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Hongyuan Huang1 and Yueqin Xu1*

1Department of Thyroid and Breast Surgery, Jinjiang Municipal Hospital (Shanghai Sixth People’s
Hospital Fujian), Quanzhou, Fujian, China, 2Department of Mechanical Engineering, Division of
Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada, 3Department of
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Background: Accurate segmentation of thyroid nodules in ultrasound imaging

remains a significant challenge in medical diagnostics, primarily due to edge

blurring and substantial variability in nodule size. These challenges directly affect

the precision of thyroid disorder diagnoses, which are crucial for metabolic and

hormonal regulation.

Methods: This study proposes a novel segmentation approach utilizing a Swin U-

Net architecture enhanced with a self-attention mechanism. The model

integrates residual and multiscale convolutional structures in the encoder path,

with long skip connections feeding into an attention module to improve edge

preservation and feature extraction. The decoder path employs these refined

features to achieve precise segmentation. Comparative evaluations were

conducted against traditional models, including U-Net and DeepLabv3+.

Results: The Swin U-Net model demonstrated superior performance, achieving

an average Dice Similarity Coefficient (DSC) of 0.78, surpassing baseline models

such as U-Net and DeepLabv3+. The incorporation of residual and multiscale

convolutional structures, along with the use of long skip connections, effectively

addressed issues of edge blurring and nodule size variability. These

advancements resulted in significant improvements in segmentation accuracy,

highlighting the model’s potential for addressing the inherent challenges of

thyroid ultrasound imaging.

Conclusion: The enhanced Swin U-Net architecture exhibits notable

improvements in the robustness and accuracy of thyroid nodule segmentation,

offering considerable potential for clinical applications in thyroid disorder

diagnosis. While the study acknowledges dataset size limitations, the findings
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demonstrate the effectiveness of the proposed approach. This method

represents a significant step toward more reliable and precise diagnostics in

thyroid disease management, with potential implications for enhanced patient

outcomes in clinical practice.
KEYWORDS

Swin U-Net, image segmentation, deep learning, image dataset, thyroid,
ultrasound images
1 Introduction
The prevalence of thyroid nodules, a potential indicator of

thyroid cancer, has risen in recent years, as noted by Haugen

et al. (1). Ultrasound, a simple, convenient, cost-effective, and

rapid imaging technique, has become the preferred clinical tool

for detecting thyroid nodules. Accurate determination of the size,

shape, and contour of thyroid nodules is critical for differentiating

between benign and malignant cases. As a result, achieving fully

automated and highly precise segmentation of thyroid nodules in

ultrasound images is of paramount clinical significance.

Currently, thyroid nodule segmentation methods are

categorized into four main approaches: active contour models,

region-based methods, and three types of deep learning

techniques. Active contour models are commonly employed for

the detection of thyroid nodules in ultrasound images, as

demonstrated by the works of Maroulis et al. (2), Savelonas et al.

(3), andWong et al. (4). To provide comprehensive patient care, it is

essential to understand the physiological implications of thyroid

nodules and their detection through ultrasound imaging. Thyroid

nodules can trigger physiological responses, including alterations in

thyroid hormone levels and disruptions in metabolic processes.

Such changes may stem from the potential association between

nodules and thyroid cancer, which can impact endocrine function

and metabolic regulation. Additionally, medical imaging

procedures like ultrasound may induce physiological stress
02
responses, such as fluctuations in blood pressure and heart rate,

particularly in patients unfamiliar with the procedure.

Addressing these physiological responses is vital for patient

well-being. Effective communication and emotional support play a

pivotal role in mitigating patient anxiety and maintaining

homeostasis during the diagnostic process. Moreover, precise and

timely segmentation of thyroid nodules in ultrasound images can

alleviate patient distress by enabling early diagnosis and facilitating

appropriate treatment. By recognizing and addressing the

physiological dimensions of thyroid nodule detection and

diagnosis, healthcare providers can enhance patient well-being

and optimize clinical outcomes. Figure 1 illustrates the process of

thyroid nodule detection and segmentation, highlighting key

techniques from initial ultrasound detection to advanced deep

learning methods and their physiological implications.

Traditional methods for medical image segmentation, such as

those relying on boundary energy functions, often struggle with the

complexity of irregular edges, particularly in cases involving

infiltrative or malignant thyroid nodules. These methods typically

require the pre-setting of an initial contour, which can result in

suboptimal segmentation in areas with irregular tissue boundaries.

Variability in gray-level distributions between tissue regions further

complicates the segmentation process, even when gray levels are

uniform within a single tissue type. In thyroid ultrasound images,

the subtle gray-level differences between distinct tissue regions

exacerbate these issues, underscoring the need for more advanced

methods that leverage prior shape and positional information.
Thyroid nodules

Active contour models

U-Net

Hormonal Changes

Ultrasound detection

Region-Based methods

Swin U-Net

Metabolic regulation

Physiological impact

Segmentation methods
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approaches

FIGURE 1

Flowchart illustrating the process of thyroid nodule detection and segmentation.
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Thyroid nodules, which are abnormal growths in the thyroid

gland, can arise due to a variety of factors. Among the known causes

are iodine deficiency, genetic mutations, environmental exposure to

radiation, and hormonal imbalances. These factors contribute to the

formation of both benign and malignant nodules, which may vary

in size, shape, and tissue characteristics. The complexity and clinical

importance of thyroid nodule detection and classification in

ultrasound images highlight the need for precise segmentation

methods. Accurate segmentation can aid in distinguishing

malignant nodules from benign ones, guiding treatment decisions

and improving patient outcomes. This context further emphasizes

the significance of developing advanced segmentation models to

enhance the precision of thyroid nodule detection.

Recent advancements in deep learning, particularly with

architectures like U-Net, have made significant strides in medical

image segmentation by automating the process without manual

intervention. However, these methods still encounter challenges in

distributing information uniformly across spatial locations and

channels, leading to computational redundancy that hinders both

model training speed and segmentation accuracy. The integration

of attention mechanisms has shown promising results in improving

efficiency and performance, allowing the model to focus on relevant

features while reducing unnecessary computations. A key challenge

in deep learning-based segmentation is the need for large, labeled

training datasets, which are often time-consuming and difficult to

obtain. To address this, Chen et al. (5) propose an enhanced U-Net

model for thyroid nodule segmentation, building upon the works of

Ma et al. (6) and Gulame et al. (7). Their model incorporates a Swin

U-Net backbone with multi-scale convolution modules, improving

segmentation precision across a wide range of nodule sizes.

Additionally, they enhance the segmentation process with spatial

and channel attention mechanisms within the skip connections,

allowing the model to preserve critical edge information. The use of

self-attention mechanisms further refines the model’s ability to

focus on relevant features at different scales, optimizing

segmentation performance.

In this work, we introduce an innovative integration of self-

attention mechanisms within the Swin U-Net architecture to address

the specific challenges associated with thyroid nodule segmentation.

This approach enhances feature extraction by prioritizing salient

regions of interest, effectively overcoming challenges such as blurred

edges and variations in nodule size. Our method significantly advances

the capabilities of traditional models like BCDU-Net, offering superior

segmentation accuracy, particularly for thyroid nodules of varying

sizes. The combined strengths of Swin U-Net’s backbone, multi-scale

convolution, and self-attention mechanisms contribute to the high

accuracy and robustness of our model, representing a significant

advancement in medical image segmentation.
2 Related work

Researchers have proposed an active contour model by Chan

and Vese (8) for segmenting thyroid nodules based on the Active
Frontiers in Oncology 03
Contour Without Edges (ACWE) model. Savelonas et al. (2)

introduce the Variable Background Active Contour (VBAC)

model, which outperforms ACWE in segmenting thyroid nodule

ultrasound images with uneven background distribution. While

VBAC is effective at segmenting hypoechoic nodules, it struggles

with non-hypoechoic nodules. In the work by Savelonas et al. (3),

the Joint Echogenicity-Texture (JET) model is presented as an

extension of the VBAC model, incorporating information on

regional pixel intensity and texture feature distribution. This

enhancement improves segmentation performance in thyroid

nodule ultrasound images, particularly outperforming the VBAC

model for isoechoic thyroid nodules. However, it faces challenges in

distinguishing large blood vessels from thyroid nodules.

In the literature, Wong et al. (4) introduced a method for

segmenting thyroid nodule ultrasound images that combines the

Active Contour Without Edges (ACWE) model with the Region-

Scalable Fitting (RSF) energy model (9). While this approach yields

commendable segmentation results, it necessitates the presetting of

an initial contour. The implementation process is relatively simple,

but the time-consuming segmentation iterations and the need for

an initial contour reduce its efficiency. Furthermore, segmentation

results vary significantly across different thyroid nodules due to

their individual differences.

Simultaneously, researchers have introduced region-based

methods for thyroid nodule ultrasound image segmentation. A

thyroid nodule hyper-image segmentation method is presented by

Zhao et al. in (10), utilizing a normalized model. By incorporating

homomorphic filtering and anisotropic diffusion operations, this

method reduces image noise while maintaining crucial edge details.

However, it has limitations in terms of generality and applicability

across different cases. Another region-based approach, utilizing radial

gradients and the Variance-Reduction Statistics (VRS) algorithm, is

introduced by Zhu et al. in (11). In this method, radiologists manually

mark the long and short axes, as well as the center points of the

nodules. The VRS algorithm is then used to determine where the

nodule’s radial line intersects its edge, after which adjacent points are

selected and connected to outline the nodule. B-spline methods are

employed to refine the segmentation accuracy. However, the

requirement for manual intervention by radiologists introduces

inefficiencies in the process. Existing research on region-based

methods highlights the importance of abundant prior information

to achieve more precise segmentation results.

Deep learning algorithms significantly improve the accuracy

and automation of image segmentation compared to traditional

approaches. A U-Net network with a residual structure and

attention gate mechanism is presented by Wang et al. in (12),

which enhances segmentation compared to the conventional U-Net

network. However, it is limited when applied to thyroid nodule

ultrasound images with low contrast and struggles to segment all

nodule regions when multiple nodules are present in the image. For

thyroid nodule ultrasound image segmentation, a semi-supervised

neural network with an attention mechanism is proposed by Wu

et al. in (13). This network leverages weakly annotated classification

data and a limited amount of fully annotated segmentation data,
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yielding commendable results, although its generalization ability

still needs improvement. A spatial pyramid pooling model is

introduced by Oktay et al. in (14), integrated with the codec path

to enhance context information capture. While this model delivers

favorable segmentation results, it requires a lengthy training period.

A network framework based on Mask R-CNN with multi-task

processing capability is devised by Huang et al. in (15), enabling

simultaneous detection, segmentation, and classification of thyroid

nodules. However, the model shows suboptimal segmentation

performance for small nodules. Compared to the two traditional

segmentation approaches mentioned above, deep learning-based

approaches exhibit substantial advancements in algorithmic

automation and adaptability. In recent years, attention

mechanisms have been incorporated into deep learning for image

segmentation. According to Oktay et al. (15), U-Net integrates the

attention mechanism, where a weight map extracted through deep

convolution is utilized to guide and supervise shallow convolution.

This optimization restricts activation to the targeted segmentation

region while decreasing the activation of the background, resulting

in improved segmentation outcomes. In the work by Fu et al. (16),

an attention module that combines both channel and spatial aspects

is introduced. With fewer parameters than mainstream networks,

this module can seamlessly integrate into such networks,

significantly improving classification and detection accuracy.

A dual attention network is presented by Fu et al. in (17),

utilizing spatial and channel attention modules to extract context

information within a channel and to identify dependencies between

channels. In the context of medical ultrasound image segmentation,

Lee et al. propose a model that incorporates a boundary

preservation module in (18). This model generates a weight map

from boundary key points, which enhances the network’s focus on

the target boundary area, ensuring that the segmentation results

closely align with expert-defined gold standards for shape and

contour. According to Zhong et al. in (19), the semantic

segmentation task can be divided into two subtasks: pixel
Frontiers in Oncology 04
prediction and pixel grouping. They also introduce the Squeeze-

and-Attention (SA) module, which learns multi-scale spatial

features and non-local features, optimizing segmentation results.

This module is seamlessly integrated into mainstream segmentation

models. By incorporating attention mechanisms, network models

achieve enhanced segmentation results, contributing to greater

accuracy and effectiveness in image segmentation tasks.
3 Methodology

Using a Swin-U-Net model, a variant of the U-Net architecture

enhanced with Swin Transformer layers, we propose a novel

approach for thyroid nodule segmentation. The primary aim of

this study is to accurately segment thyroid nodules, which exhibit

varying sizes and indistinct boundaries. Figure 2 illustrates how the

Swin Transformer components are integrated into the traditional

U-Net framework. The Swin-U-Net model consists of three key

components: the encoding path, the Swin Transformer layers

(serving as attention modules), and the decoding path. In the

encoding phase, hierarchical features are extracted from the input

image, facilitating a precise representation of nodule characteristics.

By incorporating the Swin Transformer architecture, the attention

modules capture long-range dependencies and contextual

information, significantly enhancing the model’s ability to discern

intricate details crucial for thyroid nodule segmentation.

Simultaneously, the Swin Transformer attention modules capture

and preserve critical information across multiple scales during the

down-sampling process within the encoding path. This information

is efficiently passed to the corresponding levels in the decoder,

thereby enriching the feature representation for the subsequent up-

sampling process. The attention mechanism of the Swin Transformer

enables the model to better understand spatial relationships within

the nodule region. In the decoding path, the combined feature tensor

is up-sampled, and the decoder leverages the enriched information
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FIGURE 2

Deep convolutional neural network model based on residual multi-scale convolution and attention mechanism.
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from the attention modules to accurately reconstruct the segmented

thyroid nodule masks. To further optimize segmentation, the model

uses the dice loss function, ensuring alignment between the predicted

masks and ground truth labels.
3.1 Ultrasound image acquisition protocol

To ensure high-quality and accurate thyroid ultrasound images

for the segmentation task, a standardized ultrasound image

acquisition protocol was followed. The following key aspects were

considered during the image acquisition process:

a) Anatomical positioning of the transducer

The sonographer placed the transducer on the patient’s neck,

typically over the thyroid gland region. The transducer was

positioned in such a way that it allowed for optimal visualization

of the thyroid lobes, isthmus, and any nodules present. A linear

transducer with a high frequency was used to capture detailed

images of the thyroid tissue. The sonographer adjusted the angle of

the transducer to ensure that both the anterior and lateral aspects of

the thyroid gland were clearly visualized.

b) Patient posture and head position

The patient was instructed to lie supine with their neck slightly

extended. The head was positioned in a neutral alignment or

slightly tilted backward to facilitate better access to the thyroid

region. This positioning ensured that the thyroid gland was in the

optimal imaging plane for accurate visualization. The patient’s

comfort was prioritized throughout the scan to minimize

movement and artifacts during image acquisition.

c) Scanning technique

The sonographer used both longitudinal and transverse sweeps

to capture comprehensive images of the thyroid gland. The

longitudinal sweep provided a vertical view of the gland, enabling

the assessment of the thyroid’s length, height, and depth. The

transverse sweep allowed for a cross-sectional view, facilitating

the identification of nodules and the evaluation of their size,

shape, and boundaries. The sonographer also employed slight

adjustments to the transducer pressure to optimize image quality

and ensure consistent contact with the skin.

d) Specifications of the ultrasound machine and transducer

The ultrasound images were acquired using a GE Logiq E9

ultrasound machine equipped with a GE 12L-RS linear array

transducer. The transducer used has a frequency range of 7-12

MHz, which is suitable for high-resolution imaging of soft tissue

structures like the thyroid. The image resolution provided by the

machine was 1024x768 pixels, ensuring clear and detailed

visualizations of the thyroid nodules.
3.2 Segmentation through encoder-
decoder architecture

In this study, both training and testing are performed using the

proposed Swin-U-Net-based self-attention mechanism architecture

for anchor-free object detection, specifically focusing on thyroid
Frontiers in Oncology 05
nodules. The model follows a structured approach, beginning with

an annotated image being input into the encoder-decoder

architecture. This framework extracts essential features and

gradually reconstructs the segmented image.

Once the image is processed through the encoder-decoder

model, it is further refined using a self-attention mechanism. This

mechanism enhances the model’s capability by capturing high-level

features and contextual information, essential for the accurate

detection of thyroid nodules. The self-attention mechanism works

by selectively focusing on the most relevant spatial relationships

within the image, enhancing the precision of nodule segmentation.

This process is accomplished through the use of convolutional and

pooling layers, which extract and pool features at multiple scales,

contributing to improved segmentation performance. By

combining the strengths of Swin-U-Net’s architecture and self-

attention mechanisms, the model achieves robust object detection

and segmentation, even in challenging thyroid ultrasound images

with variable nodule sizes and subtle edge differences.

In this study, an annotated image is processed through a Swin U-

Net-based self-attention mechanism architecture, designed

specifically for anchor-free object detection, particularly for thyroid

nodule analysis. The input image first traverses the encoder path of

the Swin U-Net, where features are captured and organized

hierarchically. The encoder utilizes a series of convolutional and

pooling layers to efficiently extract essential features, enabling the

model to identify hierarchical representations of the input image.

After passing through the encoder, the processed image enters the

self-attention mechanism, a critical phase where the model captures

long-range dependencies and contextual information. By employing

convolutional layers, the self-attention mechanism refines and

emphasizes significant features, dynamically considering the

importance of different regions in the image. This allows the model

to focus on specific details, which is particularly valuable in detecting

intricate structures such as thyroid nodules.

Following the self-attention mechanism, the enhanced image

progresses through the Swin U-Net decoding path. The decoder is

responsible for reconstructing the spatial information and

generating the final segmentation output.

The decoder refines the features of the input image through the

use of up-sampling and convolutional layers. As a result, a

segmented output is created that identifies and highlights thyroid

nodules. These layers progressively reduce the spatial dimensions

while capturing diverse visual patterns using learned filters.

Mathematically, this is represented in Equations 1 and 2, where

Fenc represents the feature maps in the encoder and Fpool represents

the pooled feature maps.

Fenc = s (Wenc * Fenc−1 + benc) (1)

Fpool = Maxpooling (Fenc) (2)

Max pooling is a commonly used downsampling technique in

convolutional neural networks (CNNs), designed to reduce the

spatial dimensions of feature maps while retaining essential

information. After each convolutional layer, the feature maps are

activated using Rectified Linear Units (ReLUs), which introduce
frontiersin.org
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nonlinearity and enhance the model’s ability to capture complex

patterns. Subsequently, max pooling is applied to further decrease

the spatial resolution of the feature maps, ensuring that only the

most significant features are preserved while irrelevant ones are

discarded. This downsampling operation reduces the

dimensionality of the data, enabling the network to focus on

higher-level representations.

As the spatial dimensions of the feature maps decrease, the

number of feature maps typically increases, allowing the network to

capture more abstract representations of the input data. The

processed feature maps are then passed through the decoder to

restore the spatial information lost during the downsampling

process. In the case of the Swin U-Net architecture, this

reconstruction is achieved through a combination of upsampling

layers and convolutional operations, which progressively recover

the original resolution of the input image.

During upsampling, skip connections play a crucial role. At

each stage, feature maps from the corresponding encoder path are

concatenated with those in the decoder. These skip connections

integrate both local and global information, which is vital for

improving the accuracy of object localization and segmentation.

By utilizing these connections, the decoder can access low-level

features from the encoder, ensuring that fine-grained details are

preserved and enhancing segmentation precision. This process

allows the network to maintain accurate object boundaries and

effectively recover spatial information, ultimately leading to more

precise segmentation of thyroid nodules or other medical

imaging tasks.

A mathematical representation of the aforementioned concept

is represented by Equation 3. where Fup represents the up-sampled

feature maps in the decoder.

Fup = upsample (Fdec−1) (3)

The convolutional layers of the decoder play a crucial role in

enhancing feature maps, emphasizing intricate details, and improving

segmentation accuracy. By incorporating ReLU activation, the

network effectively models complex relationships and patterns.

During the upsampling process, spatial resolution is restored while

simultaneously reducing the dimensionality of feature maps, resulting

in a segmentation map that aligns closely with the original input

image. Furthermore, the integration of skip connections or residual

connections facilitates direct pathways between corresponding layers

in the encoder and decoder paths. This architecture allows for the

transfer of low-level details from the encoder to the decoder, thereby

enhancing detection accuracy. The mathematical representation of

this concept is provided in Equation 4, where Fconcat represents the

concatenated feature maps, Fenc represents the encoder, and Fup
represents the up-sampling operation.

Fconcat = concatenate (Fenc, Fup) (4)

The network adeptly combines high-level information with

detailed spatial nuances by concatenating encoder feature maps

with up-sampled feature maps in the decoder, thereby achieving

precise localization and detection. The incorporation of skip

connections effectively mitigates information loss during the
Frontiers in Oncology 06
down-sampling process, facilitating enhanced information flow

and, consequently, improved performance in segmentation tasks.

In the context of Swin U-Net-based Self-Attention Mechanism

(SAM) models, which utilize an encoder-decoder architecture, the

detection process is typically finalized with a 1 �1 convolutional

layer. This layer is subsequently followed by an activation function,

such as sigmoid or SoftMax, to produce the final segmentation map.

This structured approach ensures that both coarse and fine details

are preserved, leading to superior segmentation outcomes.

Fdec = s(Wdec * Fconcat + bdec) (5)

ŷ = sigmoid(Wout * Fdec + bout) (6)

The purpose of this layer is to generate the ultimate

segmentation map, assigning probabilities or class labels to every

pixel. The use of a 1 �1 convolutional layer facilitates the

aggregation of information, enabling the network to comprehend

intricate relationships and integrate features across different scales,

which contributes to the precise segmentation of data. As a result,

pixel-level probabilities or class labels are derived using the

activation function, whether it is sigmoid or SoftMax. The

Equations 5 and 6 show this, where Fdec   represents the feature

maps in the decoder, ŷ represents the predicted segmentation map,

* denotes convolutional operations, s represents the ReLU

activation function, W and b represent learned weights and

biases, respectively.
3.3 Role of self attention module

In this methodology, training data optimization is

accomplished through phased image enhancements. Initially, the

original image undergoes random width and length adjustments

within a factor range of 0.7 to 1.3, followed by conversion into a 256

� 256 grayscale format. Afterward, an HSV transformation is

applied, shifting the image from within the HSV region to areas

outside it, enhancing both the image quality and the model’s

resilience. The hue channel is randomly adjusted with an

amplitude of 0.1, while the saturation and value channels

experience random variations with an amplitude of 0.5.

This technique is especially important for handling medium-

resolution remote sensing images, which often span large areas with

multiple acquisitions. The color variations in these images, caused by

the temporal gaps between acquisitions, necessitate effective image

enhancement during Swin-U-Net network training. By leveraging

improved HSV conversion techniques, the model’s performance is

strengthened across diverse regions, ensuringmore efficient use of the

training data. This advanced approach significantly enhances the

model’s robustness, particularly in dealing with medium-resolution

remote sensing images that exhibit color inconsistencies due to time

intervals between acquisitions.

A CNN feature extraction block known as a Swin Transformer

is responsible for handling this task. Through the patch partition

procedure, the input image undergoes a reduction of one-fourth in

both length and width, as well as sixteen times its reduction in
frontiersin.org
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channel. Due to the fact that the Swin Transformer considers a 4x4

image element as its minimum structural unit, this is the case. A

Swin Transformer block consists of two distinct modules, which

differ from the conventional Multi-Head Self-Attention (MSA)

module found in VIT (Figure 3). There is a Shifted Window-

Based module called MSA (SW-MSA) and a Consistent Window-

Based module called MSA (W-MSA) within the Swin Transformer

block. A 2-layer Multilayer Perceptron (MLP) with Gaussian Error

Linear Unit nonlinearity (GELU) follows. Each MSA module and

MLP is preceded by a Layer Norm (LN) layer, and each module is

followed by a residual connection. Equations 7–11 outline the

mathematical calculations for these procedures.

zl = W −MSA LN(zl−1)
� �

+ zl−1 (7)

zl = MLP LN(ẑ l)
� �

+ ẑ l (8)

ẑ l+1 = SW −MSA LN(zl)
� �

+ zl (9)

zl+1 = W −MSA LN(ẑ l+1)
� �

+ ẑ l+1 (10)

Where zl+1 is the output features of the SW −MSAmodule and

zl is the output features of the MLP module, where l represents the

number of blocks.

Attention(Q :K ,V) = SoftMax
QkTffiffiffi
d

p + B

� �
V (11)

where Q :K ,V ∈ RM2�d
denote the query, key, and value

matrices.M2 and d represent the number of patches in a window
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and the dimension of the query or key, respectively. And, the values

in B are taken from the bias matrix B̂ ∈ R(2M−1)*(2M+1). Attention is

a mechanism that allows the model to focus on certain parts of the

input data more selectively. It computes a weighted sum of the value

matrix V based on the similarity between the query matrix Q and

the key matrix K . SoftMax is a mathematical function used to

convert a vector of real values into a probability distribution,

ensuring that the attention weights sum to 1, allowing the model

to assign varying degrees of importance to different inputs.
4 Experiment and analysis

4.1 Parameter settings and
experimental data

Our experimental dataset consists of 600 thyroid nodule

ultrasound images, carefully curated from multiple hospitals to

ensure diversity and robustness. Each image is paired with expert-

labeled contours to ensure high annotation accuracy. The original

ultrasound images, which have dimensions of 500 × 300 pixels, were

resized uniformly to 256 × 256 pixels after anonymizing any privacy-

sensitive information. The dataset was randomly divided into training,

validation, and test sets in an 8:1:1 ratio, ensuring balanced

representation across all subsets. The network architecture was

configured with the following parameters: an input image size of 256

× 256, a batch size of 8, and an initial learning rate of 0.001. The

Adaptive Moment Estimation (Adam) optimizer was chosen for its

efficiency in handling sparse gradients, and the Dice loss function was

employed to prioritize overlap accuracy in segmentation tasks.

Training was conducted for a maximum of 150 iterations, utilizing

an adaptive learning rate strategy that halved the rate if the validation

loss failed to improve over 10 consecutive iterations.

The hardware environment included a 2.30 GHz Intel(R) Xeon

(R) CPU and an NVIDIA Tesla P-100 GPU, providing high

computational performance. The software setup comprised

Python 3.7 running on an Ubuntu 18.04 operating system, with

hybrid frameworks based on TensorFlow and Keras for efficient

implementation and experimentation. To enhance transparency, we

provide demographic details of the patients included in the dataset,

along with information about the imaging conditions. The dataset

reflects a diverse age and gender distribution typical of thyroid

nodule cases. Standardized ultrasound imaging protocols were

followed to ensure uniformity in capturing the nodules,

minimizing variability that could affect segmentation accuracy.

Extensive experimentation guided the selection of

hyperparameters, striking a balance between mitigating overfitting

and ensuring the model’s generalization ability. After initial tests, the

learning rate was fine-tuned to 0.0001 to optimize convergence, and the

batch size was increased to 16 to maximize GPU memory efficiency

while maintaining training stability. This configuration was critical for

preventing oscillation or divergence during training, ensuring steady

gradient updates and improved model performance. The design and

setup reflect a deliberate optimization of computational resources,

model performance, and dataset integrity, establishing a robust

foundation for the proposed segmentation framework.
FIGURE 3

Swin transformer block.
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4.2 Evaluation matrix

To compare the segmentation (20) accuracy of the proposed

method to benchmark models such as Swin U-Net (21),

ADeepLabv3+ (22), BCDU-Net (23), U-Net++ (24), AU-Net (15),

and other methodologies which incorporate the Squeeze and

Excitation (SE) module (25), we conducted experiments. The

segmentation analysis is based on the Dice Similarity Coefficient

(DSC), Intersection over Union (IoU), Hausdorff distance, False

Positive Rate (FPR), and False Negative Rate (FNR) (26). Below are

the specific definitions of these metrics. The DSC and Intersection

over Union (IOU) of two regions, A and B, are defined as follows:

DSC =
2 A∩Bj j
Aj j + Bj j (12)

IoU =
A∩Bj j
AUBj j (13)

The Hausdorff distance, represented by H(A, B), is defined as

follows:

H(A,B) = max½h(A, B), h(B,A)� (14)

where

h(A,B) = maxa∈Aminb∈Bjja − bjj (15)

h(B,A) = maxb∈Bmina∈Ajjb − ajj (16)

Here, FPR and FNR are denoted as:

FPR =
FP
AUB

(17)

FNR =
FN
AUB

  (18)

Where FP is the number of false positives within the pixel

classification outcome, while FN is the number of false negatives

within the pixel classification outcome.
4.3 Experimental results

Figure 4 provides a comparative visualization of segmentation

results for four ultrasound images (Samples 1, 2, 3, and 4) using

various network architectures. Figure 4A presents the original

ultrasound images, and Figure 4B displays the expert-annotated

gold standard as a reference. Figures 4C–I showcase the

segmentation results from U-Net, DeepLabv3+, BCDU-Net, U-

Net++, AU-Net, AU-Net with the Squeeze-and-Excitation (SE)

module, and the proposed Swin U-Net-based method,

respectively. Highlighted regions in the outlined boxes indicate

areas of discrepancy between the expert annotations and the

segmentation outputs, emphasizing the comparative performance

of each method in addressing challenges such as edge blurring and

size variability of thyroid nodules.
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As illustrated in Figures 4C, D, G, H, over-segmentation is a

prominent issue in the results produced by U-Net, DeepLabv3+,

AU-Net with the Squeeze-and-Excitation (SE) module, and U-Net

with the SE module. In these cases, certain regions are misclassified,

diverging notably from the expert-labeled contours. This challenge

is especially pronounced in the segmentation of small nodules.

Figures 4E, F reveal that BCDU-Net and U-Net++ also face

segmentation difficulties, although BCDU-Net demonstrates

better performance with small nodules. Conversely, U-Net++

shows under-segmentation tendencies in these instances.

Figure 4I highlights the superior performance of the proposed

method, where the edge contours closely align with the expert-

marked boundaries. The segmentation maintains accurate aspect

ratios and shapes, both of which are critical for subsequent medical

diagnoses. These results underscore the effectiveness of the

proposed method compared to baseline models.

In convolutional neural networks, shallow layers typically extract

edge details, while deeper layers capture abstract semantic features.

However, increasing network depth often leads to the loss of essential

shallow edge information. To address this, the proposed method

employs an attention module to connect shallow encoder features to

their corresponding decoder levels. This module assigns greater weights

to edge details in the shallow features while suppressing irrelevant or

noisy information, ensuring that critical edge details are retained. Given

the wide size variability of thyroid nodules, traditional architectures like

U-Net, BCDU-Net, U-Net++, and AU-Net, which rely on a fixed 3×3

convolutional kernel, often exhibit insufficient receptive fields for

objects of varying dimensions. The proposed method overcomes this

limitation by incorporating a multi-scale convolution module in both

the encoder and decoder stages. This module concatenates outputs

from convolutions of varying kernel sizes across multiple channels,

thereby enhancing the network’s ability to handle diverse nodule sizes.

Our evaluation demonstrates that the Swin U-Net model

consistently outperformed other architectures across multiple

metrics, including Dice coefficient, Intersection over Union (IoU),

and sensitivity. Specifically, the proposed model achieved a Dice

coefficient of 0.78, significantly surpassing the baseline models. This

indicates its superior capability in addressing challenges such as

blurred edges and size variability in thyroid nodule segmentation. A

detailed comparison of these metrics is presented in Table 1,

showcasing the significant performance improvements achieved

by our multi-scale approach on the test set.

As indicated in Table 1, the proposed method demonstrates

superior performance overall. Compared to the original U-Net

model, the segmentation results of the proposed method show an

approximate 16% improvement in Dice Similarity Coefficient

(DCS) and a 19% improvement in Intersection over Union

(IOU). Furthermore, the proposed approach significantly

enhances edge contour preservation, as evidenced by the reduced

Hausdorff distance, highlighting the effectiveness of the attention

module in maintaining boundary integrity. Figure 5 illustrates the

performance metrics of various models across five criteria.

In Figure 1, the grouped bar chart displays the values for each

metric across the different methods, highlighting the comparative

strengths and weaknesses of each model.
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The False Positive Rate (FPR) is notably reduced with the

proposed method, while the False Negative Rate (FNR) is slightly

less favorable compared to U-Net. This is likely because U-Net

tends to over-segment, producing larger segmentation areas and

thus reducing the likelihood of under-segmentation. Overall, the

proposed model outperforms other algorithms in all key

performance metrics.
4.4 Visualization and analysis of
attention modules

This paper presents visualization experiments on two attention

mechanisms to further elucidate their roles in the segmentation
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process. Figure 6 showcases the spatial attention weight maps for

four attention modules. Specifically: (A) depicts the original ultrasound

image, (B) shows the expert-annotated gold standard segmentation,

and (C) through (F) illustrate the visualization results of the weight

maps corresponding to the four attention modules. These

visualizations highlight the contributions of each module in refining

feature extraction and enhancing the accuracy of thyroid

nodule segmentation.

In the figure, brighter regions represent weights close to 1,

indicating that spatial information in these areas significantly

influences the segmentation outcome. In contrast, darker regions

signify weights near zero, meaning the spatial information in these

areas contributes minimally to the segmentation. Without a spatial

attention module, the weight map would appear uniformly white,
TABLE 1 Comparison with the state-art-Models.

Methods DCS IOU Hausdorff FPR FNR

U-Net 0.6441 ± 0.0610 0.4320 ± 0.0602 45.1271 ± 4.1240 0.0603 ± 0.0323 0.1727 ± 0.0431

A-Deeplabv3+ 0.7454 ± 0.0324 0.5148 ± 0.0371 37.4042 ± 3.2132 0.0453 ± 0.0213 0.2124 ± 0.0214

BCDU-Net 0.7231 ± 0.0082 0.5254 ± 0.0124 24.5473 ± 2.820 0.0521 ± 0.0215 0.3012 ± 0.0219

U-Net++ 0.7266 ± 0.0312 0.4217 ± 0.0323 28.2210 ± 2.1552 0.0426 ± 0.0023 0.2341 ± 0.0761

AU-Net 0.7621 ± 0.0426 0.5649 ± 0.0491 23.1344 ± 2.3352 0.0521 ± 0.0024 0.2021 ± 0.0741

AU-Net+SE 0.7232 ± 0.026 0.5421 ± 0.0482 25.3261 ± 2.0652 0.0426 ± 0.0021 0.3701 ± 0.0221

Ours 0.7212 ± 0.0123 0.5213 ± 0.0141 20.1279 ± 2.1694 0.0412 ± 0.0032 0.2981 ± 0.0287
FIGURE 4

Comparison of segmentation results of different networks based on (A) Original data, (B) Gold standard, (C) U-Net, (D) DeepLabv3+, (E) BCDU-Net,
(F) U-Net++, (G) AU-Net, (H) AU-Net+SE, and (I) Our method.
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implying equal weighting across all spatial positions and a uniform

reliance on spatial information from each pixel.

In Figure 6C, the brighter contour edges of the nodule indicate

areas of high significance, although several background regions also

exhibit notable brightness. Figure 6D shows a broader distribution of

high brightness across various positions, except within the nodule’s

interior and parts of the background. Figures 6E, F illustrate the

increasing abstraction of the weight map as the network hierarchy

deepens. Notably, the nodule’s edge consistently remains bright, while

the background becomes progressively darker.

The attention module assigns greater weight to the contour

information of the nodule edge within the feature tensor extracted

from the shallow encoder path. At shallow network levels, the

smaller receptive field limits the model’s ability to capture the global

context, resulting in an overemphasis on certain background spatial

information. As the network deepens, the spatial attention module
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expands its receptive field, enhancing its ability to distinguish

between the foreground and background. Consequently, spatial

information outside the target area becomes less pronounced,

leading to improved focus on the nodule edges and more

accurate segmentation.

The segmentation advancements achieved by the Swin U-Net

model hold significant clinical potential. Accurate boundary

detection, as demonstrated in Figure 6, is crucial for reliable area

measurement, which is a key diagnostic parameter in assessing

thyroid nodules. Improved segmentation precision can enhance the

detection of subtle morphological changes in nodules, supporting

early diagnosis and tailored treatment strategies.

Furthermore, robust segmentation of diverse nodule types,

regardless of edge blurring or size variability, reduces diagnostic

inconsistencies and enhances reliability in clinical workflows. These

improvements translate into better patient outcomes by enabling
FIGURE 6

Results after visualization of the spatial attention weight map, including (A) the original image, (B) the labeled map, and (C-F) levels 1 through
4, respectively.
FIGURE 5

Heatmap performance comparison of State-of-the-Art Models.
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timely and precise interventions. From a broader perspective, the

societal benefits of this approach include optimized healthcare

resources and improved quality of life for patients through early

detection and effective management of thyroid disorders.

These results underscore the model’s capability to address critical

challenges in thyroid ultrasound imaging and its potential to transform

diagnostic practices, aligning with the broader goals of advancing

medical imaging technologies for improved healthcare outcomes.

In Figure 7, the segmentation process is further detailed through

the visualization of several channels from the output feature tensor.

Figure 7A displays the original ultrasound image, while Figure 7B

shows the corresponding labeled image. Figures 7C–E illustrate the

visualization of representative channels from the topmost attention

module of the Swin U-Net architecture (as outlined in Figure 1). The

respective channel weights are indicated below each subfigure, offering

insights into their contributions to the segmentation process. From

these subfigures, we observe distinct patterns: channel 6 is assigned a

lower weight, reflecting its extraction of largely irrelevant information,

which complicates the identification of useful nodule contours.

Conversely, channels 13 and 39 receive higher weights, as they

effectively capture critical features, particularly the nodule’s edge.

These channels highlight abstract representations that distinguish

the nodule from the background, underscoring the self-attention

module’s capacity to prioritize relevant features during the learning

process. The attention maps derived from the self-attention

mechanism provide valuable insights into the areas of the image

that contributemost significantly to the segmentation. As illustrated in

Figure 7, the model excels in identifying nodule boundaries, even

when edge blurring is present. This ability to localize critical regions

underpins the superior performance of the proposed Swin U-Net

model compared to existing state-of-the-art methods, as evidenced by

the study by Wang et al. (27).

The reduced clarity observed in Figure 6 compared to Figure 7

stems from the differing roles of the spatial and channel attention

modules. In Figure 6, the spatial attention maps—particularly from the

shallower network layers—tend to emphasize irrelevant background

regions due to their limited receptive field. As the network deepens, the

representations become more abstract, further diminishing visual
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clarity. In contrast, Figure 7 visualizes the channel attention

mechanism, which selectively enhances feature channels with higher

relevance, effectively filtering out background noise. This enables the

model to emphasize key areas, such as nodule boundaries, resulting in

more refined visualizations. This distinction underscores the

importance of channel selection in optimizing segmentation

performance. Although segmentation alone does not directly

diagnose thyroid nodules, it plays a critical role in providing accurate

size measurements, which are essential for assessing the growth and

potential malignancy of the nodules. Accurate segmentation can aid

clinicians in making informed decisions about the need for further

investigation, monitoring, or intervention, enhancing the overall

diagnostic and treatment process.

The integration of advanced neural network architectures and

optimization techniques has significantly influenced various

domains, including image processing, biomedical engineering, and

manufacturing systems. Ding et al. (28) highlighted the application of

signal processing and machine learning for medical imaging,

demonstrating advancements in computational accuracy. Similarly,

Szegedy et al. (29) introduced Inception-v4 and Inception-ResNet

architectures, emphasizing the impact of residual connections on

deep learning, thereby improving training efficiency and

generalization. Kingma and Ba (30) proposed the Adam

optimization algorithm, which has become a foundational tool for

stochastic optimization in neural networks. In manufacturing

systems, Du et al. (31) explored quality improvements in multistage

production processes through comprehensive modeling and analysis.

Furthermore, Lu et al. (32) developed ThyroidNet, a specialized deep

learning framework for accurate localization and classification of

thyroid nodules, showcasing the practical applications of deep

learning in medical diagnostics.

The assignment of channel weights plays a crucial role in

improving segmentation accuracy. By selectively enhancing the

contributions of relevant channels (e.g., channels 13 and 39) and

suppressing irrelevant ones (e.g., channel 6), the model focuses on

critical features such as boundary delineation and texture variations.

This weighted emphasis allows the Swin U-Net model to more

effectively differentiate thyroid nodules from surrounding tissues,
FIGURE 7

The channel attention module outputs the results after different channel visualizations of the feature tensor. (A) original image, (B) Labeled map
(C) Channel 6Weight 0.5226 (D) Channel 13 Weight 1 (E) Channel 39 Weight 1.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1456563
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1456563
improving segmentation accuracy and robustness. The self-attention

mechanism facilitates this process by dynamically evaluating the

relevance of each channel and prioritizing those with higher

significance. This results in more accurate segmentation outputs, as

themodel efficiently suppresses noise and irrelevant information while

enhancing key diagnostic features. To evaluate the performance of the

Swin U-Net model, we employed robust metrics, including the Dice

Similarity Coefficient (DSC) and Intersection over Union (IoU): DSC

quantifies the overlap between the predicted segmentation and the

ground truth, ranging from 0 (no overlap) to 1 (perfect overlap). A

high DSC reflects the model’s ability to reliably identify and delineate

thyroid nodules, which is crucial for accurate diagnosis and treatment

planning. IoUmeasures the precision of segmentation by assessing the

ratio of the intersection to the union of the predicted and ground truth

regions. Higher IoU values indicate reduced false positives and false

negatives, leading to more reliable segmentations in clinical settings.

Several future research directions can enhance its performance.

These include integrating real-time data collection using mobile and

wearable ultrasound devices to capture live data, which could diversify

the training dataset and enable continuous learning. Additional data

augmentation techniques and synthetic data generation could improve

model generalization, while integrating multi-modal imaging (e.g., CT,

MRI) could enhance segmentation accuracy. Optimizing the model for

real-time clinical deployment through techniques like model pruning

and edge-computing is crucial for immediate feedback in resource-

constrained environments. Addressing interpretability challenges in

medical applications through techniques like Grad-CAM can improve

clinician trust. Future research should also focus on overcoming

challenges in dataset collection and annotation by collaborating with

hospitals for more diverse datasets and using semi-supervised learning.

To address data imbalance, techniques like oversampling minority

classes or using class-weighted loss functions could be explored. Finally,

improving real-time ultrasound data acquisition through robust

preprocessing pipelines and efficient segmentation methods is

essential for clinical applicability.

To improve segmentation accuracy and increase DSC values,

future work can focus on integrating attention mechanisms, multi-

scale feature fusion, and transformer-based architectures like the

Swin Transformer. Enhancing data diversity through augmentation

techniques, utilizing specialized loss functions, and applying post-

processing methods such as CRFs can refine results. Expanding the

training dataset and exploring ensemble learning methods could

further enhance model performance and robustness.
5 Conclusion

In this paper, we present a novel segmentation approach tailored

for thyroid nodule ultrasound images, leveraging the advanced

capabilities of a Self-Attention Mechanism-based Swin U-Net

architecture. The proposed method integrates cutting-edge

techniques to significantly enhance segmentation performance.

Specifically, the U-Net backbone is optimized with residual structures

and multiscale convolution, enabling efficient feature extraction across

multiple scales. This enhancement is crucial for capturing the intricate

and complex characteristics of thyroid nodules accurately.
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To further improve segmentation precision, a self-attention

mechanism is employed, allowing the model to focus on critical

features while effectively addressing challenges such as nodule size

variability and edge blurring—common issues in ultrasound

imaging. Experimental evaluations reveal that the proposed

method outperforms existing algorithms, achieving superior

accuracy across nodules of varying sizes and characteristics.

Building on these promising results, we envision the potential

adaptation of our segmentation framework to other medical

imaging tasks. Future work will explore its application to diverse

imaging modalities, including magnetic resonance imaging (MRI)

and computed tomography (CT). To facilitate real-time clinical

implementation, we aim to optimize the network by reducing its

parameter count, enhancing computational efficiency without

compromising performance. Additionally, we plan to incorporate

auxiliary features and leverage diverse datasets to further improve

the model’s robustness and generalizability.
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