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Objectives: Intensity variation in multi-parametric magnetic resonance imaging

(MP-MRI) is a confounding factor in MRI analyses. Previous studies have

employed several normalization methods, but there is a lack of consensus on

which method results in the most comparable images across vendors and

acquisitions. This study used MP-MRI collected from patients with confirmed

prostate, brain, or breast cancer to examine common intensity normalization

methods to identify which best harmonizes intensity values across cofounds.

Materials and methods: Multiple normalization methods were deployed for

intensity comparison between three unique sites, MR vendors, and magnetic

field strength. Additionally, we calculated radiomic features before and after

intensity normalization to determine how downstream analyses may be affected.

Specifically, in the prostate cancer cohort, we tested these methods on T2-

weighted imaging (T2WI) and additionally looked at a subset of patients who

were scanned with and without the use of an endorectal coil (ERC). In a cohort of

glioblastoma (GBM) patients, we tested these methods in T1 pre- and post-

contrast enhancement (T1, T1C), fluid attenuated inversion recovery (FLAIR), and

apparent diffusion coefficient (ADC) maps. Finally, in the breast cancer cohort, we

tested methods on T1-weighted nonfat-suppressed images. All methods were

compared using a two one-sided test (TOST) to test for equivalence of mean and

standard deviation of intensity distributions.

Results: While each organ had unique results, across every tested comparison,

using the Z-score of intensity within amask of the organ consistently provided an

equivalent distribution (all p < 0.001).

Conclusions: Our results suggest that intensity normalization using the Z-score

of intensity within prostate, breast, and brain MR images produces the most
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comparable intensities between sites, MR vendors, magnetic field strength, and

prostate endorectal coil usage. Likewise, Z-score normalization provided the

highest percentage of radiomic features that were statistically equal across the

three organs.
KEYWORDS

MRI, prostate cancer, brain cancer, breast cancer, normalization, radiomics
1 Introduction

Multi-parametric magnetic resonance imaging (MP-MRI) is

used to assess cancer and response to therapy. Specific to prostate

cancer, a typical MP-MRI protocol contains T2-weighted (T2W),

diffusion-weighted (DWI), and dynamic contrast enhanced (DCE)

imaging. The Prostate and Breast Imaging Reporting and Data

Systems, PI-RADS and BI-RADS, respectively, assign a score to MR

images and have standardized acquisition, interpretation, and

reporting of prostate and breast MRI, as well as aid in the

accurate detection of cancerous lesions (1). Moreover, MP-MRI

including T1-weighted imaging pre- and post-gadolinium contrast

agent (T1 and T1C, respectively) is used to maximize the efficiency

of surgical resection and radiation treatment, as well as monitoring

progression, for glioblastoma.

While MP-MRI acquisitions are well established techniques for

imaging several organs, voxel intensities in “weighted” scans are

nonquantitative and can vary within and across patients, tissues, and

MRI vendors. Clinically, the most used MRI acquisitions include pre-

and post-contrast T1-weighted, T2-weighted, and diffusion weighted

imaging (DWI). These scans are assessed qualitatively to determine

cancer presence, although apparent diffusion coefficient maps (ADC)

can be created from DWI for quantitative assessment. Acquisitions

including MR fingerprinting (MRF), advanced diffusion, and a

variety of quantitative MRI (QMRI) have been an area of interest

for both response assessments in clinical trials and multi-institutional

studies. These acquisitions however are not used clinically due to long

scan times and variability in acquisition parameters and post-

processing techniques (2–4).

To make inter- and intra-patient quantitative comparisons,

such as with radiomic analyses, images need to be intensity

normalized as a pre-processing step. Furthermore, normalization

is necessary for the development of MRI-based machine learning

techniques for diagnosis of cancer. There is no current gold

standard method for signal intensity normalization, however, a

previously published paper by Shinohara et al. (5) discussed seven

statistical principles of imaging normalization including: (1)

common interpretation across locations within the same tissue

type, (2) replicability, (3) preservation of rank intensities, (4)

similar distributions within and across patients, (5) uninfluenced

by biological abnormality or population heterogeneity, (6) minimal

sensitivity to noise and artifacts, and (7) do not result in a loss of
02
information associated with pathology. Prior studies have

normalized by average voxel values within fat and muscle tissue

regions (6–8), used N4 bias field correction and intensity Z-score

(9–11), and histogram matching and mapping techniques to

normalize images. Tissue-based normalization has shown to

improve inter-patient intensity differences better than

unnormalized data and histogram-based normalization methods

(12). While Z-score mapping is common among MRI analyses for

several disease states (13–16), it can be confounded by factors such

as tumor volume and aggressiveness (i.e., increased hypointensity).

Additionally, histogram matching and mapping techniques have

been shown to be beneficial in normalizing brain MRI (17);

however, histogram matching was performed after fat, bone, and

background removal, indicating that global normalization of other

abdominal organs may be less successful.

Diffusion weighted imaging measures the diffusion of water

molecules to generate contrast in MR images. DWI has been

shown to detect cancerous tumors and evaluate tumor

aggressiveness (4, 18, 19), but much like T1 and T2WI, DWI is

also assessed qualitatively by radiologists. Calculation of ADC from

multiple b-values allows a quantitative assessment of water diffusion.

Previous studies have shown that ADC has an inverse relationship

with higher risk prostate, brain, and breast cancers (20–23). While

ADC is considered quantitative, factors such as perfusion can affect

lower b-values. Previous studies have assessed normalizing ADC

maps prior to analysis. One such study found that a signal-to-noise

(SNR)-weighted regularization of ADC produced homogenous maps

at varying levels of SNR compared to non-regularized maps which

could only estimate ADC accurately at high SNR levels (24).

Conversely, a study comparing normalizing ADC by the ratio of

non-enhancing tumor to normal white matter in high-grade glioma

patients showed that normalization did not improve ADC

correlations with overall survival (25).

Though the need for intensity normalization is well understood,

the lack of normalization standards makes it difficult to compare

MRI-based analyses. This study analyzed a variety of imaging

acquisitions across multiple organs to determine if a universal

normalization method could be applied. Specifically, we assessed

T2WI collected from prostate cancer patients; T1, T1C, fluid-

attenuated inversion recovery (FLAIR), and ADC images

collected from GBM patients; and T1-weighted nonfat-suppressed

images (T1nFS) from breast cancer patients across three unique
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sites, multiple clinical MR vendors, and 1.5T and 3T magnetic field

strength to examine commonly used post-acquisition intensity

normalization methods to identify which method produces

images most comparable across vendors for each tissue.

Additionally, we examined T2WI collected from prostate cancer

patients with an endorectal coil in place and following ERC removal

to determine which normalization method best compares these

images. Furthermore, we calculated 218 radiomic features across all

images to determine how radiomic features are affected by each

normalization method. Overall, we tested the hypothesis that

normalizing images using signal intensities within a defined

region would produce intensity distributions that are most

comparable across sites, MRI vendors, and magnetic field

strength than unnormalized data.

2 Materials and methods

Data from three unique sites per organ (prostate, glioblastoma,

and breast) were assessed for this study. Details from each site are

further detailed in the subsequent sections; however, a simplified

table of these data sites and organs is provided in Table 1.
2.1 Prostate cancer cohort

2.1.1 Site 1 – local
Data from 385 prospectively recruited patients treated locally at

our institution (Table 1; Figure 1A, top) with pathologically
Frontiers in Oncology 03
confirmed prostate cancer undergoing radical prostatectomy

between 2014 and 2023 were analyzed for this institutional review

board (IRB) approved study. Written informed consent was

obtained from all patients. Inclusion criteria for this cohort

included clinical imaging including T2-weighted imaging prior

to surgery.

Patients underwent multi-parametric magnetic resonance

imaging (MP-MRI) prior to prostatectomy on 1.5 T (n1.5T = 3) or

3T (n3T = 382) GE (nGE = 256), Siemens (nS = 125) or Philips (nP =

4) MRI scanner (General Electric, Waukesha, WI, USA; Siemens

Healthineers, Erlangen, Germany; Philips, Amsterdam,

Netherlands) (Figure 1B). A subset of patients (n = 88) had

additional imaging after removal of the endorectal coil on either

the GE or Siemens scanner (nGE = 69, nS = 19) (Figure 1C). Each

protocol included T2-weighted imaging with acquisition

parameters as follows: repetition time (TR) = 3370 milliseconds,

FOV = 120 mm, voxel dimensions = 0.23 × 0.23 × 3 mm,

acquisition matrix = 512, and slices = 26. All image contrasts

used in this study were acquired axially.
2.1.2 Site 2 – PROSTATE-DIAGNOSIS

A publicly available dataset including prostate T2WI scanned

on a 1.5 T Philips Achieva using a combined surface and endorectal

coil was used for our second site (26, 27). From a total of 92 patients,

images from 86 patients were ultimately used in this analysis due to

image quality (Table 1; Figure 1A, middle).
TABLE 1 Breakdown of prostate, glioblastoma, and breast cancer data by data site, MR manufacturer, and magnetic field strength.

Demographics MR Vendor Magnetic Field Strength

Patients Sex GE Siemens Philips 1.5 T 3T

P
ro
st
at
e

Total 641 M: 641 256 295 90 89 552

Site 1 385 M: 385 256 125 4 3 382

Site 2 86 M: 86 0 0 0 86 0

Site 3 170 M: 170 0 170 86 0 170

G
li
ob

la
st
om

a

Total 956
M: 615

408 549 2 53 903
F: 401

Site 1 52
M:35

34 16 2 39 13
F: 17

Site 2 530
M: 320

0 530 – 14 516
F: 210

Site 3 374
M: 222

374 0 – 0 374
F: 152

B
re
as
t

Total 236 F: 236 190 46 0 185 51

Site 1 68 F: 68 68 0 – 68 0

Site 2 100 F: 100 54 46 – 49 51

Site 3 68 F: 68 68 0 – 68 0
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2.1.3 Site 3 – PROSTATEx
The final dataset used in this analysis was a collection of

retrospective prostate MR studies including T2WI acquired on

two different 3T Siemens MR scanners (MAGNETOM Trio and

Skyra) (27, 28). T2W imaging acquisition parameters include a

turbo spin echo sequence with a resolution of ~0.5 mm in plane and

a slice thickness of 3.6 mm. All images were acquired without an

endorectal coil. After exclusion of images with poor quality, a total

of 170 patients’ images were used (Table 1; Figure 1A, bottom).
Frontiers in Oncology 04
2.2 Glioblastoma cohort

2.2.1 Site 1 – local
Written, informed consent was obtained from 52 patients for this

cohort, each diagnosed with a glioblastoma in concordance with the

2021 WHO classification standards for brain tumors. Inclusion

criteria for this cohort included autopsy confirmed GBM and axial

clinical imaging including pre- and post-contrast T1-weighted images

(T1, T1C), FLAIR, and DWI 1.5 T (n1.5T = 39, n3T = 13, nGE = 34, nS
FIGURE 1

Prostate cancer imaging. Prostate T2WI across (A) three data sites, (B) three MR vendors (i.e., GE, Siemens, and Philips) and (C) with and without an
endorectal coil in the subset of Site 1’s patients.
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= 16, nP = 2). Due to the use of clinical imaging, acquisition

parameters were not standardized across patients. Axial T1, T1C,

FLAIR, and ADC images were selected as the primary acquisitions for

this study. ADC maps were calculated using the patient’s clinical

DWI. T1, T1C, and ADC images were rigidly aligned to patient’s

FLAIR image using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/

software/spm12/) (Table 1; Figures 2A–D top rows). Examples of

images scanned on the GE and Siemens scanners in Figure 2 are

from this dataset.
Frontiers in Oncology 05
2.2.2 Site 2 – UPENN-GBM
Data from this online repository includes MP-MRI for de novo

GBM patients from the University of Pennsylvania Health System

(27, 29). All axial images in this dataset, including T1, T1C, FLAIR,

and ADC, were skull-stripped co-registered by an automated

computational method (11). A total of 530 patients from this

dataset were used after excluding images without all four pre-

surgery acquisitions or poor quality (Table 1; Figures 2A–D

middle rows).
FIGURE 2

Glioblastoma imaging. T1 (A), T1C (B), FLAIR (C), and ADC (D) images for four patients across the three data sites. Additionally, examples of images
scanned on the GE and Siemens scanners are shown (a, b, c, d, with respect to acquisition).
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2.2.3 Site 3 – UCSF-PDGM
Site 3 data come from the publicly available University of

California San Francisco Preoperative Diffuse Glioma MRI (UCSF-

PDGM) dataset (27, 30). This dataset includes 501 subjects with

histopathologically-proven diffuse gliomas who were imaged with a

preoperative MRI using a 3T GE Discovery 750. Each image contrast

was registered to the FLAIR image (1 mm isotropic resolution) using

automated non-linear registration (Advanced Normalization Tools).

Resampled co-registered data were then skull stripped using a publicly

available deep-learning algorithm (31, 32) Table 1; Figures 2A–D

bottom rows). Though a total of 501 adult patients with pathologically

confirmed grade II-IV diffuse gliomas were collected for this database,

only the 374 patients with confirmed GBM were used.
2.3 Breast cancer cohort

All datasets used for our breast imaging analyses were available

online (https://cancerimagingarchive.net) (27) and analysis was

performed on non-fat suppressed T1 images (T1nFS) (Figure 3).
Frontiers in Oncology 06
2.3.1 Site 1 – ACRIN 6698
The ACRIN trial 6698, organized by the American College of

Radiology Imaging Network, was a multi-institutional research

project (33, 34). Its purpose was to determine the efficacy of

quantitative DWI in measuring the response of breast cancer to

neoadjuvant chemotherapy (NAC). A total 406 women with

invasive breast cancer were prospectively enrolled to ACRIN 6698

at ten institutions between August 2012 to January 2015. However,

after applying our exclusion criteria described previously in 2.3.

Breast Cancer Cohort, only 68 patients’ images were assessed. All

patients underwent breast MRI at 4 timepoints over the course of

NAC, though only the pre-treatment images are analyzed in this

study. MR imaging was performed on a 1.5T GE scanner using a

dedicated breast radiofrequency coil. Detailed MRI protocol

pa rame te r spec ifica t ions can be found on ht tp s : / /

cancerimagingarchive.net/ (35).

2.3.2 Site 2 – Duke-Breast-Cancer-MRI
This breast cancer cohort was downloaded from the publicly

available MRI dataset (36). The Duke-Breast-Cancer-MRI dataset
FIGURE 3

Breast cancer imaging. Example Axial T1 non-fat suppressed images from the three online datasets used in this analysis (A). Vendor-level
demonstrations of images (B) scanned on the GE (top) and Siemens scanner (bottom) are from Site 2.
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contains 922 female patients recruited between 2000 and 2014,

however, only 351 patients were included in our analyses due to

availability of T1nFS images and image quality. Because of

annotation constraints described below, a random selection of

100 patients were chosen from the eligible patients for this

analysis. As with our local GBM cohort, clinical imaging was

provided in the dataset, thus acquisition parameters were not

standardized across patients (n1.5T = 49, n3T = 51, nGE = 54, nS=

46) (Figures 3A, middle; Figure 3B).

2.3.3 Site 3 – ISPY2
I-SPY 2 (Investigation of Serial Studies to Predict Your

Therapeutic Response with Imaging And moLecular analysis 2) is

an ongoing, multi-center study. Its objective is to swiftly assess the

effectiveness of novel treatments for breast cancer within the context

of NAC (37). Adult women diagnosed with locally advanced breast

cancer (tumor size ≥2.5 cm) without distant metastasis recruited

between 2010 and 2016 were analyzed for this study. Breast MRI data

was acquired prospectively at over 22 clinical centers using a

standardized image acquisition protocol. Patients underwent 4 MRI

exams before and during NAC, though only the first scan was

assessed in the current study. This is a comprehensive, highly

curated imaging data set with histopathologic outcome that can be

used to develop, test, and compare imaging metrics and prediction

models for breast cancer response to treatment. A total of 719

patients were included in this dataset, however, only 68 were

assessed after applying the exclusion criteria. MR imaging was

performed on a 1.5T GE scanner. All required imaging was

performed axially with full bilateral coverage (38).
2.4 MRI normalization

Multiple normalization methods were used for each of the three

tissue types. Tissue and regions of interest (ROIs) were defined for

each tissue type using AFNI (Analysis of Functional NeuroImages,

http://afni.nimh.nih.gov/) (39). Prostate masks were manually

drawn created on each slice of the patient’s T2-weighted image

(T2WI). Brain imaging masks were segmented using SPM12,

defined as the combination of the white and gray matter masks.

Breast masks were manually drawn on MR images using ITK-Snap.

Due to the size of each patient’s imaging, only the center 15 slices

were annotated. These tissue masks were used to create the

following normalized images for each patient: (1) unnormalized,

the (2) standard deviation and (3) z-score of intensity within an

individual patient’s tissue mask, (4) min-max, and (5) scaled. All

proposed normalization methods were performed at the individual

patient level to account for individual variability, preserve biological

differences, avoid group-level artifacts and ensure comparability

across cohorts whilst maintaining statistical independence. Min-

max normalization was defined as the voxelwise subtraction of the

minimum intensity value divided by the maximum intensity minus

the minimum (Equation 1).

normalized   image = voxelwise   intensity−minimum   intensity
maximum−minimum   intensities   (1)
Frontiers in Oncology 07
Similarly, the “scaled” normalization was defined as the

voxelwise intensity divided by the maximum intensity, scaling all

images between 0-1.

Two additional ROI-based normalization methods were

additionally tested. For prostate images, 10-voxel radius circular

ROIs were defined on one slice of the patient’s T2WI within the

bladder and levator ani muscle. Corresponding masks were created

on the T2WI for patients who had an additional scan done post-

endorectal coil removal. For brain images, cerebral spinal fluid

(CSF) masks were created by thresholding the ADC for the high

diffusion areas, as this is an indicator of fluid. Additionally, a tumor

mask was created manually (for Site 1) or using a brain tumor

segmentation (BraTs) model, as included in the online data

repositories (Sites 2 and 3). These tumor ROIs were defined as

the entire tumor region encompassing FLAIR hyperintensity,

contrast enhancement, and the necrotic core. Finally, for the

breast images, a mask of the sternum was drawn on the axial

images, verifying location using the sagittal and coronal images, and

the thorax, avoiding any additional tissue. The mean intensity

within these ROIs was used for voxelwise normalization.

Demonstrations of these masks can be found in Figure 4.
2.5 Radiomic feature calculation

Radiomic features were calculated across each image using

Matlab’s radiomics function which calculates a total of 197

features. These include 136 texture features (i.e., 50 gray level co-

occurrence matrix (GLCM), 16 gray level dependence zone matrix

(GLDZM), 32 gray level run length matrix (GLRLM), 16 gray level

size zone matrix (GLSZM), 17 neighboring gray level dependence

matrix (NGLDM), and 5 neighboring gray tone difference matrix

(NGTDM)), and 61 intensity features (i.e., 18 Intensity Based

Statistics, 23 Intensity Histogram, 18 Intensity Volume

Histogram, and 2 Local Intensity). All available radiomic features

were extracted for analysis to determine if intensity, and/or texture

features are affected by normalization techniques.
2.6 Statistical analysis

Following normalization, four moments of distribution across

MR image intensity (i.e., mean, variance, skewness, and kurtosis), as

well as radiomic features, were calculated across patients. Intensity

distributions were compared across sites, MR vendors, magnetic

field strength (i.e., 1.5T v 3T), and prostate ERC usage using a two

one-sided (TOST) test, a test of equivalence that is based on the

classical t-test (40). While the TOST test requires both one-sided

tests to be statistically significant (i.e., < 0.05), all results described

below use the highest p-value for each test.

3 Results

All intensity normalization methods found differing results

across the three tissue types, as detailed in the following
frontiersin.org
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subsections; however, no kurtosis distribution across any

normalization method or comparison were equivalent. Tables 2–7

and Figures 5–9 below present mean intensity values only. The

other three moments of distribution results are shown in

Supplementary Tables S1-6, though they are described below.
3.1 Prostate cancer cohort

From our TOST results, we found that across sites and MRI

vendors, using the Z-score of masked intensity, Min-Max, and

Scaled normalization methods resulted in similar mean and
Frontiers in Oncology 08
variance intensity distributions (all p < 0.001). Standard deviation

normalization likewise found equivalent mean distributions

between Site 1-3 and between the GE and Philips vendors, as well

as using the bladder ROI between Site 2-3 and the Siemens and

Philips vendors (all p < 0.001). Variance distributions were likewise

statistically similar using the standard deviation and bladder ROIs

across all sites and vendors (both p < 0.001); muscle ROI

normalization variance distributions were similar between Site 2-3

and Siemens and Philips vendors (both p < 0.001). Mean and

variance distribution comparisons between ERC usage using the

standard deviation, Z-Score, Min-Max, Scaled, and bladder ROIs

normalization methods resulted in equivalent distributions (all p <
FIGURE 4

Normalization Masks. Demonstrations of the masks used for normalization of the prostate (top), brain (middle), and breast (bottom).
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0.001). These results were also observed in magnetic field

comparisons, except for the mean intensity after bladder ROI

normalization (p = 0.35). All skewness distributions were found

to be statistically similar except across any normalization method

across Site 2-3 or Siemens and Philips vendors (all others p < 0.001).

Mean intensity distribution results for prostate imaging can be

found in Table 2 and Figure 5.
3.2 Glioblastoma cohort

Two patients were excluded from vendor-level analyses due to

being scanned on a Philips scanner and would thus not produce a

representative result; these patients were included in the site- and

magnetic field-level analyses. In T1 images (Table 3, Figures 6, 7,

8A), we found that at the site-level and across magnetic fields, Z-

Score, Min-Max, CSF mask, and tumor mask normalizations

produced equivalent mean intensity distributions (all p < 0.001),

as well as scaled normalization between Site 1-2 and 2-3 (p = 0.02

and < 0.001, respectively. Skewness across all images between Site 2-

3 were found to be significantly similar (al p < 0.001). Across MRI

vendors, only Z-score or tumor mask normalized images had

similar mean intensity distributions (both p < 0.001). Variance

across the normalized images (i.e., all except unnormalized images)

for all site, vendor, and magnetic field comparisons were statistically

similar (all p < 0.001).
TABLE 2 Mean MRI intensity for the seven prostate normalization
methods across each intensity comparison.

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Unnormalized

Site 1 v Site 2 1170.15 1

Site 1 v Site 3 1076.48 1

Site 2 v Site 3 95.78 1

Standard Deviation

Site 1 v Site 2 0.51 1

Site 1 v Site 3 0.48 <0.001

Site 2 v Site 3 0.38 1

Z-Score

Site 1 v Site 2 0 <0.001

Site 1 v Site 3 0 <0.001

Site 2 v Site 3 0 <0.001

Min-Max

Site 1 v Site 2 0.06 <0.001

Site 1 v Site 3 0.05 <0.001

Site 2 v Site 3 0.04 <0.001

Scaled

Site 1 v Site 2 0.05 <0.001

Site 1 v Site 3 0.05 <0.001

Site 2 v Site 3 0.04 <0.001

Bladder ROI

Site 1 v Site 2 0.46 0.88

Site 1 v Site 3 0.49 0.32

Site 2 v Site 3 0.38 <0.001

Muscle ROI

Site 1 v Site 2 4.34 1

Site 1 v Site 3 4.01 1

Site 2 v Site 3 0.35 0.58

Unnormalized

GE v Siemens 1105.9 1

GE v Philips 893.33 1

Siemens v Philips 239.93 1

Standard Deviation

GE v Siemens 0.53 1

GE v Philips 0.48 <0.001

Siemens v Philips 0.44 1

Z-Score

GE v Siemens 0 <0.001

GE v Philips 0 <0.001

Siemens v Philips 0 <0.001

Min-Max

GE v Siemens 0.05 <0.001

GE v Philips 0.05 <0.001

Siemens v Philips 0.05 <0.001

Scaled

GE v Siemens 0.05 <0.001

GE v Philips 0.05 <0.001

Siemens v Philips 0.05 <0.001

Bladder ROI
GE v Siemens 0.49 1

GE v Philips 0.47 0.98

(Continued)
TABLE 2 Continued

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Siemens v Philips 0.35 <0.001

Muscle ROI

GE v Siemens 4.84 1

GE v Philips 3.86 1

Siemens v Philips 0.53 0.95

Unnormalized 3 T v 1.5 T 1144.14 1

Standard Deviation 3 T v 1.5 T 0.48 1

Z-Score 3 T v 1.5 T 0 <0.001

Min-Max 3 T v 1.5 T 0.05 <0.001

Scaled 3 T v 1.5 T 0.05 <0.001

Bladder ROI 3 T v 1.5 T 0.48 0.35

Muscle ROI 3 T v 1.5 T 3.84 1

Unnormalized ERC v nERC 1106.34 0.66

Standard Deviation ERC v nERC 0.49 <0.001

Z-Score ERC v nERC 0 <0.001

Min-Max ERC v nERC 0.04 <0.001

Scaled ERC v nERC 0.04 <0.001

Bladder ROI ERC v nERC 0.52 <0.001

Muscle ROI ERC v nERC 6.24 0.85
fro
ERC, endorectal coil; nERC, post-endorectal coil removal.
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TABLE 3 Mean intensity of T1 brain imaging across each of the seven
normalization methods.

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Unnormalized

Site 1 v Site 2 140.65 1

Site 1 v Site 3 1102.74 1

Site 2 v Site 3 750.66 1

Standard Deviation

Site 1 v Site 2 0.43 0.18

Site 1 v Site 3 1.12 1

Site 2 v Site 3 0.81 1

Z-Score

Site 1 v Site 2 0 <0.001

Site 1 v Site 3 0 <0.001

Site 2 v Site 3 0 <0.001

Min-Max

Site 1 v Site 2 0.08 <0.001

Site 1 v Site 3 0.09 <0.001

Site 2 v Site 3 0.08 <0.001

Scaled

Site 1 v Site 2 0.08 0.02

Site 1 v Site 3 0.08 0.95

Site 2 v Site 3 0.09 <0.001

CSF Mask

Site 1 v Site 2 0.1 <0.001

Site 1 v Site 3 0.11 0

Site 2 v Site 3 0.08 <0.001

Tumor Mask

Site 1 v Site 2 0.11 <0.001

Site 1 v Site 3 0.08 <0.001

Site 2 v Site 3 0.09 <0.001

Unnormalized GE v Siemens 1517.93 1

Standard Deviation GE v Siemens 1.16 0.67

Z-Score GE v Siemens 0 <0.001

Min-Max GE v Siemens 0.1 0.28

Scaled GE v Siemens 0.12 0.88

CSF Mask GE v Siemens 0.1 0.24

Tumor Mask GE v Siemens 0.08 <0.001

Unnormalized 3 T v 1.5 T 2166.08 1

Standard Deviation 3 T v 1.5 T 0.87 1

Z-Score 3 T v 1.5 T 0 <0.001

Min-Max 3 T v 1.5 T 0.1 <0.001

Scaled 3 T v 1.5 T 0.1 <0.001

CSF Mask 3 T v 1.5 T 0.1 <0.001

Tumor Mask 3 T v 1.5 T 0.11 <0.001
F
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TABLE 4 Mean intensity of T1C brain imaging across each of the seven
normalization methods.

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Unnormalized

Site 1 v Site 2 286.9 1

Site 1 v Site 3 587.52 1

Site 2 v Site 3 335.39 1

Standard Deviation

Site 1 v Site 2 0.49 <0.001

Site 1 v Site 3 0.56 <0.001

Site 2 v Site 3 0.48 <0.001

Z-Score

Site 1 v Site 2 0 <0.001

Site 1 v Site 3 0 <0.001

Site 2 v Site 3 0 <0.001

Min-Max

Site 1 v Site 2 0.04 <0.001

Site 1 v Site 3 0.05 <0.001

Site 2 v Site 3 0.04 <0.001

Scaled

Site 1 v Site 2 0.03 <0.001

Site 1 v Site 3 0.05 <0.001

Site 2 v Site 3 0.04 <0.001

CSF Mask

Site 1 v Site 2 0.08 <0.001

Site 1 v Site 3 0.09 <0.001

Site 2 v Site 3 0.07 <0.001

Tumor Mask

Site 1 v Site 2 0.14 <0.001

Site 1 v Site 3 0.09 <0.001

Site 2 v Site 3 0.12 <0.001

Unnormalized GE v Siemens 807.01 1

Standard Deviation GE v Siemens 0.53 0.82

Z-Score GE v Siemens 0 <0.001

Min-Max GE v Siemens 0.05 <0.001

Scaled GE v Siemens 0.05 0.02

CSF Mask GE v Siemens 0.08 0.03

Tumor Mask GE v Siemens 0.09 0

Unnormalized 3 T v 1.5 T 1477.97 1

Standard Deviation 3 T v 1.5 T 0.5 <0.001

Z-Score 3 T v 1.5 T 0 <0.001

Min-Max 3 T v 1.5 T 0.05 <0.001

Scaled 3 T v 1.5 T 0.05 <0.001

CSF Mask 3 T v 1.5 T 0.08 <0.001

Tumor Mask 3 T v 1.5 T 0.12 <0.001
fro
CSF, cerebral spinal fluid.
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TABLE 5 Mean intensity of FLAIR brain imaging across each of the seven
normalization methods.

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Unnormalized

Site 1 v Site 2 577.93 1

Site 1 v Site 3 480.21 1

Site 2 v Site 3 435.81 1

Standard Deviation

Site 1 v Site 2 0.48 0.12

Site 1 v Site 3 0.34 0.1

Site 2 v Site 3 0.42 1

Z-Score

Site 1 v Site 2 0 <0.001

Site 1 v Site 3 0 <0.001

Site 2 v Site 3 0 <0.001

Min-Max

Site 1 v Site 2 0.05 <0.001

Site 1 v Site 3 0.05 <0.001

Site 2 v Site 3 0.05 <0.001

Scaled

Site 1 v Site 2 0.05 <0.001

Site 1 v Site 3 0.05 <0.001

Site 2 v Site 3 0.04 <0.001

CSF Mask

Site 1 v Site 2 0.16 1

Site 1 v Site 3 0.18 1

Site 2 v Site 3 0.09 <0.001

Tumor Mask

Site 1 v Site 2 0.09 <0.001

Site 1 v Site 3 0.1 <0.001

Site 2 v Site 3 0.07 <0.001

Unnormalized GE v Siemens 700.74 0.68

Standard Deviation GE v Siemens 0.33 0.7

Z-Score GE v Siemens 0 <0.001

Min-Max GE v Siemens 0.05 0.48

Scaled GE v Siemens 0.07 0.53

CSF Mask GE v Siemens 0.16 1

Tumor Mask GE v Siemens 0.1 0

Unnormalized 3 T v 1.5 T 592.66 1

Standard Deviation 3 T v 1.5 T 0.47 <0.001

Z-Score 3 T v 1.5 T 0 <0.001

Min-Max 3 T v 1.5 T 0.08 <0.001

Scaled 3 T v 1.5 T 0.09 <0.001

CSF Mask 3 T v 1.5 T 0.17 1

Tumor Mask 3 T v 1.5 T 0.12 <0.001
F
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TABLE 6 Mean intensity of ADC brain imaging across each of the seven
normalization methods.

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Unnormalized

Site 1 v Site 2 232.75 1

Site 1 v Site 3 312.75 1

Site 2 v Site 3 161.89 1

Standard Deviation

Site 1 v Site 2 0.23 0.98

Site 1 v Site 3 0.25 0.28

Site 2 v Site 3 0.24 <0.001

Z-Score

Site 1 v Site 2 0 <0.001

Site 1 v Site 3 0 <0.001

Site 2 v Site 3 0 <0.001

Min-Max

Site 1 v Site 2 0.04 <0.001

Site 1 v Site 3 0.06 <0.001

Site 2 v Site 3 0.05 <0.001

Scaled

Site 1 v Site 2 0.04 <0.001

Site 1 v Site 3 0.06 <0.001

Site 2 v Site 3 0.05 <0.001

CSF Mask

Site 1 v Site 2 0.09 1

Site 1 v Site 3 0.12 1

Site 2 v Site 3 0.1 <0.001

Tumor Mask

Site 1 v Site 2 0.17 <0.001

Site 1 v Site 3 0.21 <0.001

Site 2 v Site 3 0.17 <0.001

Unnormalized GE v Siemens 314.83 1

Standard Deviation GE v Siemens 0.27 0.45

Z-Score GE v Siemens 0 <0.001

Min-Max GE v Siemens 0.07 <0.001

Scaled GE v Siemens 0.06 <0.001

CSF Mask GE v Siemens 0.21 0.93

Tumor Mask GE v Siemens 0.21 0.15

Unnormalized 3 T v 1.5 T 226.71 0.73

Standard Deviation 3 T v 1.5 T 0.25 <0.001

Z-Score 3 T v 1.5 T 0 <0.001

Min-Max 3 T v 1.5 T 0.07 <0.001

Scaled 3 T v 1.5 T 0.05 <0.001

CSF Mask 3 T v 1.5 T 0.16 1

Tumor Mask 3 T v 1.5 T 0.18 <0.001
fro
CSF, cerebral spinal fluid.
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In T1C images (Table 4, Figures 6, 7, 8B), we found that at the

site-level and across magnetic fields, mean and variance

distributions were statistically similar across all normalized

images except for unnormalized (all p < 0.001). Across MRI

vendors, all normalization methods besides unnormalized and

standard deviation produced equivalent mean intensity

distributions (Z-Score, Min-Max, tumor mask p < 0.001; Scaled,

CSF mask p < 0.05); however, all but the unnormalized images had

equivalent variance distributions (all p < 0.001). No skewness and

kurtosis distribution across any image or comparisons

was significant.

Across FLAIR images (Table 5, Figures 6, 7, 8C), mean intensity

distributions across sites were statistically similar using the Z-score,

Min-Max, Scaled, and tumor mask normalizations (all p < 0.001), as

well as using the CSF mask between Site 2-3 (p < 0.001). Across MR

vendors, only mean intensities using the Z-score and tumor mask

normalization were comparable (both p < 0.001). Across magnetic

field strengths, all methods besides unnormalized and CSF mask

normalization produced equivalent mean distributions (all others p

< 0.001). Variance distributions were statistically similar across all

sites, vendor, and magnetic field comparison except within

unnormalized images (all p < 0.001). As with T1C images, no

skewness or kurtosis similarities were found.

Finally, in ADC images (Table 6, Figures 6, 7, 8D), mean

intensity across all sites, vendors, and magnetic field strengths

were statistically similar using the Z-Score and Min-Max

normalizations (all p < 0.001). Standard deviation normalization

produced comparable mean intensities across Site 2-3 and magnetic

field strength (both p < 0.001). CSF mask normalization

additionally had similar mean distributions between Sites 2-3

(both p < 0.001). All mean site- and vendor-level comparisons

were statistically similar after Scaled intensity normalization (all p <

0.001), and site- and magnetic field-level comparisons after tumor

mask normalization (all p < 0.001). Variance distributions were

equivalent for all site- and magnetic field comparisons using all

normalization except unnormalized images (all p < 0.001); vendor-

level variance distributions were additionally comparable for

standard deviation, Z-Score, Min-Max, and Scaled normalizations

(all p < 0.001). All skewness distribution comparisons between Site

1-2 and magnetic field strength were statistically similar (Site p <

0.001; Magnetic field p < 0.05).
3.3 Breast cancer cohort

In breast imaging, all site, vendor, and magnetic field strength

comparisons were significantly equivalent between mean intensity

distributions following Z-score, Min-Max, and Scaled

normalization, and variance distributions using all normalization

methods besides unnormalized images (all p < 0.001) (Table 7,

Figure 9). No skewness or kurtosis similarities were observed.
TABLE 7 Mean MRI intensity of each of the seven normalization
methods applied to breast imaging.

Normalization
Method

Comparison
Pooled

St. Deviation
p-value

Unnormalized

Site 1 v Site 2 500.89 1

Site 1 v Site 3 290.65 0.67

Site 2 v Site 3 547.86 1

Standard Deviation

Site 1 v Site 2 0.74 1

Site 1 v Site 3 0.58 0.77

Site 2 v Site 3 0.75 1

Z-Score

Site 1 v Site 2 0 <0.001

Site 1 v Site 3 0 <0.001

Site 2 v Site 3 0 <0.001

Min-Max

Site 1 v Site 2 0.08 <0.001

Site 1 v Site 3 0.09 <0.001

Site 2 v Site 3 0.09 <0.001

Scaled

Site 1 v Site 2 0.07 <0.001

Site 1 v Site 3 0.08 <0.001

Site 2 v Site 3 0.09 <0.001

Sternum Mask

Site 1 v Site 2 2.8 1

Site 1 v Site 3 4.04 0.86

Site 2 v Site 3 2.62 1

Thorax Mask

Site 1 v Site 2 17.06 1

Site 1 v Site 3 22.3 1

Site 2 v Site 3 13.03 1

Unnormalized GE v Siemens 480.05 1

Standard Deviation GE v Siemens 0.87 0.53

Z-Score GE v Siemens 0 <0.001

Min-Max GE v Siemens 0.1 <0.001

Scaled GE v Siemens 0.09 <0.001

Sternum Mask GE v Siemens 3.42 0.99

Thorax Mask GE v Siemens 22.04 1

Unnormalized 3 T v 1.5 T 468.82 1

Standard Deviation 3 T v 1.5 T 0.87 0.74

Z-Score 3 T v 1.5 T 0 <0.001

Min-Max 3 T v 1.5 T 0.1 <0.001

Scaled 3 T v 1.5 T 0.09 <0.001

Sternum Mask 3 T v 1.5 T 3.41 0.99

Thorax Mask 3 T v 1.5 T 21.79 1
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3.4 Radiomic feature analysis

Similarly to the general intensity analysis, each organ and

acquisition had unique results; however, there were general trends

across all analyses (Figure 10). Standard deviation and Z-score

normalization had the highest number and percentage of features

that were statistically equal across all acquisitions. Local Intensity

had the lowest number of statistically equal features with only 13%

being statistically equivalent across acquisitions. GLCM had the

highest percent of statistically equal features across all comparisons

at 62% statistically comparable. TOST results for each organ can be

found in Supplementary Data Sheets 1-6. As may be visualized in

Figure 6, the Site 3 ADC images were not initially scaled

consistently with values ranging from millions to 10^-6.

Radiomic features were calculated on images scaled to match

units. ADC also had the fewest stable radiomic features across

every comparison. Prostate radiomic features had the most stability

with an average of about 43% intensity, 52% texture, and 50% of all

radiomic features. A full breakdown of feature stability across

normalized images and by feature class can be found in

Supplementary Table S7.
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4 Conclusions

In this study, MP-MRI intensity distributions were assessed to

determine the best MR image intensity normalization method for use

with quantitative analyses in prostate, glioblastoma, and breast cancer

imaging. Two one-sided (TOST) test was used to compare MRI

intensities across sites, vendors, and magnetic field strengths used in

the three organs, as well using an endorectal coil in prostate imaging.

Endorectal coil usage has begun transitioning out of the clinical

standard (41–43), thus datasets containing both images with and

without an ERC may be impacted by signal intensity differences. Our

results suggest that the best normalization for each image acquisition

varies; however, in each tested organ and acquisition, the Z-score,

Min-Max, and Scaled normalization methods produced comparable

images across site, vendors, magnetic field strength, and ERC usage.

This can be observed visually using the distributions plots and

corresponding maps. Our radiomic feature analyses showed the

highest stability of features following standard deviation and Z-

scored normalization. These results may indicate that a Z-scored

normalization could be applied universally across tissue types with

low effect on image intensity and subsequent radiomic analyses.
FIGURE 5

Prostate normalization results. Mean intensity distributions calculated across all normalization comparisons. In each section, mean intensity
distribution violin plots are on the top and examples of one patient per comparison are on the bottom. The scales used for the intensity distribution
plots as well as the color scale in the visual representations are unique to each tested method. This highlights the differences not only across
vendors and ERC usage, but also how different results from each normalization method can be. Pairs of images (i.e., sites, vendors, ERC usage, and
magnetic field strength) are displayed on the same scale to compare intensity distributions within each normalization method. (A) Site-level
normalizations between Site 1 (red, top), Site 2 (green, middle), and Site 3 (blue, bottom). (B) Vendor-level normalizations between GE (red, top),
Siemens (green, middle), and Philips (blue, bottom). (C) Magnetic field strength between 1.5 T (red, top) and 3 T (blue, bottom). (D) ERC usage
between ERC (red, top) and nERC (blue, bottom).
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The standard deviation or Z-score of intensity within each

organ was expected to have been skewed due to tumor

heterogeneity, including tumor volume and aggressiveness, across

patients unrelated to MR vendor differences; however, our results

found that normalization using these methods, particularly Z-score,

produced the most consistent intensities across vendors and

endorectal coil usage. Conversely, ROI-based normalization

should have addressed the issue of tumor heterogeneity by using

intensities external to the organ; however, we found that ROI-based

normalization methods performed poorly in comparison to whole-

tissue-based normalization. We also expected the thorax masked

breast normalization to perform best among the breast

normalization methods, however, it is worthwhile to note that

signal heterogeneity exists across breast MR images and few

options to test masks external to the breast itself are available.

Interestingly, skewness and kurtosis measurements had the least

comparisons that were significantly similar following

normalization. We had expected those features to capture dataset

difference more so than mean and variance, therefore, further

research may be warranted to investigate these features with

respect to normalization methods.
Frontiers in Oncology 14
Intensity normalization is imperative to reduceMRI heterogeneity

for quantitative analyses across patients and institutions. While many

MRI intensity normalization methods have been established, there is

no gold standard method to use, further challenging inter-institutional

comparisons. One previous study compared the impact of four

normalization methods across T2WI before and after radical

external beam radiotherapy (RT) on downstream radiomic feature

computations (44). Their methods included (1) unnormalized images,

(2) a centered Z-score using mean and standard deviation of image

intensity (i.e., Z-score + 3 times the standard deviation), (3) the

centered Z-score using the mean and standard deviation of intensity

within the bladder, and (4) a histogram-matching approach as

proposed by (45). They found that both normalization using the

centered Z-score of the image intensity and histogram matching

provided the most reproducible radiomic features, whereas ROI-

based normalization performed poorly.

In this study, we tested commonly used normalization methods

on T2WI across sites, vendors, magnetic field strength, and T2WI

across patients scanned with and without an endorectal coil in prostate

cancer imaging; T1 non-fat saturated imaging by vendor for breast

cancer MRI; and T1, T1C, FLAIR, and ADC in glioblastoma patient
FIGURE 6

Brain site-level normalization results. Mean intensity distributions calculated across all site-level normalization comparisons in (A) T1, (B) T1C, (C)
FLAIR, and (D) ADC. In each section, mean intensity distribution plots are on the top and examples of one patient per comparison are on the bottom
(Site 1: red, top; Site 2: green, middle; Site 3: blue, bottom). The unnormalized brains especially highlight the differences in intensities between sites,
with Site 2 having higher intensities than Site 1.
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FIGURE 7

Brain vendor normalization results. Mean intensity distributions calculated across vendor normalization comparisons in (A) T1, (B) T1C, (C) FLAIR, and
(D) ADC with GE (red, top), and Siemens (blue, middle).
FIGURE 8

Brain magnetic field normalization results. Mean intensity distributions calculated across magnetic field strength normalization comparisons in (A) T1,
(B) T1C, (C) FLAIR, and (D) ADC with 1.5 T (red, top), and 3 T (blue, middle).
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imaging to determine the method that produces intensity distributions

most similar. Of the methods tested across each tissue type, we found

that using Z-scored normalization produces similar intensity

distributions across all comparisons, vendors, magnetic field

strength, and images with and without an ERC. We additionally

calculated 218 radiomic features across images from all normalization

methods and found that Z-scored normalization had the highest

number of stable features across each comparison. These findings
Frontiers in Oncology 16
suggest normalization methodology plays a critical role in making

inter- and intra-patient MP-MRI-based comparisons.
4.1 Limitations

One limitation of this study is the relatively small patient cohort

compared to previous MP-MRI analyses for both the prostate and
FIGURE 9

Breast normalization results. Mean intensity distributions calculated across all normalization comparisons. In each section, mean intensity distribution
plots are on the top and examples of one patient per comparison are on the bottom. (A) Site-level normalizations between Site 1 (red, top), Site 2
(green, middle), and Site 3 (blue, bottom). (B) Vendor-level normalizations between GE (red, top), Siemens (blue, bottom). (C) Magnetic field strength
between 1.5 T (red, top) and 3 T (blue, bottom)
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glioblastoma cohorts. Additionally, only two MR vendors were

compared across images for glioblastoma and breast, and

significantly fewer prostate patients imaged on the Philips

scanner. This limited representation could lead to less reliable

intensity distributions compared to a larger, more diverse cohort.

Furthermore, using clinical imaging acquisitions introduced

variability due to non-standardized acquisition parameters which

may have differing results when controlling for factors such as field

strength. Similarly, image quality was not assessed in this study and

should therefore be a topic of future research. Imaging phantoms or

repeated scans across multiple vendors may provide more precise

intensity distribution estimates, as tissue variability between

patients remains a confounding factor. A diverse dataset with

repeated patients scans under controlled conditions would allow

for accurate similarity measurements within groups using methods

such as agreement tests (e.g., intraclass correlation coefficients

(ICC) or Cohen’s kappa), correlation tests (e.g., Pearson or

Spearman’s correlation coefficient), or distributional similarity

tests (e.g., Kolmogorov-Smirnov or Chi-Square).

Lastly, only a selection of normalization methods was tested in

this study. It is important to note that several additional

normalization methods exist, as previously discussed, such as

histogram matching. Histogram matching is a popular technique

used in MRI normalization; however, it was untested in this study as

it violates several of Shinohara’s principles and was determined in

their study to be “inappropriate for any study of images from

multiple subjects.” (5) Though most of our normalization methods

comply to Shinohara’s principles, we must acknowledge that our

tumor-based normalization method does inherently use the

patient’s abnormal pathology as an ROI. Our goal was to use a
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feature of the MRI that exists across all brain MRIs, as was

completed for prostate and breast cancer, however, brain Sites 2

and 3 were previously skull-stripped, removing the skull, ears, and

eyes which could have been used as a ROI. Additionally, tumor-

based normalization would only be possible on cancer-detecting

MRI and would thus be rendered useless for brain MRIs with other

pathologies. Future studies should compare additional evaluation

metrics and techniques to make precise estimates on the most

comprehensive image normalization.
4.2 Conclusion

We demonstrate in a cohort of 641 prostate cancer patients, 68

of which had scans with and without the use an endorectal coil, 956

glioblastoma patients, and 236 female breast cancer patients, that a

Z-scored intensity normalization provides distributions that are

most comparable across sites, MR vendors, magnetic field strength,

prostate ERC usage, and radiomic feature stability. Using a

normalization method that best distributes intensity across tissues

could help improve quantitative assessments of cancer MRI. Future

studies should investigate larger populations as well as additional

MR vendors to determine how normalization methods affect

downstream analyses of multi-parametric MR images.
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FIGURE 10

Radiomic feature analysis results across the (A) prostate, (B) breast, and (C) four brain imaging acquisitions. Features are shown as a ratio of number
of statistically equivalent results to the number of possible tests per that category.
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