seq) and microarrays, serve as primary tools for identifying

circRNAs. RNA-seq provides high-resolution, large-scale data and

identifies circRNA-specific backsplice junctions (BSJ) (36–38).

Despite its power, the lack of a standardized bioinformatics

algorithm requires the simultaneous use of multiple tools to

ensure accuracy. In contrast, microarrays provide a faster and

more sensitive alternative, especially with the use of RNase R

pretreatment and antisense probes (39, 40). However, microarrays

cannot detect novel circRNAs or quantify the relative ratios of

circRNA to linear transcripts due to sample de-linearization.
4.2 Analysis of CircRNA site specificity

CircRNA-specific detection methods, such as quantitative

reverse transcription PCR (RT-qPCR) and droplet digital PCR

(ddPCR), allow for targeted and precise validation (41, 42). RT-

qPCR is cost-effective and widely used, while ddPCR provides

superior sensitivity and quantification accuracy, particularly in

challenging samples, such as plasma (43–45). High-throughput

alternatives, including NanoString nCounter, enable simultaneous

detection of up to 800 circRNAs, making it a valuable tool for large-

scale studies.
4.3 Visualization and localization
of circRNAs

In situ hybridization (ISH) remains a cornerstone for

visualizing circRNAs in cells and tissues. Advances, such as

BaseScope (35), improve signal clarity and sensitivity by

optimizing probe designs. Recently, CRISPR-Cas13-based

techniques have emerged as promising tools for real-time

circRNA tracking, enabling dynamic localization studies with

fluorescent tagging systems (36–38).
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4.4 Knockdown and overexpression
of circRNAs

Knockdown and overexpression techniques are critical for

understanding circRNA functions. RNA interference (RNAi) is

widely employed for transient knockdown, while lentivirus-based

approaches offer long-term suppression (46). Overexpression

methods, such as plasmids with flanking sequences promoting

circularization, provide efficient tools for gain-of-function studies.

Adding specific RNA-binding protein (RBP) binding sites further

enhances expression efficiency.
4.5 Knockout of circRNAs

Gene-editing technologies, such as CRISPR-Cas9, facilitate

circRNA knockout by targeting critical flanking sequences or

directly deleting coding exons (47, 48). These approaches require

careful validation to avoid unintended effects on host gene

expression. Knockout models, such as those for ciRS-7,

demonstrate the utility of these methods in elucidating circRNA

functions (49–51).
4.6 Comparison and applications

RNA-seq excels in exploring novel circRNAs, while microarrays

are suggested for routine studies of known circRNAs. ddPCR and

NanoString provide precise quantification, and NanoString is more

applicable for high-throughput analyses. ISH and CRISPR-Cas13

enable spatial studies, while RNAi and gene editing support

functional investigations. The selection of technique depends on

study objectives, with genome-wide methods suited for discovery and

targeted approaches ideal for validation andmechanistic investigations.
5 CircRNAs and orthopedic-
related diseases

5.1 CircRNAs and OS

OS, also known as osteogenic sarcoma, is the most prevalent

type of primary malignant bone tumor (44), usually found in the

epiphysis of long tubular bones. This type of tumor is commonly

diagnosed in individuals aged between 15 to 25 years old. In clinical

practice, diagnosing and treating OS remains difficult because the

cancer is highly resistant to chemotherapy and tends to metastasize

to the lungs early on (45). In recent years, circRNAs and OS have

been increasingly studied and reported in relation to OS cell

proliferation, apoptosis, energy metabolism, angiogenesis,

metastasis, chemotherapy sensitivity, and drug resistance.

5.1.1 Expression profile of circRNAs in OS
Firstly, circRNAs exhibit differential expression at both the

transcriptional level in OS tumor tissue samples and in
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commercial cell lines. Recent studies have highlighted specific

circRNAs with aberrant expression patterns and functional roles

in OS progression. For instance, circ_0001785 is markedly

upregulated in OS tissues and has been implicated in promoting

tumor proliferation and invasion through the miR-1200/STAT2

axis. Similarly, circ_0016347 facilitates OS progression by sponging

miR-214-5p and regulating the EZH2/STAT3 signaling pathway. In

contrast, circ_0001564 exhibits downregulated expression in OS

and acts as a tumor suppressor by targeting the miR-29c-3p/

CDC42 axis.

Comprehensive bioinformatics analyses have also elucidated

the involvement of circRNAs in key signaling pathways, such as the

PI3K/AKT and Wnt/b-catenin pathways, which are frequently

dysregulated in OS. These findings underscore the pivotal role of

circRNAs in OS pathogenesis and provide a basis for identifying

novel diagnostic biomarkers and therapeutic targets.

Previous studies have further examined a large number of

differentially expressed circRNAs through genome-wide analysis

using OS patients and normal human tissues or body fluids, such as

serum. These studies have predicted target genes and signaling

pathways using bioinformatics techniques to construct complex

regulatory networks, providing important references for subsequent

mechanistic studies of the disease. For instance, Xi et al. (52)

compared OS samples from three patients with adjacent tissues

using a microarray chip. They discovered that a total of 259

circRNAs exhibited differential expression patterns; among these,

132 circRNAs showed upregulation, while 127 circRNAs were

downregulated. Similarly, Chen et al. (53) found that 8 circRNAs

were upregulated and 102 were downregulated in the OS group

when analyzing OS cell lines (MG63, Saos-2, and U2OS) and the

control group (hFOB osteoblast cell line). By integrating these

insights, the current understanding of circRNAs in OS continues

to evolve, providing valuable direction for future mechanistic and

clinical studies.
5.1.2 CircRNAs as biomarkers in OS
The structure of circRNAs makes them biologically stable,

tissue-specific, and conserved across species. In addition to tumor

tissue cells, circRNAs are also widely expressed in human plasma,

plasma exosomes, extracellular vesicles, and exosomes. Due to these

unique biological properties, differentially expressed circRNAs offer

significant advantages in clinical practice as biomarkers for OS

diagnosis, clinical staging, and prognosis assessment (refer to

Table 1). For example, Lou et al. (46) found that circUSP34 had

upregulated expression in both 143B and KHOS cells and OS

tissues. Zhu et al. (47) found that circPVT1 was upregulated in

OS tissues by analyzing 80 pairs of OS and adjacent tissues. The area

under the receiver operating characteristic curve (ROC) of

circPVT1 as a diagnostic marker for OS was 0.871, while the

AUC of the conventional tumor marker alkaline phosphatase

(ALP) was 0.673. This suggests that circPVT1 shows promise as a

diagnostic marker for OS. In terms of prognostic evaluation, the

expression of circPVT1 in OS tissues is related to overall survival,

with a significant negative correlation observed. According to a

study by Zhu et al. (48), r high expression levels of circ_0081001 in
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OS tissues and serum can serve as a potential diagnostic marker for

OS, the AUC of the diagnostic experiment was 0.898. This value

indicated a higher diagnostic efficiency than ALP (AUC = 0.673)

and lactate dehydrogenase (LDH) (AUC = 0.80). In the small

prospective preliminary clinical trial, monitoring the dynamic

changes of serum Circ_0081001 can timely and accurately reflect

the chemotherapy resistance of OS patients or disease progression

in lung metastases, confirming that it has considerable applications

in the clinical monitoring of disease progression in OS. At the level

of clinical prognostic evaluation, Zhang et al. (49) collected and

summarized the clinical data of abnormally expressed circRNAs

and 1979 OS patients in 31 studies using big data. In their study, it

was also confirmed that abnormally expressed circRNAs showed a

strong correlation with various clinical parameters (such as

Enneking stage, tumor size, and distant metastases) and clinical

prognosis (such as overall survival and progression-free survival) of

OS patients.

5.1.3 Involvement of circRNAs in the
development of OS

During OS development, circRNAs primarily act as “molecular

sponges” that compete with microRNAs (miRNAs) for binding to

mRNA-binding sites. They regulate downstream genes post-

transcription, influencing biological processes such as tumor cell

proliferation, invasion, apoptosis, and energy metabolism.

CircRNAs with increased expression in OS tissues are typically

believed to promote cancer. The research conducted by Yu et al.

(67) revealed an increase in circFIRRE expression in both OS tissues
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and cell lines. Mechanistic studies revealed that it could bind to the

miRNAs miR-486-3p and miR-1225-5p through a sponge effect,

leading to the upregulation of the downstream oncogene LUZP1.

Functional experiments demonstrated that it could enhance OS cell

proliferation, invasion, and migration as evidenced by CCK-8,

transwell assay, and wound healing assay, thereby facilitating the

progression of OS. High expression of circMYO10 in OS tissues

increased the transcriptional activity of the b-catenin/LEF1
complex by regulating miR-370-3p. This also promoted the

proliferation and invasion of OS cells (68). CircRNAs can also

influence tumor progression by affecting tumor energy metabolism

pathways. Shen et al. (69) found that high expression of circECE1 in

OS tissues inhibited c-Myc ubiquitination degradation, thereby

activating the Warburg effect. This enhanced anaerobic glycolysis

to supply energy to the tumor and promoted the development

of OS.

In contrast to the high expression of oncogenes, the relatively

low expression of circRNAs in tumor tissues typically inhibits OS

progression. CircITCH is expressed at low levels in tumor tissues

from OS patients. It indirectly inhibits the PTEN/PI3K/AKT and

SP-1 pathways by adsorbing miR-22, which functionally inhibits the

proliferation of OS cells (MG63, Saos-2), promotes apoptosis, and

ultimately plays a tumor suppressor role (70). Not only can

circRNAs inhibit tumor progression in situ, but they can also play

a tumor-suppressive role in adjacent normal tissues in OS. For

instance, low-level expression of hsa_circ_0000190 in the serum of

OS patients also occurs in normal bone tissue (osteoblast cell line

hFOB) and is secreted by extracellular vesicles (EVs) to facilitate
TABLE 1 Studies on circRNA molecules as diagnostic markers for osteosarcoma.

CircRNA Sample type
Samples

Expression AUC Date Reference
Case Control

circEMB
circROCK1
circLRP6
circ_0010220
circ_001422
circUBAP2

OS and ANT
OS and ANT
OS and ANT
serum
OS and ANT
OS and ANT

53
50
50
19
55
42

53
50
50
19
55
42

up
down
up

down
up
up

0.703
0.9048
0.690
0.803
0.752
0.7664

2023
2022
2022
2022
2021
2021

(50)
(17)
(51)
(54)
(55)
(56)

circHIPK3 OS and chondrosarcoma 12 12 up 0.875 2021 (57)

circ_0056285 serum 35 35 up 0.778 2021 (58)

circ_0000190 serum 60 60 down 0.889 2020 (59)

circ_ 0003074 plasma 40 30 up 0.93 2020 (60)

circ-LARP4 OS and ANT 72 72 down 0.829 2020 (61)

circCNST OS and ANT 126 126 up 0.63 2020 (62)

circ_0000885 serum 30 25 up 0.783 2019 (63)

circ_HIPK3 serum 50 20 down 0.783 2018 (64)

CDR1as OS and ANT 38 18 up 0.857 2018 (65)

circ_0008717 OS and ANT 45 45 up 0.782 2018 (66)

circPVT1 serum 50 20 up 0.871 2018 (47)

circ_0081001 serum 50 20 up 0.898 2018 (48)
*OS, osteosarcoma; ANT, adjacent normal tissue.
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intercellular communication. This process ultimately targets OS

cells to hinder their proliferation and invasion (60).

The involvement of circRNAs in OS is primarily mediated by

their function as molecular sponges, modulating miRNA activity,

thereby regulating downstream gene expression. This mechanism

influences critical cellular processes, such as tumor cell

proliferation, invasion, and energy metabolism. For instance, the

sponge-like activity of circRNAs like circFIRRE and circMYO10

promotes oncogenic pathways, whereas the tumor-suppressive

effects of circITCH are achieved through inhibition of pathways

like PTEN/PI3K/AKT. These mechanisms highlight the dual role of

circRNAs, either facilitating or inhibiting OS progression,

depending on their expression patterns.

5.1.4 Involvement of circRNAs in OS
lung metastasis

Nowadays, the prognosis of OS has significantly improved with

multidisciplinary treatment. However, distant metastases remain a

crucial factor affecting long-term survival, with pulmonary

metastases being the most common. There are numerous articles

discussing the study of circRNAs and OS lung metastases. For

example, Yan et al. (71) found that high expression of circPVT1 in

OS can regulate FOXC2 post-transcriptionally through a ceRNA

mechanism, ultimately promoting FOXC2 protein-mediated lung

metastasis in OS. In the progression of OS, CAMP-responsive

element-binding protein 3 (CREB3) plays a crucial role as a

driver gene. A study constructed by Wu et al. (72) revealed that

circTADA2A, exhibiting elevated levels in OS tissues, stimulated

the proliferation and invasion of tumor cells by activating the miR-

203a-3p/CREB3 pathway. At the same time, in vivo imaging (IVIS)

and immunohistochemistry experiments in nude mouse models

demonstrated that it significantly promotes OS lung metastasis.

Vascular endothelial growth factor (VEGF) has been shown to be a

key factor in lung metastasis in OS, and its targeted drugs, apatinib

and sorafenib, have been shown to inhibit lung metastasis in OS. Ji

et al. (73) found that a relatively high expression of circ_001621 can

upregulate the expression level of VEGF through the ceRNA

mechanism and promote the malignant biological behavior of OS

cells. Animal experiments confirmed that high expression of VEGF

promoted OS lung and liver metastasis. Circ-0000658, which is

poorly expressed in OS tissues and cell lines, can inhibit OS lung

metastasis through the miR-1227/interferon regulatory factor-2

(IRF2) regulatory axis. Therefore, these abnormally expressed

circRNAs can be used as potential therapeutic targets for OS

lung metastasis.

5.1.5 Involvement of circRNAs in the mechanism
of drug resistance in OS

OSs do not respond to radiotherapy, and the survival rate of

patients with simple surgical resection is low. Currently, the

standard treatment approach for OS typically involves a

combination of preoperative neoadjuvant chemotherapy, surgery,

and postoperative adjuvant chemotherapy. The 5-year survival rate

of OS patients is 50-80%. However, with prolonged survival,

chemotherapy resistance has become a significant clinical
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challenge for some patients. Several studies have demonstrated

the direct relationship between circRNAs and resistance to OS

and have described the relevant mechanisms (Table 2). For

instance, when comparing three groups of doxorubicin-, cisplatin-

, and methotrexate-multidrug-resistant cell lines (MG63R) with

chemotherapy-sensitive cell lines (MG63), Zhu and colleagues (85)

detected a collective of 80 dissimilarly expressed circRNAs, among

which 57 were elevated and 23 were reduced in the resistant cells.

Another investigation by Zhu and team (47) proved that circPVT1

was notably amplified in the cancerous tissues, blood samples, and

drug-resistant cell lines (MG63R, U2OSR) of three OS patients.

This overexpression was found to be correlated with poor prognosis

for the patients. The researchers found that the cell viability of OS-

resistant cell lines and their IC50 values for chemotherapeutic

agents (doxorubicin, cisplatin) were significantly reduced by

siRNA-specific knockdown of circPVT1. This suggests that

circPVT1 can decrease the chemoresistance of OS. This process is

mediated by the downregulation of ATP-binding cassette subfamily

B member 1 (ABCB1) to regulate tumor resistance. Li et al. (87)

investigated the highly expressed circ_0000073 in OS using the

GEO database and demonstrated that circ_0000073 promotes

methotrexate resistance by upregulating the oncogene NRAS.
5.2 circRNAs and OP

OP is a systemic disease affecting the skeletal system, marked by

reduced bone mass and deterioration in bone structure, leading to

bone fragility and increased fracture risk (88). According to statistics,

the prevalence of OP among middle-aged and elderly men in China

was 20.73%, while it was 38.05% among middle-aged and elderly

women (89). It is expected that the number of OP patients in China

will increase to 5.99 million by 2050, incurring medical costs of 174.5

billion yuan (90). The development of OP is caused by an imbalance

in bone formation by osteoblasts and bone resorption by osteoclasts.

Decreased osteoblast production and increased osteoclast activity in

response to various pathogenic stimuli lead to continuous bone loss,

eventually causing the development of OP. There are also a large

number of reports on circRNAs involved in the imbalance between

osteogenesis and osteoclasts.

OP arises from an imbalance in bone remodeling, characterized

by reduced osteoblast activity and heightened osteoclast-mediated

bone resorption. CircRNAs contribute to this imbalance by

regulating key molecular pathways. For instance, circRNAs, such

as circRNA_0048211 and circRNA_0016624, promote osteogenesis

by modulating BMP signaling, while circRNA_28313 facilitates

osteoclast differentiation via the miR-195a/CSF1 axis. These

findings highlight the role of circRNAs in orchestrating the

complex interplay between osteoblast and osteoclast activity,

ultimately driving the development of OP.

5.2.1 Expression profile of circRNAs in OP
In a recent study, Yu et al. (91) identified 221 circRNAs that were

significantly upregulated and 176 circRNAs that were significantly

downregulated in OP patients by comparing six pairs of OP patients
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with normal human serum. The five circRNAs with the most

significant expression differences were circ_0016624, circ_0134944,

circ_0057340, circ_0062466, and circ_0116994. Zhi et al. (92)

compared three pairs of OP patients with normal human serum

exosome samples using microarray analysis. They found that 589

circRNAs were differentially expressed in the two groups. Among

these, 376 circRNAs were relatively strongly expressed, while 213

were relatively weakly expressed compared to the normal group. Shen

et al. (93) compared 20 pairs of osteoporotic and normal bone tissues

using microarray chip analysis. They identified 2645 circRNAs with

relatively high expression and 2327 with relatively low expression at

the same critical value (fold change > 2). These circRNAs with

significant differences in expression can be further investigated and

are expected to become new diagnostic and therapeutic biomarkers

for OP. Zhang et al. (94) identified 398 differentially expressed

circRNAs by sequencing the entire transcriptome of peripheral

blood samples from three pairs of male OP patients and

individuals over 60 years old. They also established a circRNA-

miRNA-mRNA regulatory network using differentially expressed

miRNAs and mRNAs. This network offers a valuable foundation

for future studies on the regulatory mechanisms of OP.

5.2.2 CircRNAs as biomarkers in OP
In the current study, many circRNAs have been identified as

potential biomarkers with significant promise for the early
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diagnosis and assessment of OP. Guan et al. (95) studied 28 pairs

of postmenopausal osteoporosis (PMOP) and normal peripheral

blood samples from women. They found that the expression of

circ_0021739 was upregulated in PMOP patient samples. The

sensitivity as a diagnostic marker for PMOP was 100%, specificity

was 42.9%, and the AUC was 0.849. Bone loss as an early

manifestation of OP is reflected by a decrease in bone volume per

unit of bone. Xiang et al. (96) reported that circ 0001445, with low

expression in the plasma of PMOP patients has high diagnostic

efficacy in diagnosing osteopenia and OP. The sensitivity and

specificity for diagnosing bone loss were 70.67% and 77.78%,

respectively, with an AUC of 0.8115. For diagnosing OP, the

sensitivity and specificity were 97.62% and 82.22%, respectively,

with an AUC of 0.9589. In the differential diagnosis of bone loss and

OP, the sensitivity and specificity were 78.57% and 69.33%,

respectively, with an AUC of 0.8298. In the serum exosomes of

OP patients, Zhi et al. (92) found that circ_0006859 was also

identified as a reliable biomarker for diagnosing osteopenia and

OP. The area under the AUCs for osteopenia, OP, and their

differential diagnosis were 0.913, 0.8974, and 0.8873, respectively.

The significance and value of circRNAs in the diagnosis

and prognosis assessment of OP are immense. In subsequent

studies, the simultaneous detection of multiple circRNAs at

multiple sites can be considered, potentially resulting in increased

diagnostic efficiency.
TABLE 2 Studies on the correlation between circRNAs and chemotherapy resistance of OS.

CircRNA Drug Drug-resistant
cell line

Expression Mechanism Date Reference

circ-
CHI3L1.2

cisplatin MG63, Saos-2 up miR-340-5p/LPAATb regulatory axis 2021 (74)

circ_103801 cisplatin MG63 up Upregulate MRP1 and P-gp expression 2021 (75)

circUBAP2 cisplatin U2OS, Saos-2 up miR-506-3p/SEMA6D regulatory axis 2020 (76)

circTADA2A cisplatin U2OS, MG63 up miR-129-5p/TRPS1/YAPS regulatory axis 2020 (77)

circ_001569 cisplatin U2OS, MG63 up Activate Wnt/b-catenin signal pathway 2018 (78)

circ_0001721 adriamycin KHOS, MG63 up miR-758/TCF4 regulatory axis 2021 (79)

circPVT1 adriamycin KHOS, U2OS up miR-137/TRIAP1 regulatory axis 2021 (80)

circPRDM2 adriamycin KHOS, MG63 up miR-760/EZH2 regulatory axis 2021 (81)

circITCH adriamycin KHOS, MG63 down miR-524/RASSF6 regulatory axis 2021 (82)

CircSAMD4A adriamycin HOS, U2OS up miR-218-5p/KLF8 regulatory axis 2020 (83)

circ_0003496 adriamycin KHOS, MG63 up miR-370/KLF12 regulatory axis 2020 (84)

circ_0004674
circ_0081001

adriamycin
adriamycin

KHOS, MG63, U2OS
KHOS, MG63, U2OS

up
up

miR-490-3p/ABCC2 and miR-1254/EGFR regulatory
axis
/

2018
2018

(85)
(48)

circ_0081001 methotrexate HOS, U2OS up miR-494-3p/TGM2 regulatory axis 2021 (86)

circ_0000073
circ‐LARP4
circPVT1

methotrexate
cisplatin,
Adriamycin
cisplatin,
Adriamycin

U2OS, MG63
MG63, Saos-2
KHOS, MG63, U2OS

up
down
up

Sponge miR-145-5p and miR-151-3p, regulate
downstream NRAS
Sponge miR-424
Upregulate ABCB1 expression

2020
2019
2018

(87)
(61)
(47)
*Expression: the expression in chemotherapy-resistant osteosarcoma; OS, osteosarcoma.
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5.2.3 CircRNAs and OP
Osteogenesis is primarily mediated by osteoblast-related cells,

specifically osteoblasts, which are mainly differentiated from bone

mesenchymal stem cells (BMSCs). Bone morphogenetic protein

(BMP) can be used as an inducer to stimulate BMSCs to

differentiate into osteoblasts. Among BMPs, BMP-2 is the most

potent factor capable of independently inducing osteogenesis. Qiao

et al. (97) found that circRNA_0048211 was downregulated in the

bone marrow of PMOP patients. It could act as an adsorption

sponge for miRNA-93-5p, upregulating BMP2 levels. This process

promoted osteogenic differentiation of BMSCs, thereby alleviating

the progression of PMOP. Yu et al. (91) found that the expression of

circRNA_0016624 and BMP2 was relatively downregulated in

PMOP patients based on serum sequencing. CircRNA_0016624

was shown to indirectly upregulate BMP2 expression by sponging

miR98. Alizarin red staining demonstrated that overexpression of

circRNA_0016624 could enhance osteogenic function.

Melatonin, a hormone that regulates biological circadian

rhythms, has also been shown to be involved in bone

metabolism. Clinical studies suggest that melatonin helps

increase bone mass in postmenopausal women (98, 99). Wang

et al. (100) demonstrated that melatonin can promote osteogenic

differentiation of BMSCs through ALP staining and alizarin red

staining. Sequencing analysis of melatonin-treated and untreated

BMSCs revealed that melatonin treatment significantly reduced

the expression of circ_0003865 in BMSCs. Functional experiments

showed that melatonin regulates the expression of the

downstream gene GAS1 by inhibiting the expression of

circ_0003865, thereby promoting osteogenic differentiation.

Osteogenic-vascular coupling is a new theory proposed in

recent years to explain the pathogenesis of osteoporosis. Ji et al.

(101) reported that the expression of circ_0006215 was decreased in

BMSCs from OP patients. This decrease not only promotes

osteogenic differentiation of BMSCs by regulating the RUNX2

gene but also upregulates the expression of VEGF in BMSCs to

promote neovascularization. The osteogenic/angiogenic capabilities

of circ_0006215 make it one of the potential therapeutic targets for

OP patients. In addition to the aforementioned osteoblast-related

studies, numerous studies have confirmed that circRNAs influence

the OP process by regulating osteoblast proliferation and

differentiation (Table 3).

5.2.4 circRNAs and OP bone resorption
Osteoclasts are the only cells in the human body that have the

function of bone resorption, maintaining the balance of bone

metabolism with osteoblasts under physiological conditions.

Osteoclasts differentiate from bone marrow-derived macrophages

(BMM) (126). In this process, macrophage colony-stimulating

factor (M-CSF) promotes the proliferation of osteoclast

precursors, while the differentiation of osteoclast precursors into

mature osteoclasts is facilitated by the receptor activator for nuclear

factor-kB ligand (RANKL). Chen et al. (123) found that

circRNA_28313 expression increased significantly during the

differentiation of BMMs into osteoclasts induced by RANKL +

M-CSF. After the expression of circRNA_28313 was reduced by
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RNA interference, the differentiation of BMMs into osteoclasts and

bone resorption were significantly inhibited in ovariectomized

(OVX) mice . Mechan i sm s tud ie s have shown tha t

circRNA_28313 can regulate osteoclast differentiation via the

miR-195a/CSF1 signaling axis, thereby affecting bone resorption

during the course of OP. Liu et al. (121) found that the expression of

circ_0007059 was significantly higher than that of normal controls

by sequencing PMOP patients and normal samples. TRAP staining

was used to verify that circ_0007059 could inhibit the

differentiation of BMSCs into osteoclasts. Finally, bioinformatics

analysis and dual luciferase reporter gene experiments confirmed

that circ_0007059 regulates osteoclast formation through the

circ_0007059/miR-378/BMP-2 axis. Related studies that report

the impact of circRNAs on OP through their influence on

osteoclasts are summarized in Table 3.
5.3 CircRNAs and OFNH

OFNH, referred to as avascular necrosis of the femoral head, is a

degenerative condition that may lead to the continuous collapse of

the femoral head, deformity, degenerative arthritis, and dysfunction

(127, 128). Steroid-associated OFNH (SONFH) is most prevalent in

China, with approximately 150,000 to 200,000 new cases reported

annually (129). The exact pathogenesis of ONFH remains unclear,

and numerous studies have explored the role of circRNAs in its

development. For instance, Yao et al. (130) examined three pairs of

femoral head and normal tissues from SONFH patients using a

microarray chip and identified 433 upregulated circRNAs and 214

downregulated circRNAs. Jiao et al. (131) discovered 74

differentially expressed circRNAs and 121 mRNAs in ONFH

tissues through transcriptome sequencing analysis. This analysis

included three cases of subchondral bone in ONFH patients and

three cases of hip replacement patients. Subsequently, circ_0001187

and circ_0008928, which showed the highest upregulation in

sequencing, were selected and confirmed to be highly expressed

in ONFH tissues by RT-qPCR. These differentially expressed

circRNAs may play a role in the formation and progression of

ONFH. Furthermore, Jiang et al. (132) observed a significant

upregulation of CDR1as expression in necrotic sites and plasma

of 99 ONFH patients. CDR1as in plasma demonstrates good

diagnostic efficacy as an early and intermediate diagnostic marker

for ONFH. The AUC is 0.695 for the diagnosis of international

ONFH stage (ARCO) 1/2, and the AUC is 0.635 for the diagnosis of

ARCO stage 3/4. The dysregulation of circRNAs in ONFH suggests

their potential role as both biomarkers for early diagnosis and

targets for therapeutic interventions. However, the exact pathways

through which circRNAs mediate osteonecrosis progression remain

underexplored and warrant further study.

The pathogenesis of OFNH involves disrupted vascularization,

oxidative stress, and impaired osteogenesis. CircRNAs, such as

CDR1as, influence adipogenic differentiation by regulating the

WNT5B gene, exacerbating the condition, while circHIPK3

counters oxidative damage to osteoblasts, mitigating disease

progression. These findings indicate that circRNAs serve as both
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contributors and potential therapeutic targets in OFNH through

their regulatory roles in cellular differentiation and stress responses.

Studies have also demonstrated the crucial role of BMSCs in the

management of ONFH illness. Overconsumption of hormones may

boost the adipogenic differentiation of BMSCs and impair their

ability to differentiate into osteogenic cells (133). Feng et al. (134)

found that circHGF suppressed the proliferation and osteogenic

differentiation of BMSCs isolated from 10 patients with steroid-

induced ONFH by interacting with miR-25-3p to modulate

SMAD7. Xiang et al. (135) isolated BMSCs from seven patients
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with ONFH and found that the proliferation activity was

significantly decreased, the apoptosis rate was increased, and bone

formation was decreased. However, adipogenic differentiation was

increased, indicating the involvement of BMSCs in the disease

process of ONFH. Sequencing and cell function experiments

showed that circ_0000219 and circ_0005936 may be involved in

the regulation of ONFH by mediating the functional changes of

BMSCs. Chen et al. (133) confirmed that the star molecule CDR1as

was upregulated in SONFH. TheWNT5B gene was regulated by the

sponge adsorption of miR-7-5, promoting the adipogenic
TABLE 3 Role of circRNAs in regulating osteoblast/osteoclast differentiation in osteoporosis.

CircRNA Osteogenesis/
osteoclastogenesis

Expression Mechanism Date Reference

circEIF4B
circFam190a
circ_0114581
circStag1
circ_0001485
circRNA−23525

osteogenesis
osteoclastogenesis
osteogenesis
osteogenesis
osteogenesis
osteogenesis

up
up
up
down
up
up

Phytic acid/circEIF4B/miR-186-5p/ITGA5 regulatory axis
FUS/circFam190a/HSP90b/AKT1 regulatory axis
miR-155-5p/HNRNPA3 regulatory axis
circStag1/HuR regulatory axis, activite Wnt/b-catenin
signaling pathway
TGFb-BMP signaling pathway
miR-30a-3p/RUNX2 regulatory axis

2024
2023
2023
2022
2022
2021

(102)
(103)
(104)
(105)
(106)
(107)

circ_0062582 osteogenesis up miR-145/CBFB 2021 (108)

circ_AFF4 osteogenesis up miR-135a-5p//FNDC5/Irisin regulatory axis 2021 (109)

circ_0006859 osteogenesis up miR-431-5p/ROCK1 regulatory axis 2021 (92)

circ_0006215 osteogenesis down Sponge miR-942-5p, regulate downstream RUNX2和VEGF 2021 (101)

circ_0003865 osteogenesis down melatonin/circ_0003865/miR-3653-3p/GAS1 regulatory axis 2021 (100)

circ_0076690 osteogenesis down Sponge miR-152 2020 (110)

circ_0024097 osteogenesis up miR-376b-3p/YAP1 regulatory axis, activate Wnt/b-catenin
signaling pathway

2020 (111)

circ_0026827 osteogenesis up Sponge miR-188-3p, regulate downstream Beclin1
and RUNX1

2020 (112)

circRNA_0048211 osteogenesis down miRNA-93-5p/BMP2 2020 (97)

circ_0076906 osteogenesis down miR-1305/OGN regulatory axis 2020 (113)

circ_0011269 osteogenesis down miR‐122/RUNX2 regulatory axis 2020 (114)

circFOXP1 osteogenesis down miR-33a-5p/FOXP1 regulatory axis 2020 (93)

circ_0074834 osteogenesis down Sponge miRNA-942-5p, regulate downstream ZEB1和VEGF 2019 (115)

circRNA_33287 osteogenesis up miR-214-3p/Runx3 regulatory axis 2019 (116)

circRNA_0006393 osteogenesis down miR−145−5p and FOXO1 regulatory axis 2019 (117)

circ-VANGL1 osteogenesis down miRNA-217/RUNX2 regulatory axis 2019 (118)

circIGSF11 osteogenesis up Sponge miR-199b-5p 2019 (119)

circRUNX2 osteogenesis down miR‐203/RUNX2 regulatory axis 2018 (120)

circRNA_0007059 osteoclastogenesis up miRNA‐378/BMP‐2 regulatory axis 2021 (121)

circ_0021739 osteoclastogenesis down Sponge miR-502-5p 2021 (95)

circRNA_009934 osteoclastogenesis up miR-5107/TRAF6 regulatory axis 2020 (122)

circRNA_28313 osteoclastogenesis up miR-195a/CSF1 regulatory axis 2019 (123)

circ_0002922 osteoclastogenesis down miR-181b-5p/MAP2K1 regulatory axis 2020 (124)

circ_0007710 osteoclastogenesis down miR-197-3p/MAPK1;miR-20a-5p/MAPK9 regulatory axis 2020 (124)

circHmbox1 osteogenesis, osteoclastogenesis down mIR-1247-5p/TNF-aregulatory axis 2020 (125)
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differentiation of BMSCs and inhibiting osteogenic differentiation.

In ONFH disease, reactive oxygen species (ROS) can exacerbate

disease progression by damaging osteoblasts and osteocytes. Liang

et al. (136) found that circHIPK3, which is expressed at low levels in

ONFH tissues, can reduce apoptosis by enhancing osteoblast

activity to counteract the oxidative damage caused by ROS to

osteoblasts. The biological mechanism of circHIPK3 in

counteracting ROS damage and ONFH should be further

explored. It is anticipated that circHIPK3 could potentially serve

as a molecular target for disease treatment. Future studies will

concentrate on uncovering the interplay between circRNAs, ROS

generation, and the balance between adipogenic and osteogenic

differentiation in BMSCs to provide a clearer picture of their role

in OFNH.
5.4 CircRNAs and OA

OA is the most common degenerative joint disease (137) and is

pathologically characterized by degenerative necrosis of articular

cartilage and reactive hyperplasia of the joint margins and

subchondral bone. Arthroplasty is the accepted treatment for

advanced stages of the disease, but functional recovery and the

longevity of prostheses remain unsatisfactory (138). Due to the lack

of therapeutic interventions, the current clinical focus is mainly on

the prevention and early treatment of OA. The identification of

different disease-specific biomarkers has offered fresh insights into

diagnosing and treating OA at an early stage. The role of circRNAs

in OA is illustrated in Figure 2.

Li et al. (139) investigated 42 differentially expressed circRNAs

using high-throughput sequencing of articular cartilage tissue from

OA patients and normal controls. Wang et al. (140) studied 1627

differentially expressed circRNAs in cartilage from five pairs of OA

and Kaschin-Beck disease (KBD). The most down-regulated

circRNA_0020014 was identified, which could be used to

differentiate between OA and KBD with an AUC of 0.6415. This
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circRNA could potentially serve as a biomarker for the distinct

diagnosis of OA. In a study on knee OA synovitis, Wang et al. (141)

found that the expression of circ_0005526 (circ_RUNX2) was

significantly increased in the serum of 60 patients with OA by

screening circRNAs derived from RUNX2. When circ_RUNX2 was

used as a diagnostic marker for OA, the sensitivity and specificity

were 0.78% and 77%, respectively, and the AUC was 0.82, indicating

its great potential as a diagnostic marker for OA.

Mediating chondrocyte proliferation, apoptosis, and autophagy;

inhibiting extracellular matrix (ECM) degradation; and regulating

the expression of signaling molecules in inflammation-related

pathways are the primary theoretical underpinnings of current

research on OA therapy. Liang et al. (142) found that the

expression of circGNB1 increased in chondrocytes under

inflammatory conditions. The inhibition of circGNB1 resulted in

a significant reduction in intracellular ROS and broad inhibition of

ECM degradation. Xu et al. found that circCREBBP is upregulated

in osteoarthritic tissues and chondrocytes isolated from the cartilage

of OA patients (143). AAV-sh-circCrebbp intra-articular injection

alleviated the degenerative changes in the cartilage of mice with

DMM-induced OA, resulting in lower Osteoarthritis Research

Society International (OARSI) scores for the knee joints

compared to those in the control group. Mechanistically,

circCREBBP promotes the progression of OA by sponging miR-

1208 in the TGFb2-Smad1/5 pathway. This suggests that targeting

circCREBBP to promote OA progression could potentially become

a new target for precision therapy in OA. Despite these findings, the

precise regulatory networks through which circRNAs modulate

inflammatory cytokines and ECM catabolism in OA remain

insufficiently characterized. Understanding these pathways can

provide directions for targeted therapies that mitigate joint

degradation. The signaling pathways regulated by circRNAs in

OA are presented in Figure 3.

Articular cartilage is composed of ECM and chondrocytes. The

ECM is in a dynamic equilibrium of continuous synthesis and

degradation under physiological conditions. However, under
FIGURE 2

Summary of the role of CircRNAs in OA.
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pathological conditions, an imbalance between ECM synthesis and

catabolism leads to OA (144). In the ECM degradation system,

matrix metalloproteinases (MMPs) are the most important. Tang

et al. (145) reported that circNFKB1, which is highly expressed in

the cartilage of OA patients, can inhibit the expression of ECM

anabolism genes ACAN and COL2A1 by sustaining the activation

of the NF-kB signaling pathway and upregulate matrix

metalloproteinase-13 (MMP-13) to promote ECM degradation.

CircARPC1B (146) has also been shown to prevent ECM

degradation by downregulating MMP-13 expression during OA.

Gong et al. (147) found that the high expression of CircZSWIM6 in

the cartilage of OA patients disrupted the balance between ECM

catabolism and anabolism, leading to promoted ECM degradation.

Intra-articular injection of adenoviruses overexpressing

CircZSWIM6 exacerbated OA in mouse models. Endochondral

inflammation in OA patients can lead to cartilage degradation

and worsen the disease. Traditional inflammatory factors mainly

include tumor necrosis factor-a (TNF-a), interleukin-1b (IL-1b),
interleukin-6 (IL-6), transforming growth factor-b (TGF-b), etc.
Liang et al. (142) found that circGNB1 was highly expressed in

cartilage tissue and in chondrocytes induced by IL-1b or TNF-a in

30 OA patients. CircGNB1 regulates the downstream gene RNF219

by sponging miR-4152-3p, thereby inhibiting IL-1b-induced
chondrocyte ECM degradation. CircIRAK3, which is highly

expressed in OA, can also promote the expression of IL-1b, TNF-
a, and IL-6 by binding to HNRNP U, leading to ECM

degradation (148).

In OA, circRNAs regulate chondrocyte activity, ECM integrity,

and inflammatory signaling. Pro-inflammatory circRNAs, such as

circNFKB1 and circARPC1B, sustain NF-kB activation and MMP-

13 expression, accelerating ECM degradation. Conversely,

circRNAs, such as circCREBBP, mitigate cartilage degeneration

by inhibiting miRNA pathways linked to the TGFb2-Smad1/5
Frontiers in Oncology 11
axis. These mechanisms illuminate the multifaceted roles of

circRNAs in driving OA progression and inflammation.
5.5 CircRNAs and IDD

IDD is a common degenerative spinal condition characterized

by loss of disc structure and function. Studies have identified

aberrant expression of circRNAs in degenerated disc tissues,

suggesting their involvement in cellular senescence, extracellular

matrix metabolism, and inflammation. For example, circ_0000129

was found to regulate nucleus pulposus cell apoptosis via the miR-

296-5p/PRKACB axis, highlighting its role in IDD pathogenesis.

Although the evidence indicates the potential of circRNAs as

therapeutic targets for IDD, further research is needed to

delineate the mechanisms underlying their contribution to disc

degeneration and regeneration. IDD is mainly marked by an

irreversible halt in the growth of nucleus pulposus cells (NPCs)

(149), which eventually results in diminished intervertebral height,

endplate hardening, and a decline in the ECM (149). In recent years,

abnormalities in nucleus pulposus cell function, including

decreased proliferative activity, an imbalance between ECM

production and degradation, and cytokine secretion, have been

found to be closely related to the development and progression of

IDD (150).

Wang et al. (151) isolated and identified nucleus pulposus cells

from IDD patient tissues. They conducted a microarray analysis

comparing these cells with nucleus pulposus cells from vertebral

fractures. The study revealed that 3570 circRNAs were upregulated

and 3724 were downregulated in the IDD patient tissues. Pathway

enrichment analysis predicted that circRNAs may regulate IDD

disease through cell cycle regulation and ECM-receptor interaction.

Guo et al. (152) sequenced IDD and normal tissues, revealing that
FIGURE 3

Signaling pathways regulated by circRNAs in OA.
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134 circRNAs were upregulated and 4 circRNAs were

downregulated in IDD samples. Song et al. (153) reported that a

total of 792 circRNAs were differentially expressed in a microarray

hybridization analysis of the nucleus pulposus from patients with

IDD, including 428 upregulated and 364 downregulated circRNAs.

The authors selected circRNA_104670, which exhibited the most

significant difference, to predict its downstream target as miR-17-

3p. The AUCs of the two tests for the diagnosis of IDD were 0.96

and 0.91, respectively. Both values indicated high diagnostic

efficacy, suggesting that they could serve as molecular markers for

IDD diagnosis in the future.

Chen et al. (154) indicated that nucleus pulposus tissues from

patients experiencing IDD exhibit high levels of circGPATCH2L

expression. They found that circGPATCH2L is involved in DNA

damage repair and subsequent apoptosis in NPCs. Mechanistically,

circGPATCH2L acts as a protein decoy for tripartite motif

containing 28 (TRIM28) within the aa 402–452 region. This

action prevents the phosphorylation of TRIM28 and inhibits P53

degradation, leading to DNA damage accumulation, cellular

apoptosis, and the progression of IDD. Xu et al. (155) discovered

that disrupting the balance between autophagy and apoptosis in

nucleus pulposus cells in the intervertebral disc also promotes IDD.

Studies have shown that circPTK2 absorbs miR-193a-5p, miR-

196b-5p, and miR-532-5p as sponges, resulting in reduced

autophagy of nucleus pulposus cells and decreased self-protective

ability. This process promotes apoptosis and activates

circSMARCC1, circSLC30A7, circFRYL, and other circRNAs,

ultimately contributing to the progression of IDD.

Since the intervertebral disc functions as a daily compressing

and cushioning organ, some researchers have also suggested that

the compressive load on the intervertebral disc could be the

triggering factor for IDD (156). Excessive compression may lead

to an imbalance between anabolic and catabolic processes of the

ECM and apoptosis of the nucleus pulposus (157). Xiang et al. (158)

simulated the pathological state of IDD in vivo by subjecting

isolated nucleus pulposus cells to static compression of 1.0 MPa.

Subsequently, a microarray was used to analyze the changes in

circRNA expression levels before and after injury to the nucleus

pulposus cells. It was found that a total of 1498 circRNAs exhibited

decreased expression levels. The circRNA-CIDN, which exhibited

the most significant decrease in expression, was validated in

functional assays to promote ECM anabolism (proteoglycans,

type II collagen), inhibit ECM catabolism (MMP-1, MMP-13),

and reduce apoptosis of nucleus pulposus cells. These findings

suggest that circ-CIDN may mitigate the progression of IDD by

preserving ECM balance and suppressing nucleus pulposus cell

apoptosis. These novel mechanisms and hypotheses offer new

therapeutic strategies for preventing and treating IDD in the future.

IDD involves the loss of nucleus pulposus cell functionality and

ECM integrity. CircRNAs, such as circRNA_104670, mediate ECM-

receptor interactions, influencing pathways that regulate cellular

senescence and ECM remodeling. These findings highlight

circRNAs as pivotal regulators of molecular processes that

underlie IDD progression, providing insights into potential

therapeutic interventions.
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5.6 CircRNAs and other
orthopedic conditions

Emerging evidence suggests that circRNAs play significant roles

in other orthopedic diseases, such as bone nonunion and heterotopic

ossification (HO). Bone nonunion, characterized by the failure of a

fracture to heal properly, has been linked to dysregulated circRNA

expression. For instance, circRNAs modulate osteoblast and

osteoclast activities, potentially influencing bone repair mechanisms

and fracture healing. Similarly, HO, a pathological condition marked

by ectopic bone formation in soft tissues, has been associated with

aberrant circRNA-mediated regulation of inflammatory and

osteogenic pathways.

In bone nonunion, the circRNA-miRNA-mRNA axis may

interfere with key genes involved in osteogenic differentiation and

bone regeneration. Previous research (115) highlighted the intricate

role of circRNAs in modulating apoptosis and inflammation, which

are critical in the progression of bone nonunion. In HO, circRNAs

may promote aberrant osteogenesis by regulating inflammatory

signaling and osteoprogenitor differentiation, as evidenced

previously (159). These discoveries suggest that targeting specific

circRNAs could serve as a potential therapeutic approach for

controlling ectopic bone formation.
6 Clinical perspectives and challenges

Whether serving as a marker for clinical diagnosis, disease

monitoring, and prognosis, or as a specific target for disease

treatment, the clinical application of circRNAs shows promise.

However, numerous difficulties and challenges still persist.
6.1 Molecular markers

First, circRNAs can serve as clinical biomarkers for diagnosing

and predicting the prognosis of orthopedic diseases through tissue

and cytology detection. Several studies have highlighted the

potential of circRNAs as diagnostic markers, many of which can

be identified through sampling peripheral blood or tissue from the

primary disease site. To enhance the utility of circRNAs as

diagnostic markers, efforts should focus on transitioning from

invasive to noninvasive tests. Research should be directed toward

advancing the detection of circRNAs in saliva, urine, plasma, and

exosomes. Second, there is an urgent need to address the challenge

of efficiently detecting and accurately quantifying circRNAs in a

limited number of noninvasive samples to improve the practicality

of circRNAs as diagnostic markers.
6.2 Therapeutic targets

Second, circRNAs also present opportunities and challenges as

therapeutic targets for bone-related diseases. Several critical issues

necessitate immediate attention.
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① The regulatory mechanism remains unclear. The molecular

adsorption sponge function of the currently popular miRs is just the

beginning of the pathogenic mechanisms. In recent years, molecular

mechanisms such as translation and protein synthesis by circRNAs,

binding and regulation of RNA-binding protein (RBP) stability, and

regulation of selective mRNA cleavage have been successively

reported. Further research is essential to determine whether they

are also involved in regulating common orthopedic diseases.

② Expression techniques. Most circRNAs are expressed at very

low levels in vivo. Even for some circRNAs with relatively high

expression abundance, achieving therapeutic concentrations is

challenging. Overexpressing specific circRNAs in vivo remains a

major challenge, and the most viable method is synthesizing

exogenous circRNAs suitable for humans in vitro on a large scale.

Liu et al. (160) connected five repeating linear fragments of

circRNA scRNA21 containing miR-21 binding sites. They

synthesized scRNA21 in vitro, which can bind miR-21, and

confirmed in cell experiments that its biological functions were

consistent with those of endogenous scRNA21. This approach to

synthesizing individual downstream circRNAs is innovative, but it

also has a critical flaw. This is because the regulation of circRNAs

and miRNAs is not one-to-one but many-to-many, forming a

complex competing endogenous RNA (ceRNA) network.

③ Delivery mode: Selecting the appropriate vector and

delivering exogenous circRNAs to the precise site of disease

occurrence remains unclear. Some studies have suggested using

exosomes as a delivery method. Li et al. (59) demonstrated that

packaging the oncogenic circ-0000190 into exosomes and

transferring them from normal cells to OS cells inhibited their

malignant biological behaviors of proliferation and invasion. The

lyophilized exosome powder (161) is a well-established technology

that can preserve exosomes for an extended period while

maintaining their biological activity and stability. This

preservation technique enhances the clinical application of

exosomes as carriers of circRNAs. Exosomes can serve not only

for systemic drug delivery but also for local drug delivery by

transporting other carriers, such as hydrogels. Tao et al. (162)

encapsulated exosomes containing circRNA3503 into a hydrogel for

intra-articular injection to achieve localized drug delivery in OA.

The gradual degradation of the hydrogel facilitated the sustained

release of exosomes for a slow drug release. Apart from exosomes,

other carriers like polymeric nanocarriers, mesoporous silica

nanocarriers, and graphene nanocarriers also hold promise as

carriers for circRNAs. Overcoming challenges such as achieving

stable carriage of circRNAs, targeted and timed release, and carrier

targeting are still areas that need to be addressed.

④ Decomposition and metabolism: circRNAs have a

significantly longer half-life compared to linear RNAs because of

their slow degradation process. The future implications of drug

accumulation, degradation, and metabolic clearance in organs, as

well as their impact on humans, remain unknown and have not

been addressed in the literature. Subsequent research on the

pharmacokinetics, pharmacodynamics, and toxicology of

circRNAs in both animals and humans should be carried

out accordingly.
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⑤ Clinical utility. Current research combines clinical samples and

basic experiments to identify circRNAs with potential therapeutic

effects. Numerous studies have reported hundreds of circRNAs

involved in orthopedic-related disease processes. However, the

question of how to select the most therapeutic circRNAs as clinical

targets remains unanswered. CircRNAs typically exert their biological

effects through the circRNA/microRNA/downstream gene regulatory

axis. Therefore, why are circRNAs chosen as therapeutic targets

instead of downstream microRNAs or genes? These questions can

only be answered through clinical studies to confirm the accuracy of

the underlying experiments. This will necessitate a significant number

of Phase I, II, and III clinical trials to systematically evaluate the

feasibility of circRNAs as targeted drugs.
7 Summary and outlook

Given the stable configuration of circRNAs characterized by

loop closure and considerable species conservation, coupled with

the emergence of advanced high-throughput screening technologies

for circRNAs, numerous contemporary studies have indicated that

circRNAs are critical in the initiation and development of various

orthopedic diseases. With ongoing elucidation of the functions and

mechanisms of circRNAs in the realm of orthopedic diseases,

circRNAs have great clinical significance as prognostic markers

for the diagnosis of bone diseases and as new targets for

individualized therapy. In conclusion, the mystery of circRNAs is

gradually being solved, and circRNA-based diagnostic and

therapeutic approaches will definitely play an important role in

the clinical practice of bone diseases.
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