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Quzhou, China, 2Yangtze Delta Region Institute (Quzhou), University of Electronic Science and
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Background: After hepatocel lular carcinoma (HCC), intrahepatic

cholangiocarcinoma (ICC) is the second most common primary liver cancer.

Timely and accurate identification of ICC histological grade is critical for guiding

clinical diagnosis and treatment planning.

Method: We proposed a dual-branch deep neural network (SiameseNet) based on

multiple-instance learning and cross-attention mechanisms to address tumor

heterogeneity in ICC histological grade prediction. The study included 424 ICC

patients (381 in training, 43 in testing). The model integrated imaging data from two

modalities through cross-attention, optimizing feature representation for

grade classification.

Results: In the testing cohort, the model achieved an accuracy of 86.0%, AUC of

86.2%, sensitivity of 84.6%, and specificity of 86.7%, demonstrating robust

predictive performance.

Conclusion: The proposed framework effectively mitigates performance

degradation caused by tumor heterogeneity. Its high accuracy and

generalizability suggest potential clinical utility in assisting histopathological

assessment and personalized treatment planning for ICC patients.
KEYWORDS

intrahepatic cholangiocarcinoma, histological grade, multiple instance learning, cross-
attention mechanism, CT-based diagnostics
1 Introduction

Primary liver cancer is a malignant tumor that begins in the liver. It was the fourth-

commonest cancer in men and the eleventh commonest cancer in women (1). Among the

several types of primary liver cancer, hepatocellular carcinoma (HCC) is the most common

form of liver cancer in adults, and intrahepatic cholangiocarcinoma (ICC) is the second
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most common malignancy in the liver. Despite being less common

than HCC, the incidence of ICC is on the rise in many countries (2).

ICC makes up approximately 10% of all cholangiocarcinomas, and

the median survival period for patients is less than 3 years (3).

The histological grade of tumor is closely related to prognosis,

tumors with low histological grade often have a better prognosis

compared to tumors with high histological grade (4, 5). Therefore,

promptly detecting the histological grade of ICC tumors is crucial

for patient treatment and prognosis.

Traditionally, the assessment of the histological grade of ICC is

based mainly on immunohistochemistry, and the tumor tissue is

typically obtained by needle biopsy (6). However, invasive biopsies

have several limitations, including sample bias caused by tumor

heterogeneity and high costs (7). By contrast, computed

tomography (CT) is a real-time and noninvasive method for liver

disease diagnosis. With CT, continuous and/or overlapping high-

resolution thin-slice (0.75–1.5 mm) images of the entire abdomen

can be acquired. Previous studies have suggested that the imaging

characteristics of a tumor might be used to help the disease

diagnosis (8–11); therefore, using CT images to determine the

degree of ICC histological grade appears feasible. However,

effectively using CT images to identify the histological grade of

ICC remains a challenge.

Deep learning (DL) is a common and efficient method of

obtaining knowledge from images because convolutional neural

networks (CNNs) have a strong ability to recognize patterns in

images (12–15). DL models typically require labels for individual

images during training. However, a common challenge arises when

working with medical imaging data, specifically CT scans, in which

labels are often assigned to entire patients rather than individual slice

images. Because CT scans consist of a multitude of slices capturing

different anatomical details, the lack of specific labels for each slice

complicates the task of imparting granular information to the model.

Assigning labels to each CT image slice for training introduces several

noisy labels, because different CT slices of the same patient may

contain varying lesion areas, and their histological grade may also

differ (16). To address this problem, multiple-instance learning (MIL)

was introduced, which requires labels only for each patient (17). MIL

represents a type of weakly-supervised classification that depends

solely on patient-level labels, where each slice is treated as an

individual instance, and a single case or patient data comprising

multiple slices is treated as a “bag” (18, 19).

Furthermore, CT images typically contain information about

the lesion and its surroundings. Environmental information in the

background can help identify the histological grade of ICC to a

certain extent; however, it also introduces considerable noise. To

allow the model focus on to both the lesion and surrounding

environment, the original CT images are segmented into images

containing the lesion and background environment (hard images)

and images containing only the lesion area (easy images) based on a

lesion mask provided by the doctor.

DL has been widely used in the field of medical imaging (20–23).

The objective of this study was to develop a deep-learning model to

predict the histological grade of ICC using CT images. We designed a

multiple-instance CNN, called SiameseNet, containing two branches to

process the input information of the two modalities. Because
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determining the correspondence between the two types of images is

challenging, we leveraged a cross-attentionmodule to dynamically learn

the correlation between hard and easy images (24, 25).

Intrahepatic cholangiocarcinoma (ICC) poses significant

diagnostic challenges due to its reliance on invasive biopsies and

the heterogeneity of tumor histological grades. This study

introduces a novel dual-branch SiameseNet, incorporating Multi-

Instance Learning and cross-attention mechanisms, to predict ICC

histological grades non-invasively from CT images. By addressing

the limitations of current methods, such as sample bias in biopsies

and the inability to fully utilize imaging data, this approach has the

potential to revolutionize diagnostic workflows and enable more

accurate, safer, and faster grading of ICC tumors.

To the best of our knowledge, no research has been reported for

predicting the histological grade of ICC by combining MIL and a

double-branch CNN. The main contributions of our work are: 1)

We propose an MIL method to predict the histological grade of ICC

based on CT images. 2) We incorporated two different data

modalities in the model training and designed a multiple-instance

model with dual branches for this task. 3) To efficiently integrate the

information from the two modalities, we implemented a cross-

attention mechanism within the model.
2 Materials and methods

2.1 Patient cohort

Intrahepatic cholangiocarcinoma (ICC) is a relatively rare form

of primary liver cancer, accounting for only about 10% of all

cholangiocarcinomas. This rarity makes it challenging to collect

large datasets, even in specialized medical centers. Among the

collected cases, only a subset includes detailed histological grading,

further restricting the pool of eligible cases for our study. This study

was approved by the local ethics review committee(20211343), which

waived the requirement for informed consent. The data of a total of

424 patients with ICC were included in the study and met the

following criteria: (1) age over 18 years, (2) pathologically confirmed

diagnosis of ICC, and (3) complete baseline characteristics, laboratory

tests, and tumor pathology records. Details are shown in Figure 1.
2.2 Histopathological examinations

The surgically resected hepatic specimens were used for the

pathological evaluation. Identification of the pathological

characteristics were performed by a team of experienced

pathologists (each individual with more than 10 years of experience

in reading histopathological slices), who were blinded to the CT and

clinical results. Tumor differentiation were evaluated and identified as

well-differentiated, well-to-moderated differentiated, moderate-

differentiated, moderate-to-poor differentiated, poor-differentiated.

In this study, well-differentiated, well-to-moderated differentiated,

moderate-differentiated were divided into low-histological grade,

moderate-to-poor differentiated, poor-differentiated were divided

into high-histological grade.
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2.3 CT images

It is important to preprocess original abdominal CT images to

enhance the accuracy of liver lesion detection models. These images

typically contain various organs and tissues that can introduce noise

and interfere with the model training process. We therefore adopted a

two-step preprocessing approach. First, we obtained manual masks

from professional doctors to identify the lesion area in each CT slice.

These masks served as ground-truth labels for model training. Using

this mask information, we extracted two different modalities of image

data. The first modality consisted of the lesion area identified by the

mask alone. By isolating only the lesion area, we eliminate interference

from other irrelevant organs and tissues, allowing the model to focus

more accurately on the target region. The second modality involved

extending the image outward from the center of the mask to a certain

size. In this study, the image size was extended to 128 × 128 pixels. If

the lesion area extended beyond this size, the boundaries of the lesion

area were preserved. Using this approach, we retained a small area

around the lesion outside the intrahepatic lesion. This area helped the

model to better distinguish the differences and connections between the

lesion and the normal area, thereby improving overall performance. In

addition to these preprocessing steps, we performed data augmentation

techniques on the images during the training process. This process

included techniques such as color jitter (26) to adjust image brightness
Frontiers in Oncology 03
and contrast, as well as random resizing, cropping, and flipping of the

images (RandomResizedCrop and RandomHorizontalFlip) (27) to

introduce variety and increase the diversity of the training data. By

utilizing these preprocessing techniques and data augmentation

methods, we aimed to enhance the performance and accuracy of the

liver lesion detection model.
2.4 Siamese network

Figure 2A illustrates the detailed workflow of the proposed

model. The first step is data processing, in which two types of modal

information are extracted from the original abdominal CT slices.

This extraction is based on the mask information of the lesion area

provided by the doctor. The first type of modal information, called

hard images, contains environmental information about the lesion

area and its surroundings. This type of information is more

complex and contains a larger amount of data, making it more

challenging for the model to process. The second type, called easy

images, includes only the lesion area. As the name suggests, this

type of information makes it easier for the model to identify and

process. Figure 3 are some easy and hard images of patients. To

enhance the model’s generalization performance, we utilized data

augmentation techniques to enrich the patterns of the training
FIGURE 1

Patient recruitment process.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1450379
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2025.1450379
samples. This approach ensures that the model can learn effectively

from various input variations.

Our network model is a two-branch multi-instance network

model, as shown in Figure 2B. The input to the model includes all

the CT image slices of each patient. These images are first fed into a

CNN for feature extraction. Because the two modalities (hard and easy

images) contain different amounts of information and complexities,

the CNN parameters of the two branches are updated independently.

They do not affect each other during the training process. To further

improve the model’s ability to identify the lesion area, we introduced a

cross-attention mechanism. This mechanism calculates the cross-

attention between the images of the two modalities. This approach

enables the model to focus on the confidence of the lesion area while

learning the relationship between the lesion area and the surrounding

environment. This cross-attention mechanism enhances the model’s

performance. After passing through the cross-attention module, the
Frontiers in Oncology 04
feature vectors of the two modalities are fused into several instance

features. These instance features are then merged into a package

feature using the attention aggregation module in MIL, and at the end

of our network, the package features are passed through a nonlinear

classification head to obtain the final classification result, which

represents the model’s ability to predict the presence or absence of

the targeted condition on abdominal CT scans. Besides, we

implemented early stopping during training to prevent overfitting to

the training set.
2.5 Cross-attention module

We introduced a cross-attention mechanism to improve

recognition of the lesion area in our network. This mechanism

utilizes information from both the lesion area and the surrounding
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FIGURE 2

(A) Workflow overview including data processing and feature extraction networks: SiameseNet and nonlinear classifier. In the data processing stage,
the processed images are the patient’s abdominal CT plain scan slices. From the mask information drawn by the doctor, we extracted the original
image into two-modal information. Those containing the lesion area and surrounding environment information are hard images. Easy images
include only the lesion area. (B) The SiameseNet network structure consists of two independent CNN branches—a cross-attention module and an
attention-pooling module. The red color corresponds to attention scores for each instance.
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environment to enhance the model’s understanding. The model

takes two modal inputs, each containing information about the

lesion area but with different levels of complexity and amounts of

information. The model was made to focus more on the lesion area

by leveraging environmental information using a CNN to extract

feature vectors from both easy and hard images. The feature vector

extracted from the easy images was treated as the query vector, and

the feature vector from the hard images was used as the key-

value vector.

To calculate the similarity score, we measured the similarity

between the query vector and each key vector. This similarity score

helps determine the importance of each key-value vector. A higher

similarity score implies that the key-value vector contains more

relevant information about the lesion area. From the similarity

scores, we subsequently calculated a weighted sum of the

corresponding value vectors. The weighted sum represents an

enhanced representation of the lesion area. By incorporating this

cross-attention mechanism, we ensure that the model focuses more

on the lesion area by taking advantage of environmental

information. This approach can improve recognition accuracy

and provide a better understanding of the lesion area using the

model, mathematically expressed as:

Cross − Attention(Q,K ,V)

= softmax(SDP − Similarity(Q,K))V (1)

where SDP − Similarity(Q,K) is the scaled dot product

similarity calculation. By dividing the dot product result by the

square root of the dimensionality, we scale down the similarity

score, which can be written as:

SDP − Similarity(Q,K) =
QKTffiffiffiffiffi

dk
p (2)

where dk is the dimension of the feature vector in the matricesQ

and K. This scaling prevents the dot product result from becoming

too large, which in turn helps avoid overly small gradients during

the softmax operation. We ensure that the similarity scores are well-

scaled and facilitate smooth and effective backpropagation in the

training process of the model using the scaled dot product similarity

calculation. This approach allows for better adjustment of the
Frontiers in Oncology 05
model parameters and ultimately improves its performance in

recognizing and understanding the lesion area.
2.6 Multi-instance learning

MIL is a machine learning paradigm designed to handle

scenarios where labels are assigned to groups of instances (called

“bags”) rather than to individual instances. This framework is

particularly useful when instance-level labels are unavailable,

noisy, or difficult to obtain. For our task, each patient has several

CT slices. We only have the histological grade label of each patient.

It is very difficult to obtain the histological grade label of each CT

slice, so we decided to use MIL to train our data.

The training data for this study comprised CT slice images of

patients, in which each patient had multiple CT slices. These slices

mostly contained lesion areas; however, the histological grade of

these lesion areas may vary owing to tumor heterogeneity. To avoid

introducing noise during model training, we utilized the MIL

technique. MIL is a weakly supervised method that differs from

traditional learning methods in the composition of training

instances. In traditional supervised learning, each instance is

represented by (Xi,  Yi), where Xi is the instance and Yi is the

corresponding label. However, in MIL, training samples are no

longer a single instance, but “bags” of instances. Each package is in

the form of ( Xi1,  Xi2,…,  Xinf g,  Yi), where the number of instances

in each package can vary and the label of each instance is unknown.

The goal of MIL is to train a classifier using these packages to

predict the labels of the unknown packages. Generally, a pooling

module exists to fuse the instance features into the bag feature. Max

pooling and average pooling are two commonly used pooling

methods. Max pooling can be expressed as:

z = max
k=1,…,K

hk (3)

and average pooling as:

z =
1
K o

K

k=1

hk  (4)

Where hk is the kth instance feature.
FIGURE 3

Easy and hard images of patients.
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In our case, we considered the set of slices from all the CT

images of each patient as a package and used the histological grade

of ICC as the label for the package. To fuse the instance features

extracted by the cross-attention module into the final bag features,

we use a pooling method based on the attention mechanism.

Compared to max pooling and average pooling, this pooling

method improves the effectiveness and interpretability of multi-

instance learning. Another benefit is that it is differentiable and can

be trained through neural networks. The attention weights from the

attention pooling module allow us to understand which instances

contribute more to the label. Let H =   h1,…, hkf grepresent a

package with K instances, where hi is the embedding obtained

from the ith instance through the feature extraction network. The

attention-based MIL pooling is expressed as follows:

z = o
K

k=1

akhk,  ak =
exp wT tanh   (VhTk )

� �
oK

j=1exp wT tanh   (VhTj )
� �

 
(5)

After fusing the bag features, they are input into a nonlinear

fully connected network to obtain the final prediction result. The

cross-entropy loss function is used, which measures the difference

between the predicted probabilities and actual labels. It can be

expressed as follows:

LCE = −o(ylog ŷ + (1 − y) log (1 − ŷ )) (6)

where y represents the real label and ŷ represents the predicted

probability value. This loss function quantifies the dissimilarity

between the predicted and actual labels.
2.7 Hyperparameter optimization

We utilized a grid search approach to systematically evaluate a

range of hyperparameters, including learning rate, batch size, number

of epochs. For certain hyperparameters (e.g., optimizer type), manual

tuning was conducted based on prior studies and preliminary

experiments. Hyperparameters were optimized using the validation

accuracy as the primary metric, while ensuring a balance between

training and validation performance to minimize overfitting.

Here are our final hyperparameter values:Learning rate:5e-4 (with

decay factor of 0.1 every 10 epochs). Batch size: 128 (For MIL, batch

size is 1). Optimizer: Adam with b1=0.9, b2=0.999. Number of

epochs: 200 (early stopping was applied if validation accuracy

plateaued for 10 consecutive epochs).
2.8 Computational requirements and cost-
benefit analysis

The model was trained and tested on a workstation equipped

with an NVIDIA RTX 3090 GPU (24 GB RAM). Training the

model on the full dataset (381 training samples) required

approximately 6 hours, including data augmentation and

optimization steps. For a single patient (bag of CT slices), the

inference process, including feature extraction, cross-attention
Frontiers in Oncology 06
computation, and classification, takes approximately 10 seconds

on the same GPU hardware.

The proposed SiameseNet model offers significant advantages

over traditional biopsy-based methods for ICC histological grade

assessment. It is non-invasive, time-efficient, and cost-effective,

providing results in seconds without the risks associated with

invasive procedures. While initial deployment costs, such as

computational infrastructure, are required, these are offset by the

reduction in biopsy and pathology expenses.
3 Results

3.1 Patient characteristics

Table 1 shows the demographic and clinical characteristics of

the patients used to train and test the SiameseNet model. According

to the size of the ICC patient dataset, we randomly divided it into

mutually exclusive training and testing sets, using a classic holdout

strategy (28) with an allocation ratio of 9:1. We used a random

stratified sampling method to split the dataset. This approach

ensures that the distribution of key attributes, particularly the

histological grade (low-grade vs. high-grade), is consistent

between the training and testing sets. Specifically, we stratify the

dataset based on histological grade, then randomly allocate 90% of

cases from each grade category to the training set and the remaining

10% was assigned to the testing set.

The method we used to calculate the P-value is the Mann-

Whitney U test, also known as the Mann-Whitney-Wilcoxon test or

the rank-sum test, is a non-parametric statistical method used to

compare two independent samples. Unlike the t-test, the Mann-

Whitney U test does not require the data to follow a normal

distribution, making it suitable for situations where the sample

distribution is unknown or cannot be assumed to be normal. The

test compares the ranks of the two samples to determine if they

come from the same distribution. In this study, the data is separated

into two groups based on histological grade, and the ranks of the

combined samples from both groups are calculated, followed by

the sum of the ranks for each group. Then the statistics U for each

of the two groups are computed, and the smaller value is selected as

the test statistic U.

U = R −
N   ·  (N + 1)

2
(7)

where N is the number of samples and R is the rank sum of

the samples.

Given that the sample size exceeds the upper limit of 20 for the

exact distribution table statistics of the Mann-Whitney U test, the

normal distribution is employed to approximate the conversion of

the statistic U into the standard statistic Z.

Z =
U − mU

sU
(8)

where mU is the expected value of U and sU is the standard

deviation of U:
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mU =
NHigh−HG · NLow−HG

2
,sU

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NHigh−HG · NLow−HG · (NHigh−HG + NLow−HG + 1)

12

r
(9)

The corresponding p-value is obtained using the calculation

formula for a two-sided test.

p = 2 · (1 −F( Zj j)) (10)
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where F( Zj j) is the cumulative probability of the standard

normal distribution.

The proportions of patients with a low histological grade in the

training and testing cohorts were 29.9% and 30.2%, respectively.

There was no significant difference for gender (train: p = 0.975; test:

p = 0.084), CEA (train: p = 0.509; test: p = 0.218), or INR (train: p =

0.511; test: p = 0.516) between the two cohorts, but the prevalence of

age appearance was significantly higher (p = 0.027) in the training

cohort. However, in the training cohort, there was indeed a
TABLE 1 The statistics of ICC patients in the training and testing cohorts.

Attribute Training Cohort Testing Cohort

High-HG Low-HG p Value High-HG Low-HG p Value

Age 0.027 0.781

Mean (SD) 56.39 (10.64) 59.06 (9.81) 59.57 (10.43) 58.85 (11.24)

Gender 0.975 0.084

Male (%) 142 (0.53%) 60 (0.53%) 18 (0.6%) 4 (0.31%)

Female (%) 126 (0.47%) 54 (0.47%) 12 (0.40%) 9 (0.69%)

CEA 0.509 0.218

>5 (%) 75 (0.28%) 32 (0.28%) 6 (0.2%) 1 (0.08%)

INR 0.511 0.516

Mean (SD) 1.04 (0.27) 1.01 (0.10) 1.00 (0.09) 0.98 (0.09)

CA199 0.286 0.720

>37 (%) 157 (0.59%) 78 (0.68%) 23 (0.77%) 9 (0.54%)

FIB 0.256 0.290

>4 (%) 67 (0.25%) 22 (0.19%) 9 (0.3%) 3 (0.23%)

AFP 0.160 0.435

Mean (SD) 22.06 (104.28) 15.37 (79.22) 3.17 (2.04) 3.26 (2.49)

ALT 0.760 0.072

>55 (%) 43 (0.16%) 19 (0.17%) 7 (0.23%) 1 (0.08%)

ALP 0.717 0.059

>129 (%) 79 (0.3%) 42 (0.37%) 13 (0.43%) 2 (0.15%)

TBIL 0.472 0.947

>22.24 (%) 25 (0.09%) 18 (0.16%) 3 (0.1%) 2 (0.15%)

GGT 0.611 0.076

Mean (SD) 116.32 (160.88) 144.88 (213.84) 162.70 (193.61) 142.23 (311.59)

HBsAg 0.708 0.437

Positive (%) 74 (0.28%) 34 (0.3%) 8 (0.27%) 2 (0.15%)

Negative (%) 191 (0.72%) 80 (0.7%) 22 (0.73%) 11 (0.85%)

HBeAg 0.605 0.365

Positive (%) 7 (0.03%) 2 (0.02%) 2 (0.07%) 0 (0)

Negative (%) 258 (0.97%) 112 (0.98%) 28 (0.93%) 13 (100%)
The interpretation of data includes CEA, carcinoembryonic antigen (ng/mL); INR, international normalized ratio; CA199, carbohydrate antigen 19-9 (U/ml); FIB, fibrinogen (g/L); AFP, alpha-
fetoprotein (ng/mL); ALT, alanine aminotransferase (IU/L); ALP, alkaline phosphatase (U); TBIL, total bilirubin (μmol/L); GGT, g-glutamyl transpeptidase (g/L); HBsAg, hepatitis B surface
antigen; HBeAg, hepatitis B e antigen; SD, standard deviation; HG, Histological grade.
Bold text indicates metric names (e.g., age, gender, CEA, INF) for patients statistics.
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significant age difference between patients with low histological

grade and those with high histological grade. Specifically, 69.3%

(185) of high histological grade cases and 80.7% (92) of low

histological grade cases involved patients over the age of 50 years.

This disparity can be explained by the fact that the incidence of

ICC is generally higher among individuals aged over 50 years. As a

result, a larger proportion of the cases collected in our study

naturally fell into this age group. Additionally, it is important to

note that low histological grade cases are relatively rare.

Consequently, a higher prevalence of low histological grade ICC

cases was observed among individuals over 50 years of age as well.

Apart from this factor, baseline characteristics and laboratory

features were not significant between Low-HD and High-HD

patients (ALL p >0.05).
3.2 Performance

Table 2 presents a performance comparison between our

SiameseNet model and several other well-established models,

including ResNet (29), VisionTransformer (30), SwinTransformer

(31), and ConvNext (32). These models encompass a combination

of traditional CNNs as well as more recent transformer architecture

networks. We conducted a thorough analysis of their variations in

accuracy (ACC), area under the curve (AUC), sensitivity (SE), and

specificity (SP). The findings indicate that our model demonstrates

a notable enhancement of 6.9% and 24.9% in the ACC and AUC,

respectively, compared with the baseline model ResNet34. This

improvement confirms the efficacy of our model in enhancing

predictive accuracy while maintaining superior overall

performance without excessive bias towards any particular

prediction type.

During the training process, we monitored the performance of

the model on the validation set. Training was halted as soon as the

validation accuracy began to decline, indicating potential overfitting.

This approach prioritizes the model’s generalization ability over

achieving the highest possible accuracy on the training set. If

training had continued beyond the early stopping point, the

model’s accuracy on the training set could have reached

significantly higher levels. However, this would likely have come at

the cost of overfitting, which would reduce the model’s performance
Frontiers in Oncology 08
on unseen data. By stopping training at an optimal point, the model

avoids overfitting while maintaining robust performance on the

testing set. The slightly lower accuracy on the training set

compared to the testing set reflects this deliberate strategy.

We also compared our cross-attention-based MIL method with

other classical MIL methods. The results show that our method

significantly outperforms other MIL methods. The compared MIL

methods include Mean-MIL, based on average pooling; Max-MIL,

based on max pooling (33, 34); attention-based MIL (AB-MIL),

based on the attention mechanism (35); and TransMIL, based on

the transformer architecture (36). Table 3 shows the performance of

these methods. Compared with the AB-MIL method, our method

achieved a 16.2% improvement in ACC and a 21.1% improvement

in AUC, indicating that combining data from two different

modalities using a cross-attention mechanism can effectively

enhance the predictive performance of the model.

Our model also demonstrated notable enhancements in the

receiver operating characteristic (ROC) curve performance in the

test cohort compared to other prevalent deep-learning models, as

shown in Figure 4. And Figure 5 is the confusion matrix obtained by

our model in the test cohort.
3.3 Deep learning feature analysis

Deep-learning models can automatically extract features for

inference by learning the mapping between CT images and the

histological grade of ICC. However, because deep-learning models

are “black boxes,” we do not know how the model’s inference

process is performed. Therefore, it is necessary to use certain

methods to increase the interpretability of deep-learning models.

In this study, we selected Class Feature Map and Activation Map

(CAM) (37, 38) to visualize the feature maps (39) of the model

during the inference process and the regions related to lesions to

verify the reliability of the model. Figure 6 shows the attention

regions of the model. For CT images, this class activation map

represents the importance of various regions learned by the deep-

learning model, where the red activation area is more important

than the other areas because it is the region signifying more focus by

the deep-learning model. From the original image, we can clearly

see that the area that the model focuses on is exactly where the
TABLE 2 Performance comparison of our model with several classic models, including the CNNs ResNet and ConvNext, and the transformer networks
VisionTransformer and SwinTransformer.

Model
Training Cohort Testing Cohort

ACC AUC SEN SPEC ACC AUC SEN SPEC

ResNet34 67.7% 75.6% 79.8% 62.5% 79.1% 61.3% 53.8% 90.0%

VIT 58.5% 55.1% 48.2% 62.9% 76.7% 74.1% 84.6% 73.3%

SwinTransformer-Tiny 69.6% 54.1% 22.8% 89.5% 76.7% 54.1% 46.2% 90.0%

ConvNext 63.5% 48.8% 26.3% 79.4% 79.1% 70.0% 53.8% 90.0%

SiameseNet (Ours) 96.3% 99.2% 95.6% 97.2% 86.0% 86.2% 84.6% 86.7%
ACC, accuracy; AUC, area under receiver operating characteristics curve; SEN, sensitivity; SPEC, specificity.
Bold values highlight the highest scores achieved by the proposed model across comparative experiments (e.g., performance metrics such as AUC or accuracy).
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tumor is located, which shows that the model uses the information

contained in the CT image of the tumor for identification and it can

be found that the area that the model focuses on is highly

overlapped with the area demarcated by the doctor. Figure 7

shows the feature maps generated by the feature-extraction part

of the model. The shallower convolutional layers learn simple and

obvious features (e.g., Conv_1), and the MaxPool layer further

amplifies these features, whereas the deeper convolutional layers

learn more abstract features (e.g., Conv_11). With the increase in

the network depth, the features learned by the model become more

abstract and have an increased relationship to the histological grade

of ICC. This process is very similar to the process of doctors

recognizing images, and it also helps us understand how the

model learns.

At the same time, we also observed some failure cases. Figure 8

is a comparison of the lesions annotated by the doctor and the

model’s attention area for patients whose model predictions were

wrong. We can see that the model mistakenly focused on these areas

instead of the actual lesion area. This is an important reason for the
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model’s recognition errors. How to enhance the model’s recognition

ability for this type of atypical images is a focus of our future work.
3.4 Ablation study

In this study, we used two modalities of image information for

fusion training: images containing only the lesion area (easy images)

and images containing both the lesion area and environmental

information (hard images). To validate the effectiveness of this

method, we compared the training performance using only a single

modality of images, either easy or hard images. When using the

single-modality image data, we trained the baseline AB-MIL model.

Table 4 presents the model performance using image inputs from

different modalities. The results indicate that our multimodal input

can effectively improve the recognition accuracy of the model;

compared to the model using only easy images, our AUC score

also increased by 29.4%.
TABLE 3 Performance comparison of different MIL methods.

Model
Training Cohort Testing Cohort

ACC AUC SEN SPEC ACC AUC SEN SPEC

Mean-MIL 96.1% 99.1% 94.6% 97.4% 81.4% 76.8% 61.5% 90.0%

Max-MIL 95.8% 98.7% 94.4% 97.6% 76.7% 57.7% 23.1% 100.0%

AB-MIL 88.5% 94.8% 91.5% 85.0% 69.8% 65.1% 38.5% 83.3%

TransMIL 68.0% 72.6% 75.3% 61.0% 76.7% 53.3% 30.8% 96.7%

CAB-MIL (Ours) 96.3% 99.2% 95.6% 97.2% 86.0% 86.2% 84.6% 86.7%
ACC, accuracy; AUC, area under receiver operating characteristics curve; SEN, sensitivity; SPEC, specificity.
Mean-MIL and Max-MIL are two straightforward MIL methods. AB-MIL and TransMIL are currently widely used classical multiple-instance learning models. Cross-attention-based MIL is the
method proposed in this paper.
Bold values highlight the highest scores achieved by the proposed model across comparative experiments (e.g., performance metrics such as AUC or accuracy).
FIGURE 4

Comparison of ROC curves generated by different networks within
the testing cohort. ResNet34, SwinTransformer and ConvNext are
popular deep learning models, and Our (AUC=0.862) is the
performance of the proposed SiameseNet network.
FIGURE 5

Confusion matrix obtained in the testing cohort.0: High histological
grade;1: Low histological grade.
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The effective and noise information contained in the two modal

images differed. To focus the model on the lesion area and reduce

the interference of noise information, a cross-attention mechanism

was used to fuse the information extracted from the two modal

images for training. Figure 9 shows a performance comparison of
Frontiers in Oncology 10
our method with commonly used pooling methods in other MIL

models, including gated attention (40), self-attention, and multi-

head self-attention (41). The experimental results demonstrate that

our method can better integrate information from two modal

images, effectively improving the model’s performance.
a. b.
FIGURE 6

Visualization of the CAM generated by the last convolution layer. Red color denotes high attention values, and blue color denotes low attention
values. Subfigure (A) shows the CAM of ICC High-HG patient, and subfigure (B) shows the CAM of ICC Low-HG patient. HG, Histological grade.
FIGURE 7

Visualization of the feature maps learned from the convolution of the feature extractor. Each layer of the model includes hundreds of filters, and
only four of them are depicted in the figure.
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4 Discussion

In this study, we constructed SiameseNet, a model based on

dual-branch multimodal inputs and MIL. We also utilized a cross-

attention mechanism to integrate input information from multiple

modalities, enabling the network to predict the histological grade in

ICC patients using CT images. Additionally, we found that there

were no significant differences in clinical indicators between the

ICC high histological grade patient group and the ICC low

histological grade patient group, both in the training and testing

cohorts. The experimental results indicate that our model is an

advanced model that can effectively predict the histological grade of

tumor in ICC patients. This method has the potential to assist

doctors in assessing the histological grade of tumor in patients with

ICC in clinical practice.

The SiameseNet model developed in this study achieved good

performance in predicting the histological grade of ICC, with all

indicators showing improvements compared to the other methods

(ACC = 86.0%, AUC = 86.2%, SEN = 84.6%, SPEC = 86.7%). The

performance improvement of the model results mainly from the

following aspects: (1) Adopting an MIL training method using all

CT slices of a patient as package input to the network for training,

effectively alleviating the performance degradation caused by the

heterogeneity of tumors. (2) Adopting a dual-branch network

structure, with the training data input consisting of two types of

CT images containing different amounts of information. This

approach ensures that the model does not ignore the effective

information in the surrounding environment of the tumor area,

which may help with the model’s predictions while allowing the

model to focus more on the tumor area without being disturbed by

noise in the environmental information. (3) Using a cross-attention

mechanism to integrate multimodal information. The traditional

pooling method in MIL is not effective for multimodal inputs in this
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study, whereas the cross-attention mechanism can calculate the

similarity between different modal image slices, enabling the model

to focus on instances that are most helpful for predictions, thus

improving the model’s performance.

MIL is a common deep-learning method for processing medical

images. Typically, the original medical images are divided into

individual slice images for model training. However, because these

slices are obtained from the original 3D images, the sizes of the

tumor areas they contain and the histological grade may vary.

Multi-instance learning treats all slices as inputs to the model,

allowing the model to automatically learn which slices are more

important and the relationships between slices. This approach

effectively alleviates the decrease in training accuracy caused by

tumor heterogeneity. In this study, we adopted an MIL method. We

input the information of two modal images into the two branches of

the model. Compared with other popular multi-instance methods,

such as AB-MIL and TransMIL, our model showed a significant

performance improvement (ACC increased by 16.2%, AUC

increased by 21.1%). This result indicates that our model has a

higher classification accuracy and better predictive results.

The pooling function is a crucial part of multi-instance learning;

an effective pooling function enables the model to learn better

features and improve its performance. Conventional MIL pooling

functions include mean pooling, max pooling, and a series of pooling

functions based on an attention mechanism. Mean pooling and max

pooling, two of the most intuitive ideas, apply the mean or max

operation to the extracted instance features to obtain the final bag

feature. This method is mostly effective, but not as effective for

medical images, where certain critical slices play a greater role in

predicting the image. For this reason, we adopted an attention-

mechanism-based pooling approach in this study. Attention-based

pooling allows the model to automatically recognize more important

instances in the bag. However, previous methods were designed only
FIGURE 8

Comparison of the lesions annotated by doctors and the model’s focus areas for patients with prediction failure.
TABLE 4 Comparison of performance with different modal inputs, with Multi-Modal training method used herein combines easy and hard images.

Model
Input

Training Cohort Testing Cohort

ACC AUC SEN SPEC ACC AUC SEN SPEC

Hard Image 88.5% 94.8% 91.5% 85.0% 69.8% 65.1% 38.5% 83.3%

Easy Image 60.4% 60.4% 57.6% 63.2% 72.1% 52.8% 23.1% 93.3%

Multi-Modal 96.3% 99.2% 95.6% 97.2% 86.0% 86.2% 84.6% 86.7%
ACC, accuracy; AUC, area under receiver operating characteristics curve; SEN, sensitivity; SPEC, specificity.
Bold values highlight the highest scores achieved by the proposed model across comparative experiments (e.g., performance metrics such as AUC or accuracy).
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for a single input and did not effectively learn the relationship

between the features extracted by the two branches of the model.

Therefore, we adopted a cross-attention mechanism that calculates

the similarity between instances from different branches using the

features extracted from one branch as the query vector (in this study,

images containing only the lesion area) and the features of the other

branch as key-value pair vectors. Consequently, the model can fully

learn the associative relationships between instances from both

branches, ultimately improving its predictive accuracy. The

experimental results also show that our pooling method

significantly improves the model’s performance, with an increase of

13.9% in ACC and 24.9% in AUC compared with the other methods.

The model could be incorporated into existing clinical

workflows, such as assisting radiologists in assessing ICC

histological grades based on CT scans or serving as a decision-

support tool to provide supplementary insights during diagnosis.

The model also have the potential for deploying in real-time clinical

scenarios, such as automated processing of CT scans to provide

immediate grade predictions alongside radiologists’ assessments.

But there are still many challenges, it is important to standardize

imaging protocols across institutions to ensure consistent model

performance and we should improve the model’s interpretability to

build clinician trust in its predictions.

The proposed model has the potential to significantly impact

patient management by providing a non-invasive, accurate, and

rapid method for predicting ICC histological grades. This can

improve diagnostic precision, guide personalized treatment

planning, and reduce the need for invasive biopsies. For instance,

patients with high-grade tumors identified by the model can be

prioritized for systemic therapies, while those with low-grade

tumors can benefit from less aggressive approaches. Additionally,

the model’s rapid inference enables timely decision-making, critical

for managing aggressive cancers. Future studies will focus on

validating these impacts in prospective clinical settings.

Our study has some limitations. First, our data were obtained

solely from a single medical center, which resulted in a smaller and
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more localized patient sample. This may introduce biases due to the

homogeneity of the patient population, medical practices, or imaging

protocols. As such, the findings may not fully reflect the diversity of

ICC cases encountered in different clinical settings. Therefore, in

future research, we plan to collect data from multiple centers to

enhance the generalization performance of the model. Second, the

learning and inference processes of the model were not visible and

lacked strong interpretability. Despite our efforts to provide

explanations through visualization, a gap still exists that must be

addressed before the model can be integrated into actual clinical

practice. While the proposed model demonstrates promising

performance, several limitations must be considered for clinical

implementation. These include the single-center nature of the

study, variability in imaging protocols, and the need for

computational infrastructure in healthcare facilities. Additionally,

interpretability challenges and regulatory requirements could

impact adoption. Future efforts will focus on multi-center

validation, enhancing model explainability, and optimizing

deployment in resource-limited settings to address these barriers.
5 Conclusions

In this study, we developed SiameseNet, a dual-branch deep

neural network incorporating Multi-Instance Learning and cross-

attention mechanisms, to predict the histological grade of ICC using

CT images. Our method demonstrated superior performance

compared to traditional and transformer-based models, achieving

an accuracy of 86.0% and AUC of 86.2% on the testing set. These

results highlight the potential of our approach to mitigate the

impact of tumor heterogeneity and improve diagnostic precision.

This method could serve as a valuable tool in clinical practice,

aiding timely and personalized treatment planning for ICC

patients. Future work will focus on validating the model across

multiple centers and enhancing its interpretability to facilitate

clinical adoption.
FIGURE 9

Performance of different multiple-instance fusion methods; cross-attention is used in this study.
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