
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Stefano Francesco Crinò,
University of Verona, Italy

REVIEWED BY

Paolo Giorgio Arcidiacono,
Vita-Salute San Raffaele University, Italy
Qiong Luo,
Mengchao Hepatobiliary Hospital, China

*CORRESPONDENCE

Shanyu Qin

qinshanyu@gxmu.edu.cn

Haixing Jiang

gxjianghx@163.com

†These authors share first authorship

RECEIVED 04 July 2024

ACCEPTED 03 February 2025
PUBLISHED 04 March 2025

CITATION

Mo S, Yi N, Qin F, Zhao H, Wang Y, Qin H,
Wei H, Jiang H and Qin S (2025) EUS-based
intratumoral and peritumoral machine
learning radiomics analysis for distinguishing
pancreatic neuroendocrine tumors from
pancreatic cancer.
Front. Oncol. 15:1442209.
doi: 10.3389/fonc.2025.1442209

COPYRIGHT

© 2025 Mo, Yi, Qin, Zhao, Wang, Qin, Wei,
Jiang and Qin. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 March 2025

DOI 10.3389/fonc.2025.1442209
EUS-based intratumoral and
peritumoral machine learning
radiomics analysis for
distinguishing pancreatic
neuroendocrine tumors
from pancreatic cancer
Shuangyang Mo1,2†, Nan Yi1†, Fengyan Qin1†, Huaying Zhao1,2†,
Yingwei Wang2, Haiyan Qin2, Haixiao Wei2, Haixing Jiang1*

and Shanyu Qin1*

1Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University,
Nanning, China, 2Gastroenterology Department/Clinical Nutrition Department, Liuzhou People’s
Hospital Affiliated to Guangxi Medical University, Liuzhou, China
Objectives: This study aimed to develop and validate intratumoral, peritumoral,

and combined radiomic models based on endoscopic ultrasonography (EUS) for

retrospectively differentiating pancreatic neuroendocrine tumors (PNETs) from

pancreatic cancer.

Methods: A total of 257 patients, including 151 with pancreatic cancer and 106

with PNETs, were retroactively enrolled after confirmation through pathological

examination. These patients were randomized to either the training or test

cohort in a ratio of 7:3. Radiomic features were extracted from the

intratumoral and peritumoral regions from conventional EUS images. Following

this, the radiomic features underwent dimensionality reduction through the

utilization of the least absolute shrinkage and selection operator (LASSO)

algorithm. Six machine learning algorithms were utilized to train prediction

models employing features with nonzero coefficients. The optimum

intratumoral radiomic model was identified and subsequently employed for

further analysis. Furthermore, a combined radiomic model integrating both

intratumoral and peritumoral radiomic features was established and assessed

based on the same machine learning algorithm. Finally, a nomogram was

constructed, integrating clinical signature and combined radiomics model.

Results: 107 radiomic features were extracted from EUS and only those with

nonzero coefficients were kept. Among the six radiomic models, the support

vector machine (SVM) model had the highest performance with AUCs of 0.853 in

the training cohort and 0.755 in the test cohort. A peritumoral radiomic model

was developed and assessed, achieving an AUC of 0.841 in the training and 0.785

in the test cohorts. The amalgamated model, incorporating intratumoral and

peritumoral radiomic features, exhibited superior predictive accuracy in both the

training (AUC=0.861) and test (AUC=0.822) cohorts. These findings were

validated using the Delong test. The calibration and decision curve analyses

(DCA) of the combined radiomic model displayed exceptional accuracy and
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provided the greatest net benefit for clinical decision-making when compared to

other models. Finally, the nomogram also achieved an excellent performance.

Conclusions: An efficient and accurate EUS-based radiomic model

incorporating intratumoral and peritumoral radiomic features was proposed

and validated to accurately distinguish PNETs from pancreatic cancer. This

research has the potential to offer novel perspectives on enhancing the clinical

utility of EUS in the prediction of PNETs.
KEYWORDS

pancreatic neuroendocrine tumors, peritumoral, endoscopic ultrasonography,
radiomics, machine learning, pancreatic cancer
Introduction

Pancreatic neuroendocrine tumors (PNETs) are uncommon

tumors derived from endocrine cells in pancreatic islet tissues and

constitute approximately 3% of all pancreatic neoplasms (1).

PNETs are the second most prevalent pancreatic neoplasms and

are broadly categorized into functional (hormone-producing) and

nonfunctional tumors (2, 3). Compared with functional PNETs,

nonfunctional PNETs have a greater incidence and a more

disadvantageous prognosis (4). The preoperative identification of

PNETs is a critical challenge in clinical practice, as PNETs rely

primarily on pathological examination and immunohistochemistry,

with pancreatic cancer being the most essential differential

diagnosis (5). The surgical procedure for PNETs differs

immensely from the operation for more aggressive pancreatic

cancer (6). A pNET with a diameter ≥2 cm has a critical risk of

lymph node metastasis (>20%) and should undergo surgical

resection (7). Conversely, the strategy of observation represents a

more suitable and safer approach for most low-grade PNETs with a

diameter <2 cm, given the low risk of metastasis, progression, or

morbidity (6, 8). Therefore, accurate preoperative distinction

between PNETs and pancreatic cancer is imperative not only for

deciding on a more appropriate therapeutic strategy but also for

providing patients with a better prognosis (9).

Endoscopic ultrasonography (EUS) is commonly applied to

diagnose PNETs. It is regarded as one of the most accurate imaging

modalities for diagnosing pancreatic diseases due to its ability to

produce high-resolution images of the pancreas and its sensitivity

ranging from 57% to 94% (10). As outlined in the 2023 consensus

guidelines of the European Neuroendocrine Tumor Society (ENETS),

EUS is deemed the preferred imaging modality in cases where other

noninvasive imaging methods have yielded negative results. This

preference is due to EUS’s ability to offer meticulous observation

and assessment of PNETs, as well as its capacity to conduct a

comprehensive examination of the pancreas (11). Additionally,

previous studies have shown that EUS-guided fine-needle aspiration

(EUS-FNA) can reliably distinguish the tumor grade of PNETs (12). E

EUS holds a significant role in the diagnostic assessment of PNETs
02
because of its high accuracy and sensitivity in clinical and pathological

diagnosis. However, PNETs with characteristics such as a

measurement greater than 2 cm, anomalous margins, miscellaneous

echotexture, and dilatation of the upstream main pancreatic duct are

strongly correlated with aggressiveness. They are indistinguishable

from most common pancreatic cancer cases (13). Furthermore, the

recent EUS-based identification of pancreatic lesions using EUS is

primarily based on macroscopic anatomical imaging features, which

results in unsatisfactory specificity and is easily influenced by

subjective endoscopists.

Currently, integrating radiomic and machine learning strategies

based on imaging modalities is recommended for use in cancer

differential diagnosis and prognosis prediction. Radiomics

facilitates the extraction and analysis of multiple quantitative

image features using high-throughput techniques. These features

are subsequently utilized to develop diverse tumor diagnosis and

prediction models using various machine learning, deep learning,

and other algorithmic approaches (14, 15). Numerous studies have

evaluated the use of computed tomography (CT), magnetic

resonance imaging (MRI), and ultrasonography (US) radiomics in

the diagnosis and prognostication of PNETs, revealing the

remarkable efficacy of these methods (16–18).

However, most related studies have focused only on the

predictive radiomic features of intratumoral lesions, ignoring

potential information from peritumoral lesions and surrounding

tissues. Previous reports have demonstrated the prominent

diagnostic performance of peritumoral regions in imaging-based

radiomics and indicated that peritumoral regions contain vast

quantities of information correlated with tumor characteristics

(19, 20). Bence S reported that carefully identifying the

characteristics of peritumoral pancreatic regions, specifically the

morphology and hormone expression profile of endocrine islets,

may improve the accuracy of classifying hereditary and sporadic

PNETs and contribute to patient treatment strategies and prognosis

(21). Similarly, Xie N suggested that combined peritumoral and

intratumoral texture multiparametric MRI-based radiomic features

achieved greater accuracy in preoperatively assessing the

pathological outcomes of pancreatic cancer (22).
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Despite the recognized effectiveness of EUS as an imaging

modality, the utility of EUS-based radiomics in improving the

identification of PNETs from pancreatic cancer has not been

confirmed. Leveraging existing knowledge, we utilized various

common machine learning algorithms to develop and validate a

robust radiomic model based on intratumoral and peritumoral

radiomic features for the differentiation of PNETs from

pancreatic cancer.
Materials and methods

Study population

The institutional ethics review board of the First Affiliated

Hospital of Guangxi Medical University approved this

retrospective study (No. 2023-K346-01), thereby exempting the

need for patient consent or signed informed consent for the

examination of medical images and clinical information. A cohort

of 257 patients with pancreatic tumors, comprising 151 individuals

with pancreatic cancer and 106 with PNETs, underwent pancreatic

surgery or endoscopic ultrasonography-guided fine-needle

aspiration/biopsy (EUS-FNA/B) at our institution from October

2012 to October 2023, were enrolled in this research. The criteria for

inclusion and exclusion are delineated herein.

The inclusion criteria for patients were as follows (1):

underwent preoperative EUS scan of the pancreas meticulously;

(2) had pancreatic cancer or PNET confirmed by postoperative

pathology or EUS-FNA pathology; and (3) had complete and clear
Frontiers in Oncology 03
EUS images available before the patient’s preoperative or

pathological biopsies. (4) Patients who could not receive any

chemotherapy or radiotherapy before EUS. The exclusion criteria

for patients were as follows: (1) inability to display the whole lesion;

(2) significant motion artifacts or noticeable noise; and (3) the

presence of other types of tumors. The patients were allocated

randomly into a training cohort and a test cohort at a ratio of 7:3, as

depicted in Figure 1.

In this study, a retrospective analysis was performed on a range of

clinical parameters, including age, sex, location of the pancreatic mass,

CA-199 levels, pathological diagnosis, and EUS characteristics of

pancreatic lesions. Additionally, univariate and multivariate logistic

regression analyses were conducted on each clinical parameter to

identify statistically significant clinical features. Forest plots for

univariate and multivariate logistic regression analyses were plotted

using online tools (http://www.bioinformatics.com.cn).
EUS image acquisition

All enrolled patients underwent preoperative or pre-biopsy

endoscopic ultrasound (EUS) examinations of the pancreas using

FUJIFILM SU-9000 and Olympus EU-ME2 equipment at the First

Affiliated Hospital of Guangxi Medical University. As the largest

EUS medical center in the Guangxi Zhuang Autonomous Region,

the facility performs over 3,000 EUS diagnostic and therapeutic

procedures annually. To ensure the consistency of operating

procedures, a highly experienced EUS specialist, with over 30,000

EUS procedures, conducted a comprehensive examination of the
FIGURE 1

Flowchart for enrolling the study population.
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pancreatic region and acquired detailed images of the masses with

the same EUS procedures. These images consistently employed a

grayscale level of 125 values and a grayscale window of 250 values.

The imaging data was obtained by accessing information from our

institutional Picture Archive and Communication System (PACS).
ROI delineation

As the case had already been reviewed by the EUS specialist who

initially acquired the images, the DICOM-formatted images were

subsequently analyzed by two experienced EUS specialists, each

with 6 and 7 years of expertise. These specialists manually

delineated the intratumoral region of interest (ROI) using ITK-

SNAP software. (version 3.8.1, http://www.itksnap.org).

Discrepancies in the specialists’ delineations were resolved

through collaborative discussion and consensus. Both specialists

were blinded to the patients’ histopathological diagnoses. The

lesions were meticulously delineated carefully along the margins

on conventional EUS images. The peritumoral ROI was acquired by

expanding the intratumoral region of interest (ROI) delineation by

3 mm via the use of a regular morphological dilation procedure with

ITK-SNAP software. Finally, for each EUS image, three dissimilar

ROI images were acquired: an intratumoral ROI, a peritumoral

ROI, and a combined ROI that integrated both the intratumoral and

peritumoral ROIs. A comprehensive diagram can be found

in Figure 2.
Frontiers in Oncology 04
Standardization techniques were utilized for preprocessing the

images and data to ensure the reproducibility of the findings. The

intraclass correlation coefficient (ICC) was used to evaluate both

intraobserver and interobserver reproducibility. A random selection

of one-third of the participants resulted in 85 patients, including 63

with pancreatic cancer and 22 with PNETs, was randomly selected.

Following a two-week interval, the same EUS specialists conducted

intratumoral ROI segmentation again. An ICC value greater than

0.9 signified a high level of agreement.
Radiomics feature extraction

The categorization of handcrafted features can be delineated into

three discrete groups, namely intensity, geometric, and textural.

Geometric features are concerned with the three-dimensional

morphological characteristics of tumors. Intensity features refer to

the statistical dispersion of voxel intensities within the tumor at the first

order. Contrarily, textural features elucidate patterns and higher-order

spatial distributions of intensities. This article employed a variety of

methodologies, such as the gray level co-occurrence matrix (GLCM),

gray level run length matrix (GLRLM), and gray level size zone matrix

(GLSZM), and neighborhood gray-level difference matrix (NGTDM),

to extract texture features. A list of all the radiomics features covered in

this project is provided in Supplementary Data 1.

The procedures for extracting the radiomic features of the

intratumoral and peritumoral ROIs were performed separately.
FIGURE 2

Comprehensive diagram of the intratumoral and peritumoral ROIs. Red indicates the “intratumoral ROI”; green indicates the “peritumoral ROI”.
frontiersin.org

http://www.itksnap.org
https://doi.org/10.3389/fonc.2025.1442209
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mo et al. 10.3389/fonc.2025.1442209
Furthermore, the radiomic features of the combined ROIs were

obtained through the integration of features from both intratumoral

and peritumoral ROIs.

The algorithms employed to extract radiomic features were

based on the Image Biomarker Standardization Initiative

(IBSI) (23).
Radiomic feature selection

To evaluate the reliability of these radiomic features, a

Mann−Whitney U test was performed to compare the PNETs

and pancreatic cancer cohorts, followed by feature selection. Only

radiomic features with a significance level of P<0.05 were retained

for further analysis. Spearman’s rank correlation coefficient

was then utilized to assess the interrelationship between each

feature, ensuring the robustness of the analysis (Supplementary

Figures 1-3). Any feature with a correlation coefficient greater than

0.9 between any two features was retained with one of them,

randomly. Additionally, a greedy recursive deletion strategy was

employed to enhance feature representation by iteratively removing

the most redundant feature within the current set.

Subsequently, a 10-fold cross-validation technique was utilized

to identify features with nonzero coefficients through the

application of the LASSO regression model. Notably, the penalty

parameter (lambda.min) was determined by the minimum

criterion. The feature-selecting procedures were carried out

within the training cohort and eventually implemented in the test

cohort. Features with nonzero coefficients were preserved for the

regression model fitting process and amalgamated into a

radiomic signature.

The radiomic scores for each patient were determined by

applying a linear combination of the retained features and their

corresponding model coefficients. The LASSO regression analysis

was performed utilizing the Python scikit-learn package.
Construction of radiomic models

Multiple prevailing machine learning algorithms were applied to

construct categorization models for the optimal identification of

pancreatic cancer and PNETs. After LASSO feature filtering was

applied, the selected intratumoral ROI radiomic features were input

into commonly utilized machine learning models, including logistic

regression (LR), random forest (RF), XGBoost, support vector machine

(SVM), extra tree, and MLP models, for the development of

intratumoral radiomic models. To achieve optimal model performance

and mitigate the risk of overfitting, we conducted hyperparameter

tuning. The pertinent parameters and hyperparameter space for each

model are detailed in Supplementary Data 2.

The ultimate radiomic signature was determined through the

application of a 5-fold cross-validation method. The diagnostic

performance of various machine learning algorithms was evaluated

through the use of metrics such as the area under the receiver

operating characteristic curve (AUC), accuracy, specificity,
Frontiers in Oncology 05
sensitivity, positive predictive value (PPV), and negative

predictive value (NPV), leading to the identification of the most

optimal intratumoral radiomic model. In this study, we employed

2000 bootstrap samples to determine the 95% confidence intervals

(CI) for the AUC.

Subsequently, the selected machine learning algorithm, which

achieved reasonable performance, was applied to establish

peritumoral and combined radiomic models.
Radiomics model assessment and
radiomics signature definition

Based on the consistent machine learning algorithm, an

intratumoral radiomic model, peritumoral radiomic model, and

combined radiomic model were constructed. The ROC curves were

conducted to evaluate the diagnostic effectiveness of these three

radiomic models in both the training and test cohorts. Following

this, a Delong test was performed to compare their performance, in

terms of the AUC.

The concordance between the predictions of these diverse

radiomic models and the observed outcomes was evaluated

through the calculation of calibration curves, which juxtaposed

the predictions of the models with the actual observations. The

calibration efficiency of these three radiomic models was assessed

through the construction of calibration curves, while the Hosmer–

Lemeshow (H-L) analytical fit was applied to assess the calibration

capability of these radiomic models. Furthermore, decision curve

analysis (DCA) was employed to assess the clinical efficacy of the

predictive models. Finally, the best performing radiomics model

was defined as the radiomics signature.
Construction of clinical signature
and nomogram

The same radiomics signature was utilized to develop the clinical

signature using an identical machine learning algorithm.

Subsequently, a nomogram was constructed to intuitively and

efficiently assess the incremental predictive value of the integrated

radiomics and clinical signatures. The performance of the nomogram

was then evaluated using a calibration curve, ROC curve, and DCA.
Statistical analysis

A comparison of clinical parameters and radiomic features

among participants was conducted using appropriate statistical

tests such as independent sample t-test, Mann−Whitney U test, or

X2 test. Statistical significance was determined at a two-tailed p-

value < 0.05. Prediction performance was evaluated based on

metrics including AUC, accuracy, sensitivity, specificity, PPV, and

NPV. The Delong test was conducted to statistically compare the

AUC performance between the two models. The comprehensive

methodology for this research is illustrated in Figure 3.
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Results

Baseline population characteristics

A total of 257 patients (141 women, 116 men) were enrolled in

this retrospective research, containing 179 patients in the training

cohort and 78 patients in the test cohort. The results indicated no

significant variance in patient age, sex, pathological classification,

and location of the pancreatic mass between the training and test

cohorts, as detailed in Supplementary Table 1. Furthermore, the

comparison of clinical parameters between pancreatic cancer and

PNETs is detailed in Table 1. The results demonstrated significant

differences in age, maximum diameter, CA-199 levels, shape,

margin characteristics, echo uniformity, and the presence of cystic

degeneration between patients with pancreatic cancer and those

with PNETs within the training cohort. Conversely, no significant

differences were identified concerning gender, pancreatic mass

location, and the presence of cystic degeneration in the test cohort.
Radiomics feature extraction and screening

PyRadiomics, an internal feature analysis tool, extracted all

handcrafted features. A thorough analysis was conducted to identify

a total of 107 manually derived radiomic features across 7

categories, including 18 first-order features, 14 shape features, and
Frontiers in Oncology 06
the remaining texture features. Finally, the quantity and

classifications of intratumoral and peritumoral radiomic features

derived from EUS images demonstrated complete consistency. The

combined radiomic features were generated by overlaying the

intratumoral and peritumoral radiomic features. Detailed

definitions regarding these handcrafted features can be found in

these articles (24).

All the complete sets of intratumoral radiomic features

(Figure 4A), peritumoral radiomic features (Figure 4B), and

combined radiomic features (Figure 4C), along with their

corresponding p values, are presented in Figure 4. Following

feature selection using LASSO logistic regression, nine intratumoral

radiomic features with nonzero coefficients were identified. The

coefficients and mean standard errors (MSEs) obtained from a 10-

fold validation were illustrated in Figures 5A, B. Similarly, four

peritumoral radiomic features (Figures 5C, D), and nine combined

radiomic features (Figures 5E, F) with nonzero coefficients were

excluded. Of the nine retained combined radiomic features, four

intratumoral features were identified using the intratumoral LASSO

model, while two peritumoral features were obtained from the

peritumoral LASSO model. Importantly, three of these retained

features were novel: “peri3mm_original_glszm_SizeZoneNon

Uniformity,” “intra_original_firstorder_Minimum,” and “intra_

original_glrlm_RunEntropy.” This finding suggests that the

combined LASSO model may incorporate additional predictive

information. The coefficients of these retained intratumoral,
FIGURE 3

The workflow of this study.
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peritumoral, and combined radiomic features are displayed

separately in Figure 6.
Intratumoral radiomic models
and performance

Additionally, the ROC curves and AUCs of six intratumoral

radiomics models generated using mainstream machine learning

algorithms were presented in Figure 7 for both the training and

test cohorts. Moreover, additional details are displayed in Table 2.

The RF, ExtraTrees, and XGBoost models tended to overfit the data.

In contrast, the SVM model, with an AUC of 0.853 (95% CI 0.7920 -

0.9147) in the training cohort and an AUC of 0.755 (95% CI 0.6438 -
Frontiers in Oncology 07
0.8671) in the test cohort, seemed to demonstrate the most

appropriate performance and there was improved consistency

between the training and test cohorts.

Specifically, the SVM model demonstrated superior performance

in the training cohort compared to the LR andMLPmodels. In the test

cohort, the SVM model achieved an accuracy of 0.804, sensitivity of

0.754, specificity of 0.836, PPV of 0.743, and NPV of 0.844 (Table 2).

Furthermore, based on the peritumoral radiomics, the SVM

model also achieved an appropriate and consistent performance in

both the training (Figure 8A) and test (Figure 8B) cohorts.

Ultimately, to establish more stable and sustainable intratumoral,

peritumoral, and combined radiomic models, the SVM model was

deemed the most appropriate for further analysis and was chosen as

the foundational algorithm.
TABLE 1 Clinical and radiological characteristics in the training and test cohorts.

Variable Training cohort (N=179) Test cohort (N=78)

Pancreatic cancers PNETs P-value Pancreatic cancers PNETs P-value

Age 58.76 ± 9.48 48.13 ± 13.54 <0.001 59.27 ± 10.87 45.30 ± 12.44 <0.001

Maximum diameter 36.45 ± 12.73 21.78 ± 13.75 <0.001 36.23 ± 13.83 21.26 ± 12.89 <0.001

Log (CA-199) <0.001 <0.001

Gender 0.041 0.543

0 60 (54.55%) 49 (71.01%) 15 (36.59%) 17 (45.95%)

1 50 (45.45%) 20 (28.99%) 26 (63.41%) 20 (54.05%)

Shape <0.001 <0.001

0 85 (77.27%) 22 (31.88%) 32 (78.05%) 12 (32.43%)

1 25 (22.73%) 47 (68.12%) 9 (21.95%) 25 (67.57%)

Margin <0.001 0.013

0 49 (44.55%) 5 (7.25%) 17 (41.46%) 5 (13.51%)

1 61 (55.45%) 64 (92.75%) 24 (58.54%) 32 (86.49%)

Echo 0.271 0.011

0 4 (3.64%) 6 (8.70%) 1 (2.44%) 9 (24.32%)

1 106 (96.36%) 63 (91.30%) 40 (97.56%) 28 (75.68%)

Uniformity <0.001 0.014

0 87 (79.09%) 30 (43.48%) 29 (70.73%) 15 (40.54%)

1 23 (20.91%) 39 (56.52%) 12 (29.27%) 22 (59.46%)

Cystic areas <0.001 0.086

0 78 (70.91%) 64 (92.75%) 34 (82.93%) 36 (97.30%)

1 32 (29.09%) 5 (7.25%) 7 (17.07%) 1 (2.70%)

Location 0.546 0.812

0 51 (46.36%) 28 (40.58%) 21 (51.22%) 17 (45.95%)

1 59 (53.64%) 41 (59.42%) 20 (48.78%) 20 (54.05%)
Gender: “0” means female, “1” means male; Shape: “0”means irregular shape, “1”means regular shape; Margin: “0” means unclear margin of lesion, “1” means clear margin of lesion; Echo: “0”
means means not hypoechoic of lesion, “1”means hypoechoic of lesion; uniformity: “0”means nonuniformity of echo; “1”means uniformity of echo; Cystic areas: “0”means no cystic areas, “1”
means cystic areas; Location: “0” means head and uncinate process of the pancreas, “1” means body and tail of the pancreas.
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Construction and assessment of the
peritumoral and combined
radiomic models

The predictive performance of the peritumoral and combined

radiomic SVM models in both the training and test cohorts is

summarized in Table 2. The ROC curves for the intratumoral

radiomic model, peritumoral radiomic model, and combined

radiomic model are illustrated in Figure 9 for both the training
Frontiers in Oncology 08
(Figure 9A) and test cohorts (Figure 9B). Among these three

radiomic models, the combined radiomic model achieved the

optimal performance, with the highest AUC in both the training

(AUC=0.861) and test (AUC=0.822) cohorts. Furthermore, the

combined radiomic model achieved a superior accuracy of 0.810

in the training cohort and 0.778 in the test cohort (Table 2). To

objectively assess the effectiveness of these models, the Delong test

was conducted. In the training cohort, there was no statistically

significant difference in the AUC between these three models
FIGURE 4

Violin plot for differential analyses of intratumoral (A), peritumoral (B), and combined (C) radiomic features with their corresponding p values.
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(Figure 9C). Additionally, the AUC of the peritumoral radiomic

model was consistent with that of the intratumoral radiomic model

(peritumoral vs. intratumoral: AUC=0.785 vs. 0.755, p=0.335)

(Table 2, Figure 9D) in the test cohort, demonstrating that the

efficacy of the peritumoral model was not inferior to that of the

intratumoral model. In contrast, the AUC of the combined model

demonstrated statistically significant superiority over the other

models in the test cohort, with AUC values of 0.822 compared to

0.755 for intratumoral models (p=0.039) and 0.822 compared to

0.785 for peritumoral models (p=0.227) (Table 2, Figure 9D). This

suggests that the combined model might exhibit the highest

diagnostic efficacy. Furthermore, the calibration curves of the

combined model showed consistency between predicted and

observed PNETs in both the training and test cohorts. The results

of the H-L test indicated that the combined model had superior

prediction accuracy (Table 3). The calibration curves for the

training and test cohorts are presented in Figures 10A, B.

Finally, DCA was performed to evaluate the performance of

each model, with the results shown in Figures 10C, D.

The combined model showed a significantly higher net benefit

for intervening with patients based on its prediction probability

compared to hypothetical scenarios where no prediction model was

available, such as treat-all or treat-none strategies. Additionally, the

combined model demonstrated higher values in both the training

and test cohorts compared to the other models. Therefore, the

integration of this combined model appears to have the potential to

improve the clinical effectiveness of preoperatively predicting

PNETs before surgery and EUS-FNA/B procedures. The
Frontiers in Oncology 09
prediction scores of the intratumoral, peritumoral, and combined

models are shown in Figure 11. Finally, this combined model was

defined as radiomics signature.
Construction of clinical signature
and nomogram

The outcomes of the univariate (Figure 12A) and multivariable

(Figure 12B) logistic regression analyses demonstrated that shape,

echo characteristics, and CA-199 levels independently predicted the

presence of PNETs. Subsequently, these parameters were utilized to

develop a clinical signature using the SVM algorithm. The clinical

signature attained a ROC value of 0.855 in the training cohort and

0.914 in the test cohort (Figure 13). A nomogram model (Figure 14A)

was utilized to synthesize radiomic and clinical signatures, thereby

enhancing predictive accuracy and consistency. This approach yielded

an optimal performance, as evidenced by a ROC value of 0.897 in both

the training (Figure 14B) and test (Figure 14C) cohorts. The

nomogram demonstrated significantly superior performance

compared to the clinical signature within the training cohort

(Delong test, P=0.015), and exhibited consistency with the

radiomics signature in both the training (Delong test, P=0.161) and

test cohorts (Delong test, P=0.066). The DCA indicated that the

nomogram demonstrated a substantial net clinical benefit in both the

training cohort (Figure 15A) and the test cohort (Figure 15B). The

calibration curves of the nomogram and clinical signature are detailed

in Supplementary Figure 4.
FIGURE 5

Radiomic feature selection with the LASSO regression model. (A) The LASSO model’s tuning parameter (l) was selected using 10-fold cross-
validation via the minimum criterion. The vertical lines illustrate the optimal value of the LASSO tuning parameter (l) for the intratumoral radiomic
features. (B) A LASSO coefficient profile plot with different log(l) values is displayed. The vertical dashed lines represent 9 intratumoral radiomic
features with nonzero coefficients selected with the optimal l value. (C, D) The same workflow was used for peritumoral radiomic feature analysis,
as shown in Figure 4A, (B, E, F) The same workflow was used for the combined radiomics features, as shown in Figures 4A, B.
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Discussion

In this research, we applied EUS images and assessed

intratumoral and peritumoral regions to distinguish PNETs from

pancreatic cancer. The combined radiomic model derived from

integrating the features of the intratumoral and peritumoral regions

achieved optimal prediction performance. These findings indicate

that peritumoral regions may possess specific characteristics and

contribute to the diagnosis of PNETs. Previous studies have revealed

the effectiveness of EUS imaging-based radiomic, machine learning,

and deep learning approaches in predicting gastrointestinal stromal

tumors and pancreatic ductal adenocarcinoma (14, 25, 26). Similarly,

Huang J reported that the combined nomogram model, based on

deep learning contrast-enhanced ultrasound and clinical features,
Frontiers in Oncology 10
performed great preoperatively differentiating the aggressiveness of

PNETs (17). Our prior research demonstrated that integrating an

EUS radiomics signature with a clinical signature enhanced the

predictive performance of models distinguishing PNETs from

pancreatic cancer (27). However, there is a lack of studies

evaluating the utility of EUS imaging-based intratumoral and/or

peritumoral radiomics for predicting PNETs in this context.

The ability of EUS to conduct comprehensive ultrasound scans of

the entire pancreas from the intragastric and intraduodenal positions,

with proximity and minimal interference, has been widely

acknowledged (28). This capability enables the generation of high-

resolution EUS images, facilitates the visualization of intricate

anatomical features, and promotes EUS as the superior approach

for detecting small pancreatic lesions compared with traditional CT
FIGURE 6

Bar graph of radiomic features that yielded nonzero values in the intratumoral (A), peritumoral (B), and combined regions (C). (“intra” means
“intratumoral”; “peri3 mm” means “peritumoral region with dilation of 3 mm”).
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TABLE 2 Diagnostic performance of different models for predicting PNETs in training and test cohorts.

Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Intratumoral model (LR)
Training 0.838 (0.7752 - 0.9015) 0.777 0.754 0.791 0.693 0.837

Test 0.757 (0.6432 - 0.8716) 0.756 0.703 0.805 0.765 0.750

Intratumoral model (RF)
Training 0.999 (0.9973 - 1.0000) 0.978 0.971 0.982 0.971 0.982

Test 0.737 (0.6278 - 0.8462) 0.654 0.622 0.683 0.639 0.667

Intratumoral model (ExtraTrees)
Training 1.000 (1.0000 - 1.0000) 0.615 0.000 1.000 0.000 0.615

Test 0.640 (0.5185 - 0.7617) 0.577 0.270 0.854 0.625 0.565

Intratumoral model (XGBoost)
Training 0.999 (0.9964 - 1.0000) 0.983 0.971 0.991 0.985 0.982

Test 0.757 (0.6469 - 0.8679) 0.756 0.784 0.732 0.725 0.789

(Continued)
F
rontiers in Oncology
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FIGURE 7

The ROC curves of different intratumoral radiomic models based on six machine learning algorithms for predicting PNETs. (A) The ROC curves of
different intratumoral radiomic models in the training cohort. (B) The ROC curves of different intratumoral radiomic models in the test cohort.
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TABLE 2 Continued

Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Intratumoral model (MLP)
Training 0.833 (0.7673 - 0.8984) 0.793 0.725 0.836 0.735 0.829

Test 0.769 (0.6605 - 0.8767) 0.744 0.757 0.732 0.718 0.769

Intratumoral model (SVM*)
Training 0.853 (0.7920 - 0.9147) 0.804 0.754 0.836 0.743 0.844

Test 0.755 (0.6438 - 0.8671) 0.756 0.784 0.732 0.725 0.789

Peritumoral model (SVM*)
Training 0.841 (0.7805 - 0.9024) 0.737 0.899 0.636 0.608 0.909

Test 0.785 (0.6780 - 0.8922) 0.756 0.730 0.780 0.750 0.762

Combined model (SVM*) Training 0.861 (0.7945 - 0.9162) 0.810 0.754 0.845 0.754 0.845

Test 0.822 (0.7245 - 0.9066) 0.778 0.784 0.756 0.744 0.795
F
rontiers in Oncology
 12
*Represents models were constructed based on SVM.
LR, logistic regression; SVM, support vector machine; RF, random forest; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; CI, credibility interval.
FIGURE 8

The ROC curves of different peritumoral radiomic models based on six machine learning algorithms for predicting PNETs. (A) The ROC curves of
different peritumoral radiomic models in the training cohort. (B) The ROC curves of different peritumoral radiomic models in the test cohort.
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and MRI (10, 29). Additionally, the ability to obtain tissue samples

through EUS-FNA/B enhances the diagnostic precision of EUS,

establishing it as a dependable method for diagnosing PNETs (30, 31).

Preoperative EUS imaging for functional PNETs can accurately

determine the relationship and proximity of the lesion to the MPD,

thereby influencing the therapeutic decisions in choosing the proper

surgical treatment, whether radical or local resection (32). Notably, a

multicenter study revealed the superior diagnostic capabilities of non-

contrast MRI radiomic models and combined models for predicting

Grade 1 and 2/3 nonfunctional PNETs, surpassing the performance of

clinical and radiological feature models (18). Similarly, Gu D
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demonstrated that radiomic signatures derived from arterial and

portal venous phase CT images were more likely to accurately

predict the histologic grade of PNETs (33). A previous study

suggested volumetric CT texture characteristics as a quantitative tool

to differentiate atypical PNETs from pancreatic ductal

adenocarcinoma (34).

Multiple mainstream machine learning algorithms were

employed concurrently to develop an optimal two-class

prediction EUS imaging-based radiomic model for distinguishing

PNETs from pancreatic cancer, addressing the shortcomings of

individual algorithms. The SVM algorithm exhibited superior

accuracy and consistency in this context, leading to its selection

for further model refinement. The SVM algorithm exhibited

superior accuracy and consistency in this context, leading to its

selection for further model refinement.

The results demonstrated that the intratumoral radiomic model

was effective in differentiating PNETs from pancreatic cancer, with

an AUC of 0.853 (95% CI 0.7920-0.9147) in the training cohort and

an AUC of 0.755 (95% CI 0.6438-0.8671) in the test cohort. The

subjective assessment of EUS image characteristics, such as tumor
TABLE 3 The results of Hosmer-Lemeshow test.

Model P-value

Training cohort Test cohort

Intratumoral model 0.578 0.118

Peritumoral model 0.089 0.226

Combined model 0.175 0.759
FIGURE 9

The ROC curves of the intratumoral radiomic model based on SVM (abbreviated “intra_SVM”), the peritumoral radiomic model based on SVM
(abbreviated “peri_SVM”), and the combined radiomic model (abbreviated “intra- and peri_SVM”) in the (A) training cohort and (B) test cohort. The
results of the Delong test in the (C) training and (D) test cohorts. (*indicates P < 0.05).
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size, shape, border, and vascular invasion, is heavily dependent on

the operator’s expertise, leading to insufficient consistency (35, 36).

Consequently, our findings, derived from high-throughput EUS

radiomics features and machine learning, may provide potential

novel and objective insight into improving the ability of EUS to

predict PNETs.

The existing radiomic literature about PNETs focuses on the

intratumoral region, not the peritumoral region (16, 18, 37).

Correspondingly, many previous studies have demonstrated the

good performance of the peritumoral radiomic model for various

tumors in terms of pathological outcomes, lymph node metastasis,

and recurrence risk stratification. Xie N reported that the evaluation

accuracy of the peritumoral multiparametric MRI radiomic feature

model for predicting pancreatic cancer pathological outcomes was

marginally greater than that of intratumoral features in the training

cohort (22). The integration of intratumoral and peritumoral

features could enhance the efficiency of predicting tumor

recurrence in intrahepatic cholangiocarcinoma patients (38). Shi
Frontiers in Oncology 14
JX proposed that the integration of intratumoral and peritumoral

radiomic features extracted fromMRI images demonstrated notable

efficacy in the prediction of lymph node metastasis in early-stage

cervical cancer (39). In terms of biological and clinical

characteristics, PNETs differ significantly from pancreatic cancer,

such as tissue origin, symptoms, risk of lymph node metastasis,

prognosis, treatment strategies, and molecular biological

characteristics (40–42).

Our prior research demonstrated that integrating EUS

intratumoral features with radiomic features of the peritumoral

region, extending 3 mm outward enhanced the model’s efficacy in

distinguishing between insulinomas and nonfunctional PNETs (43).

However, it remains unclear whether the peritumoral region of

PNETs contains predictive and diagnostic information. In our

study, we constructed and validated a peritumoral radiomic model

for predicting PNETs. In comparison to the peritumoral feature

models with expansions of 1mm and 5mm, the model incorporating

a 3mm expansion exhibited an AUC of 0.841 in the training cohort
FIGURE 10

Calibration curves for the intratumoral radiomic model based on SVM (abbreviated “intra_SVM”), peritumoral radiomic model based on SVM
(abbreviated “peri_SVM”), and combined radiomic model (abbreviated “intra and peri_SVM”) in the (A) training cohort and (B) test cohort. The DCA
curves for the intratumoral, peritumoral, and combined radiomics models based on SVM in the training (C, D) test cohorts.
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and an AUC of 0.785 in the test cohort. Importantly, the comparison

of AUC values between the intratumoral and peritumoral models did

not yield statistically significant differences (Delong p > 0.05).

From our perspective, both the peritumoral and intratumoral

regions possess similar potential for distinguishing PNETs from

pancreatic cancer and may exhibit synergistic effects in this task.

Therefore, to fully utilize the data extracted from different regions, a

combined model derived from both peritumoral and intratumoral

radiomic features was established and assessed. In an intriguing

development, while the efficacy of the combined radiomics model
Frontiers in Oncology 15
was comparable to that of the intratumoral and peritumoral models

within the training cohort, it demonstrated significantly superior

performance in the test cohort, achieving an AUC of 0.822 (95% CI:

0.7245 - 0.9066) compared to the intratumoral model. Moreover, this

combined radiomics model appeared to exhibit the highest levels of

accuracy, specificity, NPV, and PPV in both the training and test

cohorts, as detailed in Table 3. These findings underscore the

substantial capability of the combined model to predict tumor

efficacy, attributed to the enhancement effect of peritumoral

radiomic features on the intratumoral model. Furthermore, the
FIGURE 11

SVM-based prediction scores of the intratumoral (A, B), peritumoral (C, D), and combined (E, F) radiomics models in the training and test cohorts.
(“label=0” means “pancreatic cancer”; “label=1” means “PNETs”).
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DeLong test and H-L test provided validation of the superior accuracy

and validity of the combined model. These results align with findings

from various prior studies examining different types of tumors (44–

46). Sun Q’s research indicated that the integration of intratumoral

and peritumoral areas led to notably improved predictive capabilities

for both radiomic and deep learning models in the context of

forecasting axillary lymph node metastasis in individuals with breast

cancer (47). This evidence suggests that the peritumoral region,

particularly the tumor-adjacent parenchyma surrounding tumor

lesions, may offer predictive information for PNETs. Finally, we

constructed a nomogram, integrating radiomics and clinical

signatures, which also achieved an excellent performance.

Despite the notable efficacy of EUS imaging demonstrated by

the combined intratumoral and peritumoral models, it is important

to note that this study has limitations. Notably, it was a
Frontiers in Oncology 16
retrospective analysis conducted at a single institution, potentially

introducing selection bias. Additionally, in image segmentation, all

definitions of boundaries are derived from manual segmentation,

making bias inevitable (48).

Furthermore, it is important to note that the study exclusively

employed conventional EUS imaging, thereby neglecting the

potential advantages offered by contrast-enhanced EUS and

elastography EUS techniques (49–51). The biological mechanisms

underlying the features of the peritumoral region remain

inadequately understood. Additionally, incorporating a

comparative analysis of the healthy parenchyma situated at a

greater distance from the tumor in the two patient cohorts as a

control test could provide valuable insights.

Although the machine learning model, integrating intratumoral

and peritumoral radiomic features from EUS imaging,
FIGURE 12

(A) Forest map of univariate logistic regression of clinical and EUS characteristics; (B) Forest map of multivariate logistic regression of clinical and
EUS characteristics. * means P<0.05; ** means P<0.01.
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FIGURE 14

(A) The Nomogram for predicting PNETs based on radiomics signature (Rad_Sig) and clinical signature (Clinic_Sig). (B) The ROC curve of the
nomogram in the training cohort. (C) The ROC curve of the nomogram in the test cohort.
FIGURE 13

The ROC curves of the clinical signature in both the training and test cohorts.
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demonstrated significant efficacy, this study is constrained by

several limitations. Retrospective analyses conducted at a single

center, with a small sample size, are susceptible to selection bias,

and the manual segmentation process may introduce additional

bias in image segmentation. The study spanned a long period

(October 2012 to October 2023), during which improvements in

imaging technology might have influenced the quality and

consistency of EUS images. Furthermore, this study exclusively

concentrated on the intratumoral and peritumoral radiomic

features of pancreatic lesions, omitting clinical characteristics

such as tumor size, location, tumor markers, and blood glucose

levels. Therefore, conducting further research on EUS-based

radiomics for PNETs that involve multiple centers, large sample

sizes, prospective designs, and multimodal approaches is crucial.

Furthermore, the utilization of deep learning techniques and
Frontiers in Oncology 18
exploration of underlying biological changes in peritumor

imaging features could be utilized to reduce bias and improve the

interpretability of the models.
Conclusion

In conclusion, a proficient EUS-based radiomic model

integrating intratumoral and peritumoral radiomic features was

suggested and confirmed to effectively differentiate PNETs from

pancreatic cancer. Among the various machine learning

algorithms, the combined model applying SVM achieved the

optimal diagnostic performance and might provide potential

novel insight into improving the clinical application of EUS in

predicting PNETs.
FIGURE 15

The DCA curves for the nomogram in the training (A, B) test cohorts.
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