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Although significant advances in understanding themolecular drivers of acquired

and inherited radiosensitivity have occurred in recent decades, a single analytical

method which can detect and classify radiosensitivity remains elusive. Raman

microspectroscopy has demonstrated capabilities in the objective classification

of various diseases, and more recently in the detection and modelling of

radiobiological effect. In this study, Raman spectroscopy is presented as a

potential tool for the detection of radiosensitivity subpopulations represented

by four lymphoblastoid cell lines derived from individuals with ataxia

telangiectasia (2 lines), non-Hodgkins lymphoma, and Turner’s syndrome.

These are classified with respect to a population with mixed radiosensitivity,

represented by lymphocytes drawn from both healthy controls, and prostate

cancer patients. Raman spectroscopic measurements were made ex-vivo after

exposure to X-ray doses of 0 Gy, 50 mGy and 500 mGy, in parallel to radiation-

induced G2 chromosomal radiosensitivity scores, for all samples. Support vector

machine models developed on the basis of the spectral data were capable of

discrimination of radiosensitive populations before and after irradiation, with

superior discrimination when spectra were subjected to a non-linear

dimensionality reduction (UMAP) as opposed to a linear (PCA) approach.

Models developed on spectral data acquired on samples irradiated in-vitro with

a dose of 0Gy were found to provide the highest level of performance in

discriminating between classes, with performances of F1 = 0.92 ± 0.06

achieved on a held-out test set. Overall, this study suggests that Raman

spectroscopy may have potential as a tool for the detection of intrinsic

radiosensitivity using liquid biopsies.
KEYWORDS

vibrational spectroscopy, radiosensitivity, ataxia telangiectasia, non-Hogkin’s
lymphoma, Turner’s syndrome, principal components analysis, universal manifold
approximation and projection, support vector machine
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1 Introduction

Cancer incidence is projected to increase globally by 47%, from

18.1 million to 29.5 million annually, over the period from 2020 to

2040 (1). Consequently an associated increase in the numbers of

patients requiring radiotherapeutic treatment is expected, if the

proportion of patients receiving radiotherapy as part of their care

remains constant at ~50% (2). While documented increases in

incidence of cancer partially stems from development of

technologies for detection and diagnosis of malignancies, the

increase in incidence has driven the need for more efficient and

effective treatment methodologies. In recent years many efforts have

been made in the advancement of personalized treatment in

radiotherapy and while some success in this area has been made,

mainly due to the advancement of technologies associated with

confining dose delivery to malignant regions, less success has been

made in advancement in biological assays to assess for inter-

individual variation in the response to radiotherapeutic treatment.

The dependence of the individual’s response to ionising

radiation (IR) exposure on various innate genetic, epigenetic and

other characteristics has yet to be fully characterised. Efforts have

been made to study individual cases of extreme radiosensitivity in

order to elucidate the cellular mechanisms involved in severe cases,

in conditions such as Ataxia Telangiectasia, Nijmegen Breakage

Syndrome and Fanconi’s Anemia, with therapeutic implications for

patients undergoing radiotherapy treatment or for individuals

subject to occupational and/or accidental irradiation (3).

However, it has emerged that a distribution in intrinsic

radiosensitivity exists in humans. Coles et al. demonstrated that

the level of intrinsic radiosensitivity of the general population

follows a Gaussian distribution, encompassing radioresistant,

normal and radiosensitive individuals (4, 5). In their description

we can understand extreme radiosensitivity in cases such as those

associated with Ataxia Telangiectasia, as outlying cases within the

distribution of intrinsic radiosensitivity. In addition, the existence of

this phenomenon of inter-individual variation highlights the

requirement for individual assessment of radiosensitivity to

curtail dose delivery to patients undergoing radiotherapeutic

treatment. Curtailing dose delivery would result in the reduction

of normal tissue complications during radiotherapy, radiation-

induced late effects of radiotherapy, and rule out radiotherapy as

a treatment modality in cases of extreme radiosensitivity (6).

Ataxia Telangiectasia is a genetic neurodegenerative disorder

resulting from a deficiency in the action or regulation of the gene

Ataxia Telangiectasia Mutated (ATM), which is involved in the

DNA damage response (DDR) pathway. Non-Hodgkin ’s

lymphomas (NHL) are radiosensitive tumours of the blood that

have also been associated with deficiency in the repair of DNA

damage through the ATM pathways (7, 8). In contrast Turner

Syndrome is a cytogenetic condition in females whereby the X

chromosome is partly or completely missing. Limited evidence

exists that Turner syndrome is associated with increased

radiosensitivity (9).

ATM is responsible for the sensing of DNA double strand

breaks (DSBs) and plays an important role in pathways associated

with the DDR and cell cycle checkpoint arrest (10, 11). ATM is one
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of the first proteins that localizes to the site of a DSB and

phosphorylates the histone H2AX (g-H2AX) and Ku proteins in

response to detection of a DSB (12). These phosphorylated proteins

then recruit further repair molecules to the site of the DSB. If

unrepaired, DSBs may lead to cell cycle arrest, senescence or more

severe outcomes such as genetic instability or programmed cell

death (13, 14).

Since ATM phosphorylates H2AX in response to the formation

of DSBs, the g-H2AX assay has been widely used as an assay for the

measurement of DSB sensing and repair (15, 16). While the assay is

a good measure of both DNA damage and damage sensing of DSBs,

its use in dosimetry and assessment of individual radiosensitivity

has been hindered by the large variation in individual baseline levels

of H2AX phosphorylation (17, 18).

An assay that has proven to be more reliable and reproducible

in terms of dose response and as a measure of individual

radiosensitivity is the in-vitro G2 chromosomal radiosensitivity

assay (G2 assay) (19). The G2 assay measures, in-vitro, the

number of chromosomal breaks (either spontaneously induced or

induced as a result of exposure to IR) in cells in the G2 phase of the

cell cycle before entering mitosis. Other metrics such as the Mitotic

Index and Mitotic Inhibition can be calculated from this assay with

or without exposure to IR. Mitotic Index is the ratio of the number

of cells in metaphase versus the number of cells in interphase.

Mitotic Inhibition is a measure of cell cycle checkpoint response to

IR and is a measure of the increase or decrease in the number of

cells in metaphase following IR when compared to the unirradiated

control (20).

A wealth of recent and previous studies using both infrared and

Raman spectroscopy have demonstrated that both measurements

can identify and interpret radiobiological alterations in exposed

cells, tissues and organisms (21–30). Raman spectroscopy uses the

inelastic scattering of coherent light from a specimen, where the

change in frequency of the light obtained is a fingerprint of the

organic biochemistry of the system, and can be used to classify

disease states (31), and biochemical processes associated with

radiobiological response (32, 33).

In this study, a classification pipeline was developed using

Raman spectroscopy of lymphocytes with machine learning

approaches to identify radiosensitive cell populations. Here

Raman spectra were acquired from lymphocytes drawn from a

mixed population, including from the blood of healthy controls and

prostate cancer patients, to represent a distribution of

radiosensitivity. Spectra were also acquired from lymphoblastoid

cell lines established from patients with a range of syndromes

conferring innate radiosensitivity (Ataxia Telangiectasia (AT),

Turner Syndrome and AT plus NHL (AT-NHL)). Although many

spectroscopic studies on the effects of ionising radiation on various

cell lines at various radiation doses (34), to the best of our

knowledge this study represents the first which has utilized

cellular models of radiosensitivity that are well characterised

genetically, cytologically and radiobiologically.

Samples were irradiated with doses of 0 Gy, 50 mGy and 500

mGy to test whether innate spectral differences within the resting

lymphocytes, or those emerging from irradiation, would provide

discrimination of samples based on radiosensitivity. At these dose
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levels it is possible to decipher and differentiate on the molecular

mechanisms associated with radiation sensitivity across cell and

tissue types (35). In this study the radiation-induced G2 score

radiosensitivity assay, which utilizes doses up to 500mGy, provided

a cytological reference metric of radiosensitivity.

Machine learning classification models employing these spectra

were developed using a support vector machine (SVM) algorithm to

which spectral data was input after decomposition using principal

component analysis (PCA) or universal manifold approximation

and projection (UMAP). Our results indicate that incorporation of

a UMAP decomposition step within the pipeline provides superior

model performance to that achieved using PCA, suggesting a

strategy for spectral pre-treatment within models for

identification of radiosensitive individuals in practice.
2 Materials and methods

Culture of lymphoblastoid cell lines

All cell lines used in this study were lymphoblastoid cell lines

(LCL’s) with EBV-immortalised B-lymphocytes and they were

generated from whole blood samples derived from individuals.

Two were obtained as a gift from the Institut Curie, Paris, France,

and found to be consistent with a diagnosis of non-Hodgkins

lymphoma and Turner’s syndrome (henceforth collectively

labelled as NHL-T cell lines; first described by Angéle et al. (36)).

Another two cell lines were obtained as gifts from the University of

Birmingham and were derived from two distinct AT-patients

(henceforth collectively labelled as AT lines). These lines have

also been described previously (37).

LCL’s are cells which grow in suspension and do not attach to

surfaces within their environment. They were maintained in

standard RPMI medium (Sigma) supplemented with 10% Foetal

bovine serum (FBS), L-Glutamine and incubated at 37°C with 5%

CO2. Each cell line was kept at a density of 1x10
5/ml and split by 1:5

dilutions every 24-48 hrs. Prior to irradiation, 5 ml of cells at a

density of 1x106 cells/ml were seeded per flask, per cell line and

per dose.
Isolation of lymphocytes, blood culture
and irradiation

This study received ethical approval from the Technological

University Dublin Research Ethics Committee (REC number 15-32).

Blood was drawn from a total of 23 healthy controls and 19 prostate

cancer patients (prior to treatment) as described previously (28, 38).

Prostate cancer patients were recruited under a Cancer Trials Ireland

trial, CTRIAL-IE (ICORG) 08-17 (NCT00951535). Peripheral blood

mononuclear cells were then isolated as described in our previous work

(28) through establishment of a blood culture for each blood draw, and

isolation of lymphocytes for irradiation through plastic adherence over

a 72-hour culture period.
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Sample irradiation

In-vitro cultured lymphocytes (for Raman spectroscopy) and

blood cultures (for the G2 assay) were both irradiated with an X-ray

linear accelerator (LINAC) at SLRON St. Luke’s Hospital, Dublin,

as described previously (28). Cells were either sham irradiated or

irradiated with a 50 mGy or 500 mGy dose. Samples were then

incubated for a 1-hour period at 37 °C before sample preparation

for spectroscopy.
Radiation-induced G2 assay

The G2 assay was performed as described previously (28), using

whole blood cultures. Briefly, cells were irradiated with an X-ray

LINAC at a dose of 500 mGy, were arrested in metaphase via

incubation with colcemid, and were subsequently fixed, lysed and

stained using a 3% Giemsa solution. The number of chromatid

aberrations was then recorded microscopically for 50 cells per slide.

For each donor, a radiation-induced G2 (RIG2) score was recorded

as the difference in the number of aberrations seen in the control (0

Gy) sample versus that in the irradiated sample. Examplar images of

the chromosomal aberrations observed during this analysis have

been published previously (inWhite at al, and Bryant et al. (37, 39)).
Raman slide preparation

Following IR exposure, lymphocytes in suspension were first

centrifuged at 250 g for 5 minutes. Supernatant was removed and

the cells were fixed using 200 µls of 2% paraformaldehyde in

phosphate-buffered saline. From the suspension, 40 µl was drop

cast onto calcium fluoride (CaF2) slides. Paraformaldehyde was

removed using disposable graduated pipettes and the slides for

Raman spectroscopy were then rinsed in deionised H2O for 5

minutes. Washing was performed three times and then the slides

were allowed to dry for Raman spectroscopic measurements.
Raman spectroscopy and post-processing

Raman spectroscopy was performed using a Horiba Jobin Yvon

Labram HR800 UV spectrometer. Spectra were acquired with a 660

nm solid-state diode laser delivering 100 mW output power, with a

20 second integration time and averaged across three integrations

per spectrum. Spectra were recorded using a diffraction grating

ruled with 300 lines/mm giving a spectral resolution of ~2.1 cm-1.

The confocal hole was set to 150 mm with the grating centered at

1350 cm-1. A total of 30 to 50 spectra for each donor, cell line and

dose were recorded from the nuclear portion of the cell using a

raster scanning methodology described elsewhere (28, 38, 40). The

cells were ~8-12 mm in size and each spectrum was recorded from

individual cells with a 4x4 mm raster scan of the centre of the cell

including both the nucleus and cytoplasm of the cell. All spectra

were recorded within two weeks of slide preparation. Spectra were
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FIGURE 1

(A) Mean Raman spectra of lymphocytes from control samples (0 Gy), including samples drawn from healthy controls (HC), prostate cancer patients
(PC), AT-deficient lymphoblastoid cell lines (AT) and two additional immortalized lymphoblastoid cell lines (NHL-T) as described in the main text.
Spectra are vertically offset for visual clarity. (B) Mean Raman difference spectra for prostate cancer patients (PC), AT-deficient lymphoblastoid cell
lines (AT) and reference immortalized lymphoblastoid cell lines (NHL-T) as described in the text. Spectra are offset for visual clarity. (C) Distribution
of radiation induced G2 scores for each cell subclass. Here the data for the AT and NHL-T cell lines are grouped as ‘AT-N’.
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downsampled using intersample averaging to produce

approximately 8-15 high SNR spectra per donor, cell line and

treatment condition, resulting in a total of 1279 spectra for

analysis (28).

All post processing was performed using Matlab version 7.9.0

(R2009b; Mathworks, USA) using the PLS-Toolbox version 6.51

(Eigenvector Research Inc.) and in-house algorithms. Wavenumber

calibration, intensity calibration, baseline correction, smoothing

and removal of substrate contribution were performed as outlined

in our previous studies (28, 38). All spectra were subsequently

vector normalized before analysis and were downsampled to

provide a reduced dataset, improving the overall signal-to-noise

ratio in each spectrum. In total 1279 spectra were used for

model development.
Machine learning

All analysis and machine learning was conducted in Python

v.3.10.9 using sci-kit-learn v.1.4.1.

The dimensionality of the spectral data was reduced before the

development of classification models using two approaches, PCA

and UMAP. PCA is well established in the field, allowing for the

reduction of a spectral dataset from a large number of covariant

wavenumbers to a, typically, small number of orthogonal basis

variables which describe the underlying variance in the data (38,

41–43). While PCA does allow subsequent interpretation of the

origin of spectral discrimination between classes, often this

approach is insufficient to reduce the data to a manageable

component subset (29, 44, 45), with the result that models can be
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overly complex. Recently it has been demonstrated that advanced

manifold approaches, including UMAP (46, 47) can be employed

with spectral data for variable reduction (44, 48, 49), which, while

not in themselves providing insights into the spectral origin of

clustering, are effective in reducing spectral data to a small number

of components for cluster visualization and model development.

Classification models were developed using a SVM algorithm

with either PCA or UMAP as a dimensionality reduction step. The

dimensionality reduction step involved the development of a

reduction model on the training set which was then applied to

both the training and testing data, in order to prevent model leakage

via conditioning.

Hyperparameter optimization was performed using a brute-

force grid-search cross-validation approach (with 3 folds) for both

the SVM algorithm and the dimensionality reduction approaches

as follows:
• SVM hyperparameters: C (regularization parameter) –

values 0.1,0.5 or 1; kernel – linear, rbf or sigmoid; gamma

(penalty parameter) – scale or auto;

• PCA: number of components varied between 1 and 50;

• UMAP: number of components varied between 1 and 4;

minimum distance value – 0.1, 0.5 or 0.7; number of

neighbours – 30, 100, 170, 230; distance metric –

minkowski, Manhattan, Canberra, cosine, or correlation.
All models were executed for 30 separate classification epochs,

with data randomized between training (80% of data) and test sets

(20% of data) on each pass. Samples were randomized in such a way

to ensure model leakage did not occur and that spectra of cells from
FIGURE 2

(A) Principal component analysis score plot for Raman spectra of the control sample (0 Gy) using a model including the first 5 principal components.
This model describes a total of 75% of the spectral variance in the data. (B) Score plot depicting the typical distribution of UMAP scores obtained
from an embedding model with two components.
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a given line or donor did not appear in both the training and test

sets. In the case of the cell lines on each pass it was ensured that

spectra from one AT line, and from one or other of the NHL-T

lines, did appear in the training set with the other appearing in the

test set.
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3 Results and discussion

In Figure 1A the mean spectra of each of the cell subclasses are

depicted. In Figure 1B the mean difference spectra of each sample

class are calculated, where the mean spectrum of lymphocytes
FIGURE 3

(A) Performance of PCA-SVM models as a function of PC and in-vitro radiation dose for a 4-class classification model. (B) Performance of UMAP-
SVM models as a function of in-vitro radiation dose for a 4-class classification model.
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derived from healthy controls are used as a reference. Here there are

significant differences in spectral intensity at 724 cm-1 (adenine ring

breathing mode), 782 cm-1 (uracil, cytosine and tyrosine ring

breathing modes) and 1100 cm-1 (stretching vibrations in -PO2
-),

together with a spectral shift of ~3 cm-1 between the normal

position of the phenylalanine ring breathing mode (~1004 cm-1)

and that seen in the cancer and radiosensitive cell lines. Taken

together these features may have their origins in the differences in

DNA repair propensities in each of these subclasses relative to the

healthy controls and may therefore be viewed as a spectral

biomarker of abnormal repair. As transfection by EBV was used

to immortalise these cell lines, this may also contribute to the

spectral differences observed in the lymphoblastoid cell lines here.

Figure 1C depicts the RIG2 scores measured in these samples

(originally partially produced in our previous work (28)), together

with RIG2 scores measured for both the healthy control population

and the AT and N cell lines (which are grouped together for the

purposes of visualisation due to there being RIG2 score data from

only 3 cell lines available). While this data exemplifies the range of

radiosensitivities which are yielded from cytogenetic approaches in

cancer patients, radiosensitive subpopulations and healthy controls,

the overlap in the distributions also demonstrates the challenges in

using RIG2 scores for the purposes of precision identification of

radiosensitive sub-populations.

Figure 2A depicts the PCA scores plot for spectral data at a dose

of 0Gy. This PCA model was found to account for 75% of the

variance in the spectral data (for reference, a model including the

first 10 components was found to describe 86% of the variance in

the spectral data). This demonstrates that PCAmodels account for a

substantial proportion of the spectral variance, with a level of

clustering seen between scores using many PCs between PC1 and

PC5 (Supplementary Figures S1, S2 depict the PCA score plots

observed at doses of 50mGy and 500mGy, respectively). However,

as the boundary between classes is highly non-linear, this suggests

the requirement for deployment of non-linear machine learning

approaches for classification here.

Figure 2B then depicts a typical plot of UMAP scores obtained

from an embedding utilizing two components, again for spectral

data observed at a dose of 0Gy. UMAP score plots, unlike PCA

score plots, are highly dependent upon the embedding
Frontiers in Oncology 07
hyperparameters, such that the score plot will differ substantially

for other embeddings. As a non-linear embedding approach UMAP

has been demonstrated to produce robust embeddings which have

been shown to preserve the global structure and continuity of

datasets (47, 50). Here it can be seen that this non-linear

dimensionality reduction approach can produce embeddings

which separate spectral classes such that modelling with a non-

linear classification approach is likely to produce higher

classification performances.

Figures 3A and B, the classification performance of the PCA-

SVM and UMAP-SVMmodels are depicted as a function of in-vitro

radiation dose for a 4-class classification approach (classes – healthy

control, prostate cancer, AT-LCL and N-LCL). Modelling

performance was expressed as F1-score on the held-out test set,

and provided as the macro-average across each class.

For PCA-SVM and UMAP-SVM models, macro F1-score

performances were high (m = 0.96 (s ± 0.07) and m = 0.95 (s ±

0.02), respectively) though these reduced significantly when the

tuned models were presented data from the held-out test set, with

mean PCA-SVM modelling performance for the test set at 0Gy at

F1 = 0.54 (± 0.08) and that for the UMAP-SVMmodels averaging at

F1 = 0.52 (± 0.1) across all hyperparameters. It can be seen from

Figures 3A and B that little variation in modelling performance with

either dose or hyperparameter for either model type was observed.

To further interrogate the potential to discriminate

radiosensitive subpopulations, the AT and N LCL cell lines were

grouped together as a unified class and models were then trained

separately for discrimination of each class. Results of this analysis

are depicted in Figures 4 and 5.

In Figure 4 the test results of a 3-class PCA-SVM classification

approach are shown by variation in in-vitro radiation dose and number

of PCs retained in the model. All models optimize with in the region of

6-7 PCs, with spectral variance increasing with dose, and optimal

model performance (mean F1 = 0.89 (s ± 0.07) observed for models

trained on spectra at 0Gy, with model complexity set to 6 PCs.

Likewise in Figures 5A, B, the UMAP-SVMmodel performances

are provided with variation in hyperparameter. Modelling

performances are again maximized for spectral data at a 0Gy dose,

with performance falling with dose. Additionally UMAP-SVMmodel

performances appear to be slightly more robust and parsimonious
FIGURE 4

Performance of PCA-SVM models as a function of in-vitro radiation dose and model complexity (number of PCs).
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B

A

FIGURE 5

(A, B) Performance of UMAP-SVM models as a function of in-vitro radiation dose, UMAP model complexity (number of components, number of
neighbours), and distance metric.
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when developed using the canberra metric (with number of

neighbours set to 30, components to 3) with a mean prediction

performance on the held-out test set of F1 = 0.92 (s ± 0.06). A two-

tailed t-test of the F1-score performances returned by the models at

testing revealed that they were statistically significantly different

(p<0.025), suggesting that the UMAP embedding of spectral data

provides superior classification performance for this use case.

Within the context of this study, which uses liquid biopsies

from healthy individuals, those with a confirmed diagnosis of

cancer, and those from individuals with a confirmed genetic

diagnosis of conditions conferring radiosensitivity, this high

classification performance is encouraging.

This result suggests that spectroscopic assays for radiosensitivity

may potentially have an important role to play within a pipeline of

assays for identification of individuals at risk of adverse effects from

exposure to ionizing radiation, either in a clinical or non-clinical

context.Within a clinical context, these findings point to the potential

of this spectroscopic assay within a pipeline for a-priori segregation of

those individuals likely to possess a radiosensitive phenotype, and

who therefore require careful monitoring for adverse responses

during radiotherapeutic treatment or may be candidates for

alternative therapeutic strategies. Importantly, the success of this

spectroscopic assay does rely upon careful optimisation of sample

preparation for optimal classification performance (34, 43). Equally,

establishing coherent, robust linkages between spectral observations

and the underlying molecular events which give rise to the spectral

phenotype is crucial to provide confidence to biomedical scientists

and clinicians for interpretation of the spectroscopic measurement.

While this experimental finding does require validation in a

larger cohort, it is potentially important as, despite a significant

body of research in this area, a single assay for radiosensitivity has

yet to emerge (35). It is therefore likely that any future deployment

of this technology in radiation science will involve its use alongside

measurements for other characteristics of radiation response.
4 Conclusion

In this article, AT lymphoblastoid cell lines established from

blood samples taken from two different AT patients, a further one

with NHL, and a separate lymphoblastoid cell line from an

individual with Turner’s syndrome were used as cellular models

of radiosensitivity, together with spectra of lymphocytes drawn

from healthy controls and prostate cancer patients. Parallel

reference measurements of cellular radiosensitivity were recorded

as ground truth metrics, establishing the difficulties in using, for

example, cytogenetic metrics such as RIG2 score as an objective

measure of radiosensitivity in mixed human populations.

The study has demonstrated the capability of Raman spectroscopy

as a tool for the assessment of individual radiosensitivity. Differences in

spectral biochemical signatures o cells have been shown to allow for

detection and discrimination of cells based on intrinsic factors relating

to radiosensitivity. Of course, this work uses only a few biological

examples of radiosensitivity as models, and a caveat must be applied to

the fact that lymphoblastoid cell lines, rather than lymphocytes drawn
Frontiers in Oncology 09
from patients, have been used as radiosensitive samples here. Overall

however, the study demonstrates clearly the capability of the

classification pipeline for the identification of radiosensitive cell

subpopulations within a wider heterogenous population.

Using a UMAP-SVM model an F1-score of 0.92 ± 0.06 was

observed from classification models using Raman spectra acquired

on a 0 Gy (control) sample. Therefore, the incorporation of UMAP

spectral decomposition within the classification pipeline, and

careful hyperparameter tuning, appears to be a key enabling step

providing decomposition of spectral data towards classification by

machine learning.

This study has highlighted the potential of a measurement of

the Raman spectra of a pre-treatment blood biopsy for

identification of radiosensitive subpopulations. However, it is

likely that further model training data, together with models

which utilize spectral data together with other biological metrics,

will be required for high-precision isolation of radiosensitive

subpopulations in practice.
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