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Combined morphology and
radiomics of intravoxel
incoherent movement as
a predictive model for the
pathologic complete
response before neoadjuvant
chemotherapy in patients
with breast cancer
Yunyan Zheng1†, Hui Zhang2†, Huijian Chen1†, Yang Song3,
Ping Lu4, Mingping Ma1, Mengbo Lin2* and Muzhen He1*

1Shengli Clinical College of Fujian Medical University & Department of Radiology, Fujian Provincial
Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China, 2Shengli Clinical College of
Fujian Medical University & Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou
University Affiliated Provincial Hospital, Fuzhou, China, 3MR Research Collaboration Team, Siemens
Healthineers Ltd., Shanghai, China, 4School of Medical Imaging, Fujian Medical University,
Fuzhou, China
Background: To develop a predictive model using baseline imaging of

morphology and radiomics derived from intravoxel incoherent motion

diffusion-weighted imaging (IVIM-DWI) to determine the pathologic complete

response (pCR) to neoadjuvant chemotherapy (NACT) in breast cancer patients.

Methods: A total of 265 patients who underwent 3.0 T MRI scans before NACT

were examined. Among them, 113 female patients with stage II–III breast cancer

were included. The training data set consisted of 79 patients (31/48=pCR/Non-

PCR, npCR), while the remaining 34 cases formed the validation cohort (13/

21=pCR/npCR). Radiomics and conventional magnetic resonance imaging

features analysis were performed. To build a nomogram model that integrates

the radiomics signature and conventional imaging, a logistic regression method

was employed. The performance evaluation of the nomogram involved the area

under the receiver operating characteristic curve (AUC), a decision curve analysis,

and the calibration slope.

Results: In an assessment for predicting pCR, the radiomics model displayed an

AUC of 0.778 and 0.703 for the training and testing cohorts, respectively.

Conversely, the morphology model exhibited an AUC of 0.721 and 0.795 for

the training and testing cohorts, respectively. The nomogram displayed superior

predictive discrimination with an AUC of 0.862 for the training cohort and 0.861

for the testing cohort. Decision curve analyses indicated that the nomogram

provided the highest clinical net benefit.
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Conclusion: Performing a nomogram consisting of integrated morphology and

radiomics assessment using IVIM-DWI before NACT enables effective prediction

of pCR in breast cancer. This predictive model therefore can facilitate medical

professionals in making individualized treatment decisions.
KEYWORDS

intravoxel incoherent motion (IVIM), breast cancer, neoadjuvant chemotherapy (NACT),
radiomics, pathologic complete response (pCR)
Introduction

Breast cancer accounts for approximately 30% of female cancers

and has a mortality-to-incidence ratio of 15%. Medical

professionals have established neoadjuvant chemotherapy

(NACT) as the primary treatment for patients diagnosed with

locally advanced breast cancer (1). NACT aims to minimize the

size of the primary tumor and decrease disease staging, thereby

facilitating breast conservation (1, 2). Patients who attain pathologic

complete response (pCR) following NACT have exhibited reduced

rates of distant recurrence and experienced extended periods of

disease-free survival (3–5). However, some patients who underwent

NACT did not achieve pCR. Previous reports suggest that the rates

of pCR in these patients varied from 45% to 6%, which were

determined by the NACT regimen employed and the tumor

subtype (6–9). Therefore, timely detection of patients who will

not respond to NACT would allow them to avoid taking ineffective

therapies, while enabling personalized modifications to be made to

their treatment plan.

In accordance with the NCCN Clinical Practice Guidelines in

Oncology-Breast Cancer (version 2.2022), Magnetic Resonance

Imaging (MRI) is the recommended method for evaluating the

response of breast cancer to NACT. MRI can offer higher soft-

tissue resolution compared to other methods such as

mammography and ultrasonography. According to the 2013

edition of the Breast Imaging Report and Data System (BI-RADS),

MRI categorizes breast lesions into masses and non-mass

enhancement (NME) lesions based on their morphological

characteristics. Different tumor subtypes exhibit distinct

morphologies on MRI. Previous studies have indicated a correlation

between the baseline lesion morphology and the efficacy of NCAT
tion diffusion-weighted

pathologic complete

-RADS, Breast Imaging

port and Data System;

sion-weighted imaging;

diffusion coefficient; f,

lation; ROI, region of

area under the curve;

02
(10). DWI can indirectly assess tissue differentiation and cell

membrane integrity without the need for contrast injection.

Apparent diffusion coefficient (ADC) values can quantify water

proton diffusion in tissues. However, capillary perfusion in the

intravascular extracellular space can impact this process. At present,

some studies suggest that the baseline ADC value has no predictive

value for NACT (11, 12). Another functional MRI technique, known

as intravoxel incoherent motion (IVIM)-DWI, enables visualization

of molecular diffusion and perfusion occurring in tissues. Moreover, it

allows for the quantification of various perfusion parameters,

including microvascular perfusion fraction (f) and incoherent

perfusion-related microcirculation (D*) within capillary networks,

as well as diffusion parameters such as the pure diffusion coefficient

(D) within tissues. This technique utilizes multiple high and low b

values (13, 14). Some scholars have used quantitative data of the

baseline IVIM to predict NACT efficacy, but predictions are

inconsistent (15–17).

In 2012, Dutch researcher Lambin et al. (18) initially introduced

the concept of radiomics, which has emerged as a valuable tool in

the field of oncology. Radiomics enables the transformation of

standard digital imaging into quantitative, mineable data,

allowing for the noninvasive characterization of tumors and the

expression of various tumor properties (19, 20). Breast cancer

tumors reveal strong temporal and spatial heterogeneity. Tumor

heterogeneity analyses can be conducted using medical imaging

techniques such as MRI, which eliminates the need for additional

data collection. However, currently, there is no application that

includes baseline IVIM radiomics data for predicting the

effectiveness of NACT in breast cancer.

This study aims to develop morphology and radiomics models

based on IVIM DWI baseline imaging for the purpose of predicting

the pCR to NACT in patients with breast cancer.
Materials and methods

Study setting and timeframe

This prospective study consecutively enrolled patients with

suspected breast cancer who underwent treatment at Fujian

Provincial Hospital, between July 2019 and October 2022. The
frontiersin.org

https://doi.org/10.3389/fonc.2025.1452128
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2025.1452128
ethics committee of Fujian Provincial Hospital approved the study

protocol (approval code: K2021-05-007, May 2019), and all

methods in this study were carried out in accordance with

relevant guidelines and regulations (21). Written informed

consent to participate was obtained from all the patients. The

inclusion criteria were: (I) no needle biopsy, radiotherapy, or

chemotherapy before MRI examination; (II) availability of

complete MRI review data before NAT with good image quality;

(III) availability of complete pathological data; and (IV) without

multicentric tumor. The process of patient selection and grouping

has been illustrated in Figure 1.
Interventions

After the MR examination, patients with suspected breast cancer

undergoaneedlebiopsyofbreast lesions todecideon further treatment

options. All included patients received NACT, which was formulated

according to the institution’s standards (7). Patients received

intravenous administration of the chemotherapy regimen every 3

weeks for six to eight cycles. Following that, the patients underwent

surgical removal of their tumors and regional lymph nodes.
Neoadjuvant chemotherapy and
histopathologic analysis

Among the 113 included patients, chemotherapy regimens were

distributed as (attachment 1). NACT was determined based on the

guidelines of the Chinese Society of Clinical Oncology from 2019 to
Frontiers in Oncology 03
2022 (21). Following the completion of six to eight cycles of NACT,

resected breast tissue and regional lymph nodes obtained from the

patient were fixed, paraffin-embedded, and subsequently sliced into

thin sections. Hematoxylin and eosin staining was then performed on

these biopsy specimens. A pathologist experienced in diagnosing

breast tumors was responsible for examining the tissues. The residual

condition of the tumor was observed. Based on the 2021 guidelines of

the Chinese Society of Clinical Oncology Breast Cancer, pCR is

characterized by the absence of invasive carcinoma in the primary

breast (with the possibility of ductal carcinoma in situ) and in the

negative regional lymph node. This criterion can be fulfilled if the

primary tumor is categorized as MP (Miller–Payne) grade 5 and

shows negative lymph node involvement, or if the residual cancer

burden evaluation system assigns a grade of 0.
Image acquisition and analysis

Magnetic resonance (MR) examinations were conducted using

a 3.0T MR scanner (MAGNETOM Prisma, Siemens Healthcare,

Erlangen, Germany) equipped with an 18-channel dual-breast-

dedicated phase array surface coil. Patients were scanned in the

prone position, allowing the breasts to be naturally positioned

within the coil. The imaging protocol encompassed the following

sequences (Table 1). For contrast enhancement, gadopentetate

meglumine injection (Magnevist, 0.2 mmol/kg; GE Healthcare)

was administrated through the dorsal vein of the hand using a

high-pressure syringe at a rate of 1.5–2.0 mL/s. The connecting tube

was then flushed with 15–20 mL of normal saline to clear any

residual contrast agent.
FIGURE 1

Flowchart depicting case selection and distribution.
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Tumor segmentation and image
feature extraction

To obtain IVIM maps, a pixel-by-pixel fitting of DWI data was

carried out using a research prototype software called Body

Diffusion Toolbox (Siemens Healthcare, Erlangen, Germany).

This software generated parameter maps for IVIM, including a

perfusion tissue diffusion coefficient (D), a fraction (f), and

perfusion-related incoherent microcirculation (D*). The IVIM

model, a total of nine b-values (0, 30, 50, 80, 120, 160, 200, 500,

and 1000 s/mm2) were used for data calculation using the classic

two-step calculation method. We set the b-value threshold value as

200 to split. For the two-step fitting method, we first fit the D, and

then fixed the D and fit the D* and f. The IVIM images were

visualized using 3D Slicer software (version 4.10.2, www.slicer.org)

for image segmentation. A single radiologist (M.H.) with 13 years of

experience in breast imaging diagnosis conducted the segmentation

process. A three-dimensional region of interest (ROI) that included

the solid tumor component was drawn on D-maps, and for lesion

edges whose contrast were suboptimal, we could refer to the DCE

map to determine the edge (Figure 2). We ensured that the ROI

delineation was performed on the IVIM-D map. Figure 3 shows the

tumor segmentation and image feature extraction. From the f, D,

and D* parameter maps, we extracted the radiomics features

including shape-based, first-order, and texture features. An

additional radiologist (Y.Z.) with 5 years of experience in breast

imaging independently segmented 30 randomly chosen tumors

from the training set. The interobserver reproducibility was

evaluated using a two-way random absolute agreement intraclass
Frontiers in Oncology 04
correlation coefficient (ICC). ICC values varied from 0 to 1, with

interpretations as follows: ICC above 0.75 indicated good

consistency; ICC between 0.50 and 0.75 pointed to general

consistency; and ICC less than 0.50 highlighted poor consistency.

Features with ICCs less than 0.75 were excluded (22–24), the

residual features were recognized as stable. During the model-

building process on the training data cohort, the first step was to

address data imbalance. To achieve a balanced distribution of

positive and negative samples, we up-sampled the training data

cohort by randomly repeating cases. Subsequently, we performed

feature normalization by mean normalization. As the

dimensionality of the feature space exceeded the number of cases,

we employed principle component analysis (PCA) on the training

feature matrix to describe features using the eigenvector. This

transformation resulted in independent feature vectors. Then, we

used a Gaussian process classifier with recursive feature elimination

to determine the final model, specifically selecting relevant features.

To determine the optimal number of features and corresponding

hyper-parameters, we utilized a 5-fold cross-validation on the

training data cohort.

To evaluate the model’s performance, we used receiver

operating characteristic (ROC) curve analysis. The quantification

of performance was based on the area under the ROC curve (AUC).

To determine accuracy, sensitivity, specificity, positive predictive

value, and negative predictive value, we utilized a cutoff value that

maximized the Youden index. Furthermore, to estimate the 95%

confidence interval, we employed a bootstrap with 1,000 samples.

All of these analyses were carried out using FeAture Explorer (FAE,

V 0.5.5) (25) (Supplementary Material S1).
TABLE 1 The imaging protocol of MR sequences.

Fat saturation T2WI TR 3739ms TE 69ms Thickness 4mm

Slices 35 Bandwidth 246Hz/Px FOV 340mm

FOV phase 100% Matrix 384×384 Averages 2

Concatenations 2

T1WI TR 6.03ms TE 2.82ms Thickness 0.9mm

Slices 160 Bandwidth 300Hz/Px FOV 340mm

FOV phase 100% Matrix 403×448

DCE-MRI TR 4.03ms TE 1.33ms Thickness 1.5mm

Slices 112 Bandwidth 1120Hz/Px FOV 350mm

FOV phase 100% Matrix 259×320 Measurements 36

Volume 350 mm × 350 mm × 1.5 mm × 112 Scan time 343s

DWI TR 5700ms TE 62ms Thickness 4mm

Slices 35 Bandwidth 2024Hz/Px FOV 340mm

FOV phase 60% Matrix 114×190

B-values 0,30,50,80,120,160,200,500,1000s/mm2

Averages 1, 2, 2, 2, 2, 2, 2, 2, 3 Scan time 318s
DCE-MRI, dynamic contrast-enhanced MRI; DWI, diffusion-weighted imaging; FOV, Field of View.
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Statistical methods

Predictive ability of the morphology model
Breast lesions were evaluated for conventional MR imaging signs

based on the 2013 BI-RADSMagnetic Resonance Imaging guidelines by

two physicians with 14 years and 3 years of experience in breast imaging

diagnosis, respectively. Any disagreements between the 2 physicians were
Frontiers in Oncology 05
discussed until consensuswas achieved.We analyzed 6 conventionalMRI

features for each patient:masses or non-mass enhancement, tumor shape,

tumor margin, internal enhancement characteristics, NME distribution,

and NME internal enhancement pattern. Categorical variables were

presented as frequencies (percentages), and the differences between

groups were determined using Pearson’s Chi-squared test or the

continuous-corrected Chi-squared test.
FIGURE 3

Workflow for image features acquisition.
FIGURE 2

Imaging of a 56-year-old female patient with invasive ductal carcinoma. (A) ROI on IVIM-D map refer to the DCE map (B) to determine the edge;
(C) Same ROI on IVIM-D*map; (D) Same ROI on IVIM-f map. IVIM, intravoxel incoherent motion; ROI, region of interest; D, pure diffusion coefficient;
D*, incoherent perfusion-related microcirculation; f, microvascular perfusion fraction.
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Predictive ability of the nomogram model
A logistic regression model was utilized to build a nomogram

model to integrate the radiomics signature and conventional imaging.

The combined model’s predictive ability was evaluated using ROC

curves and various classification measures, including AUC, sensitivity,

specificity, and accuracy. Calibration plots were conducted to assess

nomogram performance by comparing observed probabilities with

nomogram-predicted probabilities. Additionally, decision curve

analysis was employed, plotting the net benefit rate against the

threshold of high risk. Morphology, radiology, and the combined

model were analyzed to predict the net benefit of the pCR.
Follow-up

Patients were followed up after two to three cycles of

chemotherapy and upon completion of chemotherapy. During

these follow-up visits, the patients underwent MR scanning to

evaluate the status of their tumors. The patients’ tumors were

evaluated for pCR status after they were surgically removed.
Results

Participants characteristics

The study consisted of 113 female patients diagnosed with stage

II–III breast cancer. For the training data cohort, 79 cases were
Frontiers in Oncology 06
randomly selected (31/48 = pCR/npCR), while the remaining 34

cases formed the independent testing data cohort (13/21 = pCR/

npCR). The mean age of the patients was 52.6 ± 10.2 years (range,

25–75). We collected clinicopathological data prior to the

administration of NACT. Among the cases, 107 were diagnosed

with invasive ductal carcinoma, four with invasive lobular

carcinoma, and two with metaplastic carcinoma. A detailed

summary of this information can be found in Table 2.
Deviation from the initial management plan

The study excluded patients who deviated from the initial

management plan or voluntarily withdrew after starting NACT. A

description of these exclusions can be found in Figure 1.
Performance of the radiomics model

We first extracted 321 features from the f, D, and D* parameter

maps. And then we estimated the ICC value for each feature. Finally a

total of 278 features remained. The radiomics features were extracted

from the original maps and then we used PCA to merge the feature

matrix in order to reduce the dimensions of feature space. Our

validation process revealed that using only four PCA features in the

model resulted in the highest AUC. Specifically, the AUC for the

training cohort was 0.778, while the testing cohort exhibited an AUC

of 0.703. Clinical statistics for the diagnosis can be found in Table 3.
TABLE 2 Characteristics of patients in the training and testing cohorts.

Characteristic
Training cohort

P value
Testing cohort

P value
pCR npCR pCR npCR

Age (years), Mean ± SD 51.9 ± 9.7 53.2 ± 10.8 0.579 52.1 ± 10.9 53.5 ± 8.9 0.764

Histological subtype (%) 0.942 1.000

Ductal 30 (30/79,38.0%) 45 (45/79,57.0%) 12 (12/34,35.3%) 20 (20/34,58.9%)

Others 1 (1/79,1.3%) 3 (3/79,3.8%) 1 (1/34,3.0%) 1 (1/34,3.0%)

HR status (%) 0.001 0.039

Positive 8 (8/79,10.1%) 30 (30/79,38.0%) 3 (3/34,8.9%) 13 (13/34,38.2%)

Negative 23 (23/79,29.1%) 18 (18/79,22.8%) 10 (10/34,29.4%) 8 (8/34,23.5%)

HER2 status (%) 0.008 0.491

Positive 23 (23/79,29.1%) 21 (21/79,26.6%) 7 (7/34,20.6%) 14 (14/34,41.2%)

Negative 8 (8/79,10.1%) 27 (27/79,34.1%) 6 (6/34,17.6%) 7 (7/34,20.6%)

Ki67 (%) 0.040 0.144

High 28 (28/79,35.4%) 34 (34/79,43.0%) 13 (13/34,38.2%) 17 (17/34,50.0%)

Low 3 (3/79,3.8%) 14 (14/79,17.7%) 0 (0/34,0%) 4 (4/34,11.8%)

Clinical stage (%) 0.811 0.728

II 14 (14/79,17.7%) 23 (23/79,29.1%) 5 (5/34,14.7%) 10 (10/34,29.4%)

III 17 (17/79,21.5%) 25 (25/79,31.6%) 8 (8/34,23.5%) 11 (11/34,32.4%)
Definition of Ki67 high: ≥20% of tumor cell nuclei stained for Ki67; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; pCR, pathologic complete response.
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Figure 4 displays the ROC curve of the radiomics model. Moreover,

the calibration plots from the radiomics model exhibited a

remarkable fit with the ideal curve, with a mean absolute error of

0.07 (Figure 4). Furthermore, the predicted pCR demonstrated

excellent concordance with the observed pCR.
Performance of the morphology model

Based on the guidelines provided by the American College of

Radiology BI-RADS Magnetic Resonance Imaging 2013, a total of
Frontiers in Oncology 07
113 lesions were analyzed. Conventional MRI features for each

patient were analyzed. Among these, 64 (56.6%) presented as

masses, while 49 (43.3%) displayed NME on conventional MR

images. Detailed information regarding the conventional MR image

model in the training and testing cohorts can be found in Table 4.

Morphology Model was built using the feature enhancement mode

(masses or NME). The model achieved an AUC of 0.721 in the

training cohort and 0.795 in the testing cohort, as outlined in

Table 3. The ROC curve of the conventional MR image mode is

shown in Figure 4. Moreover, the calibration plots generated from

the morphology model displayed a close fit to the ideal curve, with a
TABLE 3 Results of ROC curve analysis for predicting pCR using the radiomics model, the morphology model, and the combined model before NACT.

AUC
(95% CI)

Cut-off Youden
Index

Sensitivity Specificity Positive
predictive

value

Negative
predictive

value

Radiomics
Model

Training
cohort

0.778
(0.673-0.883)

0.681 0.443 0.839 0.604 0.579 0.853

Testing
cohort

0.703
(0.498-0.908)

0.681 0.590 0.923 0.667 0.632 0.933

Morphology
Model

Training
cohort

0.721
(0.625-0.817)

0.550 0.437 0.645 0.792 0.667 0.775

Testing
cohort

0.795
(0.667-0.923)

0.550 0.443 0.539 0.905 0.778 0.760

Combined
Model

Training
cohort

0.861
(0.723-0.999)

0.722 0.615 0.615 1.000 1.000 0.808

Testing
cohort

0.862
(0.784-0.941)

0.474 0.598 0.807 0.792 0.714 0.864
AUC, the area under the receiver operating characteristic curve; NACT, neoadjuvant chemotherapy; pCR, pathologic complete response.
FIGURE 4

Receiver operating characteristic curves for pCR prediction model: (A) Radiomics Model; (B) Morphology Model; (C) Combined Model. pCR,
pathologic complete response; Calibration plot of predicted pCR by the models with actual pCR: (D) Radiomics Model; (E) Morphology Model;
(F) Combined Model. pCR, pathologic complete response.
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mean absolute error of 0.059 (Figure 4). Additionally, the predicted

pCR exhibited strong concordance with the observed pCR.
Performance of the morphology model
combined with the radiomics signatures

Table 3 presents the performance of the combined conventional

MR image model and radiomics signature model in predicting pCR

for breast cancer patients undergoing NACT. Figure 4 demonstrates

the ROC curves for these models in the training and validation

cohorts. The AUC values obtained for the training and test cohorts

are 0.861 (95%CI: 0.723–0.999) and 0.862 (95%CI: 0.784–

0.941), respectively.

A combined radiomics and morphology nomogram model was

developed (Figure 5) to predict the likelihood of achieving pCR.

Each predictive factor was assigned a score based on the upper scale

line, allowing the total score to be calculated. The calibration plots

generated from the morphology model demonstrated good

agreement with the ideal curve, yielding a mean absolute error of

0.089 (Figure 4). Moreover, the predicted pCR exhibited good
Frontiers in Oncology 08
concordance with the observed pCR. In the threshold range of 0.5

to 0.9, the combined model provided a greater net benefit for

clinical intervention compared to other models (Figure 6).

Additionally, the decision curve analysis revealed favorable

clinical utility of the nomogram.
Discussion

Precise prediction of post-NACT pCR in breast cancer patients

plays a vital role in treatment decision-making and patient

prognosis. In the present study, we developed radiomics models

of IVIM diffusion-weighted baseline imaging associated with

conventional MR images to predict pCR in NCAT-treated breast

cancer patients. The prediction model achieved an AUC of 0.862 in

the training cohort, while the AUC in the test cohort was 0.861.

Previous studies have indicated the importance of including b-

values exceeding 200 s/mm2 in the IVIM model (13). In our study,

we selected nine b-values, ensuring that seven of them were below

200 s/mm2 to accurately capture water molecule diffusion and blood

microcirculation perfusion. The IVIM map can reflect both
TABLE 4 Conventional MR signs before NACT of 113 breast cancer patients.

pCR
(n=44)

npCR
(n=69)

t/c² P value

Size(millimeter) 36.8 ± 8.7 41.8 ± 10.7 0.765 0.145

Masses 38 (38/64, 86.3%) 26 (26/64, 37.6%) 25.927 <0.001

Shape (%) 0.013 1.000

Round/Oval 21 (21/64, 32.8%) 14 (14/64, 21.9%)

Irregular 17 (17/64, 26.6%) 12 (12/64, 18.8%)

Margin (%) 0.657 0.534

Circumscribed 9 (9/64, 14.1%) 4 (4/64, 6.3%)

Not circumscribed 29 (29/64, 45.3%) 22 (22/64, 34.4%)

Internal enhancement characteristics (%) 0.623 0.336

Homogeneous 2 (2/64, 3.1%) 2 (2/64, 3.1%)

Heterogeneous 7 (7/64, 10.9%) 6 (6/64, 9.4%)

Rim enhancement 29 (29/64, 45.3%) 18 (18/64, 28.1%)

Non-mass enhancement 6 (6/49, 13.6%) 43 (43/49, 62.3%)

Distribution (%) 0.708 0.605

Focal 0 2 (2/49, 4.1%)

Linear/Segmental 3 (3/49, 6.1%) 21 (21/49, 42.9%)

Regional/Multiple regions 3 (3/49, 6.1%) 17(17/49, 34.7%)

Diffuse 0 3 (3/49, 6.1%)

Internal enhancement patterns (%) 1.663 0.255

Homogeneous 1 (1/49, 2.0%) 3 (3/49, 6.1%)

Heterogeneous 2 (2/49, 4.1%) 11 (11/49, 22.4%)

Clumped/Clustered ring 3 (3/49, 6.1%) 29 (29/49, 59.2%)
pCR, pathologic complete response; NACT, neoadjuvant chemotherapy.
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diffusion information and perfusion signals. Tumor uptake of

chemotherapy drugs depends on local blood perfusion and

capillary permeability. The f value, representing angiogenesis in

immature blood vessels and partially reflecting microvascular

permeability, may serve as an indicator of the effectiveness of

chemotherapy drugs and the likelihood of a favorable response.

Therefore, perfusion fraction f could potentially differentiate

between pathological responses to NACT before treatment (16).

Notably, NACT exhibits enhanced efficacy in biologically aggressive

tumors, as these tumors show heightened responsiveness to

chemotherapy during their proliferative state. D and D* values

demonstrate an inverse correlation with tumor aggressiveness and
Frontiers in Oncology 09
cell count, making them valuable parameters that can be obtained

without the need for contrast medium application (26).

Many studies have indicated that changes in post-NACT IVIM

parameters can predict NACT efficacy. Previous research by some

investigators has shown that baseline IVIM quantitative parameters

before neoadjuvant therapy cannot predict neoadjuvant

chemotherapy efficacy (17, 27). In this study, we extracted

information from IVIM images using machine learning methods to

predict efficacy even beforeNACT. In addition, the 3D-ROI allows for

a more comprehensive assessment of tumor heterogeneity, including

the overall information on solid tumors, as compared to the previous

2D-ROI method. This increased predictive efficacy without requiring
FIGURE 6

Decision curve analysis for the models’ performance: red line (Radiomics Model); green line (Morphology Model); blue line (Combined Radiomics
and Morphology Model).
FIGURE 5

Establishment of a radiomics prediction-morphology prediction-based nomogram for predicting pCR. pCR, pathologic complete response.
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additional patient examinations. By utilizing volumetric sampling of

the entire tumor, sampling bias can be minimized, unlike with the

single-sectionROImethod.Guidelines furtherendorse thismethod for

evaluating tumor response (28). Some scholars have usedDCE-MRI to

predict the efficacy of neoadjuvant therapy (29, 30). However, DCE-

MRI needs contrast agent injection and the use of different contrast

agents and can be influenced by differences in individual circulation.

These factors may cause differences in the accuracy of the model

among individuals. IVIM MRI, a functional MRI technique, enables

the visualizationofmolecular diffusion andperfusion in tissues and the

quantification of specific perfusion parameters, without the need for

contrast agent injection. The radiomics model based on relevant

parameter maps of IVIM achieved an AUC of 0.778 in the training

cohort and 0.703 in the testing cohort, indicating strong

predictive capability.

Earlier studies have demonstrated that in breast cancer, the

baseline map of NACT reveals pCR more prominently in masses

compared to NME (10). Furthermore, luminal tumors (hormone

receptor-positive and HER2-negative) are more prone to present as

NME or diffuse lesions at baseline and show amulticenter withdrawal

pattern after chemotherapy. In contrast, triple-negative and HER2-

positive tumors typically appear as discrete masses and display a

concentric withdrawal pattern after NACT (31–33). The

morphological signs of the baseline map of breast cancer are easy to

assess with high agreement among different observers, and

morphological prediction of the baseline map has a certain value.

When combined with radiomic features, morphological information

can improve the predictive efficacy of the model.
Limitations

We must acknowledge the limitations of our study, including

potential influences on the manual image segmentation process due

to various objective and subjective factors. Another limitation of our

study is the use of PCA for feature reduction. While PCA effectively

transforms the original features into a lower-dimensional space to

maximize variance, it inherently combines features from all input

maps (e.g., D, f, D*), making it challenging to directly attribute the

contribution of individual maps to the extracted features. This lack

of interpretability may limit the understanding of which specific

imaging maps contribute the most to the final radiomic analysis.

Future work could explore alternative methods or additional

analyses to better interpret feature contributions. Additionally,

our model was developed using a single-center cohort without

external validation. To enhance confidence in the pCR prediction

performance of the model, it is crucial to conduct additional multi-

center studies involving larger patient cohorts.
Conclusion

Through the validation process, the nomogram developed in this

study showed good performance, effectively predicting pCR in breast

cancer. Our radiomics model using IVIM diffusion-weighted imaging

significantly enhances the ability to predict pCR in breast cancer
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patients undergoing neoadjuvant chemotherapy (NACT). It allows

for early identification of treatment efficacy, helping clinicians tailor

therapies to individual patients and reduce unnecessary treatments.

This model supports more personalized care by providing detailed

insights into tumor response and characteristics. It also informs

surgical decisions by predicting which patients may benefit from

less or more extensive procedures. Future multi-center studies are

needed to validate and integrate the model into routine clinical

workflows for broader use.
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