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This review summarizes the applications and research progress of organoid

models in colorectal cancer research. First, the high incidence andmortality rates

of colorectal cancer are introduced, emphasizing the importance of organoids as

a research model. Second, this review provides a detailed introduction to the

concept, biological properties, and applications of organoids, including their

strengths in mimicking the structural and functional aspects of organs. This

article further analyzes the applications of adult stem cell-derived and pluripotent

stem cell-derived organoids in colorectal cancer research and discusses

advancements in organoids for basic research, drug research and

development, personalized treatment evaluation and prediction, and

regenerative medicine. Finally, this review summarizes the prospects for

applying organoid technology in colorectal cancer research, emphasizing its

significant value in improving patient survival rates. In conclusion, this review

systematically explains the applications of organoids in colorectal cancer

research, highlighting their tremendous potential and promising prospects in

basic research, drug research and development, personalized treatment

evaluation and prediction, and regenerative medicine.
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Introduction

Colorectal cancer (CRC) (1) is one of the most severe diseases and is a secondary cause

of cancer-related death worldwide (2). Fifty-six percent of patients with CRC die from this

disease (3), and for those with advanced metastatic colorectal cancer, the survival rate is

only 4% to 12% (4). Compared with healthy colorectal cells, colorectal cancer cells undergo

significant and frequent somatic mutations, and the genetic diversity of the cancer leads to

prominent biological heterogeneity (5). Although the current preclinical study model,

which includes cell lines, animal models, and clinical samples, has been used to contribute
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to the understanding of CRC, it still has certain limitations (6). To

address these limitations, the organoid model provides a more

advanced scientific tool (7).

The organoid model is an in vitro cultured three-dimensional

tissue structure that mimics the microarchitecture of organs in vivo.

Models can be derived from primary tissue samples, embryonic

stem cells, somatic stem cells, or pluripotent stem cells (8, 9).

Organoids contain many organ-specific cell types and exhibit

spatial organization arrangements similar to those of their in vivo

counterparts. This structural property endows organoids with a

significant advantage in mimicking organ function. Organoids are

considered advanced in vitro cancer models that can efficiently

recapitulate the tumor microenvironment and maintain the

heterogeneity of cell populations (10, 11).

In 2009, Sato, T, and colleagues first confirmed that single Lgr5+

intestinal stem cells (ASCs) are capable of self-organizing and

differentiating to form crypt–villus structures that encompass all

intestinal cell types (12). This discovery effectively replaced

traditional cell lines and animal models; although this study has led

to a breakthrough in stem cell research, the understanding of stem cells

is still limited, and more research is needed to gain a deeper

understanding of their differentiation mechanisms and regulatory

networks (13, 14). As effective models for colorectal cancer research,

organoids exhibit complex three-dimensional structures, cell

heterogeneity, self-renewal, and self-organization (15). The

transplanted organ plays a protective role by regulating the self-

renewal of intestinal stem cells and modulating the immune

microenvironment in recipient mice. For example, Fang-Ling

Zhang’s research team reported that intestinal organ transplantation,

as a therapeutic strategy, attenuates intestinal I/R injury in mice by

promoting the self-renewal of intestinal stem cells and modulating the

immune microenvironment. L-Malic acid (MA)-mediated polarization

of M2 macrophages is dependent on SOCS2, a finding that provides a

new understanding for the treatment of intestinal I/R injury (16).

To date, organoid models featuring diverse pathological

characteristics, such as genetic diseases (17, 18), host− interactions

(18), cancer (19, 20), intestinal hyperplastic polyps (21, 22) and

gastrointestinal metaplasia (23), have been successfully developed,

which further highlights the effectiveness of organoids in reflecting

the biological characteristics of the colorectum and aids in deepening

our understanding of the mechanisms underlying colorectal disease

development. This also validates the methods used to develop these

models, which are fundamentally capable of demonstrating high

fidelity and genetic consistency (24).
Types of organoids

The biological properties of organoids
derived from adult stem cells

Adult stem cells (ASCs) are a class of cells that possess the

capacity for self-renewal and multidirectional differentiation, with

the primary function of facilitating tissue repair and regeneration

within the body (45). These cells are capable of differentiating into a

variety of cell types. These compounds have demonstrated
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significant therapeutic effects in clinical treatment. It has become

the gold standard in the field of stem cell research and therapy

because of its minimal ethical controversy, broad acceptance, and

successful application in treating patients.

Organoids derived from ASCs can regenerate in vitro, and they

are primarily responsible for maintaining and repairing tissue

functions (46, 47), which are closely associated with the

development of colorectal cancer and have mutations and

aberrant differentiation that may lead to tumor formation.

According to current scientific research, colorectal organoids are

capable of replicating the physiological state or degenerative

conditions of the original tissue (48). FGFBP1 is overexpressed in

colon, pancreas, breast, and skin cancers, and its expression

accelerates skin wound healing in mice with conditional

overexpression. Therefore, Fgfbp1 functions as a soluble

autocrine/paracrine factor that mediates cross-talk between the

epithelial stem/progenitor compartment and the niche, thereby

reinforcing Fgfbp1+ cell identity and self-renewal (49). For

example, Claudia Capdevila’s research team has recently achieved

significant progress in the use of intestinal epithelial organoids.

These findings indicate that FGFBP1-labeled pluripotent stem cells

are capable of generating Lgr5+ cells, which can maintain the

regenerative capacity of the intestinal epithelium when Lgr5+ cells

are depleted (5). This research has challenged the traditional

understanding of intestinal stem cells and revealed the important

role of Fgfbp1+ cells in intestinal epithelial regeneration.

In a previous study, Johanna F Dekkers and colleagues

employed biopsied intestinal organoids to investigate a disease

resulting from a mutation in CFTR (50). However, organoid

models at that time could not fully replicate the intricacies of

cancer development, including tissue structure, cellular diversity

and in vivo homeostasis. Consequently, the study of tumorigenesis

in vitro is challenging, and the use of alternative models would incur

significant costs. With the advent of organoids, many studies have

been conducted to address this gap. Most recently, L. F. Lorenzo-

Martıń’s research team developed a topologically and biologically

complex mini-colon organoid. It can be guided to cancer by blue

light irradiation-activated spatiotemporally controlled tumorigenic

transformation and can track neoplastic colon tumors in real time

for weeks at single-cell resolution without destroying the organoid.

The induced mini-colonic organoids demonstrate rich intratumoral

and intertumoral diversity, as well as the physiological features

characteristic of key pathologies of colorectal tumors in vivo (51).

This study effectively bridges the gap between tumor formation in

vitro and provides a novel approach to cancer initiation, colorectal

cancer lesions, and mechanisms of development in living organisms

in vitro (52).

The initial materials for isolating adult and embryonic stem

cells were patient-derived tumor tissues and mouse models. The

final stage of the process results in the formation of organoids,

which represent the primary end product of this research.

Organoids are prominent in several application areas, including

but not limited to, basic biological research, drug toxicity

assessment, the construction of disease models, the creation of

organoid biobanks, and the development of organoid microarray

technology, which are also expected to have positive impacts on
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human health and the advancement of science. Organoid research is

being used to mimic human disease states, which will provide an in-

depth understanding of disease mechanisms.
The functional properties of organoids
derived from pluripotent stem cells

It is widely acknowledged that pluripotent stem cells (Figure 1) are

capable of differentiating into cell types derived from the three

embryonic germ layers (53, 54). These cells possess significant

developmental potential and are acquired through both embryonic

stem cells (ESCs) and induced pluripotent stem cells obtained through

reprogramming (55) (Figure 1). The reprogramming of somatic cells to

pluripotent stem cells can be achieved through two main strategies: the

transduction of specific combinations of transcription factors [e.g.,

SOX2 (56)] and the application of small molecule compounds to

induce pluripotency. The potential applications and research value of

pluripotent stem cell technology are extensive, spanning the fields of

pathophysiology modeling, drug research and development, and

regenerative medicine (57).

Researchers have successfully differentiated human colonic

organoids from pluripotent stem cells, which closely resemble the

human colon in both structure and function. This provides a powerful

in vitro model for the study of colorectal diseases (58). For example,

Xiaobo Zheng’s research team discovered that the overexpression of

BMX and HCK markedly enhanced the proliferation of colorectal

epithelial cells. Further studies demonstrated that the upregulation of

BMX and HCK activated the JAK-STAT signaling pathway, resulting

in the formation of multilayered polypoid structures that mimic the

pathologic polyps commonly found in colorectal cancers (59). These

findings provide a theoretical foundation for the early prevention and

development of new therapies for CRC epithelial cell transformation.
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In the field of human colorectal organoid research, pluripotent stem

cells can be differentiated into cell types with specific functions through

the guidance of specific factors (60). For example, the results of Pilar

Bustamante-Madrid and colleagues suggested that the BMP and Notch

signaling pathways play pivotal roles in directing the differentiation of

human colonic stem cells toward enterocyte and goblet cells.

Furthermore, the modulation of these processes by calcitriol has also

been demonstrated to contribute to the maintenance of stemness traits

(61). Organoids contribute to understanding the role of factors and

signals in the human colonic epithelium, which is relevant to the study

of intestinal pathologies, including colon cancer and inflammatory

bowel disease (ulcerative colitis and Crohn’s disease). Organoids can

mimic not only the process of human intestinal development but also

key cell types and structural features present during intestinal

development. For example, Na Qu and colleagues constructed

human colonic organoids (HCOs) and human intestinal organoids

(HIOs) via human pluripotent stem cells. The removal of BMP

signaling or the addition of the inhibitor NOGGIN facilitated the

formation of organs resembling the developing small intestine and

colon, as well as primary epithelial and mesenchymal cells within the

colon (62). These results elucidate the mechanisms of intestinal

regional specification and provide a powerful tool for studying

intestinal development, disease modeling, and drug screening.
The versatile applications of organoids

Basic research: the applications of
organoids in CRC

By 2024, the number of articles related to organoids indexed on

PubMed will have reached 26,227, with the number of publications

increasing rapidly, making organoid research a burgeoning field of
FIGURE 1

The versatile applications of organoid models in biomedical research.
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study, particularly in the area of single-cell transcriptomic

sequencing (63) integrated with organoid research. In colorectal

cancer research, the use of organoids has greatly advanced our

understanding of the pathogenic mechanisms underlying this

disease and has become a widely used tool in exploratory studies

of its onset and progression (64) (Figure 2A). For example, Fengjiao

Li and colleagues developed CRC organoids and subsequently

extracted RNA for transcriptomic analysis, which revealed a

significant correlation between the elevated expression of the

ITGB7 and ITGA2B genes and sodium butyrate-induced

apoptosis in these organoids. Additionally, sodium butyrate may

induce cell cycle arrest and subsequent apoptosis by activating the

PI3K−Akt signaling pathway (65). The utilization of organoids is

also applicable to disease modeling and simulation. For example,

Hao Zheng and colleagues established a colorectal cancer organoid

biobank and demonstrated the induction of drug resistance

following repeated exposure to low-dose chemotherapeutic

agents. On this basis, the team developed a specific monoclonal

antibody (LGR4-mAb) that can precisely block the LGR4-Wnt

signaling pathway. Further studies demonstrated that LGR4-mAb

not only effectively inhibited LGR4-Wnt signaling but also

significantly enhanced drug-induced iron-induced apoptosis. The

combination of LGR4-mAb with chemotherapeutic agents targeting

the Wnt signaling pathway resulted in a notable increase in iron

apoptosis in the organoids. This study illustrates the potential benefits
Frontiers in Oncology 04
of antibodies in CRC therapy. However, further studies are needed to

analyze the heterogeneity of organoid responses to chemotherapeutic

agents in greater depth (66). The use of organoids enables the

discovery and validation of new therapeutic targets by accurately

mimicking the microenvironment of human colorectal cancer in

vitro. For example, Leon P. Loevenich’s research team discovered that

NLE1 is capable of limiting the biosynthesis of ab initio proteins and

the tumorigenic potential of advanced colorectal cancer cells (67).

This significant outcome not only demonstrates the potential

therapeutic efficacy of NLE1 but also provides a more precise

targeting strategy to enhance the treatment of metastatic colorectal

cancer in comparison with conventional approaches.

In conclusion, in the investigation of molecular mechanisms and

prospective therapeutic targets, the use of gene editing and

modification techniques in organoids has been explored. It has been

employed in several fields, including tumor mechanism research,

genomics, and the construction of tumor animal models.

Nevertheless, there are still some limitations to the use of colorectal

cancer organoids in basic research. These include the nonspecificity of

sample collection, the impact of time-point differences on study

accuracy, the diversity of cohorts that may lead to an

underestimation of the relevance of treatment response, the problems

posed by the limited number of human-derived colorectal cancer

organoids and small sample sizes, and the validity of the drug

screening methodology, which needs to be further validated (68).
FIGURE 2

The versatile applications of organoids. (A) Organoids are employed to identify drugs with optimal efficacy among various drug candidates.
Subsequently, drug−gene interactions are investigated to elucidate the correlation between specific gene mutations and drug responsiveness. On
this basis, research will progress to the drug development phase, with in-depth analyses of disease mechanisms. Ultimately, the integration of
cumulative research results will be used to construct personalized treatment protocols aimed at improving therapeutic efficacy and reducing the
incidence of adverse effects, thereby increasing patient survival. (B) Organoids have the potential to be utilized in regenerative medicine as functional
cell sources. This involves directing stem cells with multidirectional differentiation potential to develop into organoids, which are subsequently
transplanted into mouse models to replicate and study functional and differentiation processes in living organisms.
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Drug research and development: the
application of organoids in CRC

A further crucial application of organoid models is their capacity for

high-throughput (69) drug screening in vitro (68). The introduction of

specific compounds into organoids to simulate the influence of drugs on

cellular proliferation, differentiation, and function allows the assessment of

potential adverse effects of treatment (70, 71) (Figure 2A). The

standardization and large-scale production of organoid technology still

present significant challenges, which may impact its potential for a wide

range of clinical applications. Multicenter clinical studies should be

conducted to validate the efficacy of organoid drug screening and

investigate its integration with immunological and targeted therapies,

among other approaches, to achieve a more comprehensive cancer

therapeutic effect (9, 72). Concurrently, a drug screening program

utilizing organoids has been initiated. These organoids serve as a highly

realistic platform for investigating the effects of drugs on tumor cells under

conditions that closely approximate human physiological settings (73).

For example, Zhongguang Luo’s research team established a biobank

comprising 33 patients and 37 patient-derived high-risk colorectal

adenoma organoids (HRCA-PDOs). A high-throughput, high-content

HRCA drug screen of 139 compounds was subsequently conducted. The

drugs metformin, BMS754807, panobinostat, and AT9283 were screened

and identified as potentially effective treatments, and all demonstrated

generally consistent inhibitory effects on HRCA-PDO (10). A high-

throughput screen was recently conducted by Iram Fatima and

colleagues utilizing an annotated library of 1,600 FDA-approved drugs.

During the screening process, albendazole modulated RNF20 expression

and promoted the apoptosis of colorectal cancer cells. This occurs by

delaying the G2/M phase and inhibiting the antiapoptotic transcription of

the Bcl2 family of proteins (74).

Organoids enable rapid assessment of the efficacy of multiple drugs

against tumors and predict patient response to specific treatments.

Organoids facilitate the study of tumor drug resistance mechanisms

and the development of novel therapeutic drugs. The high cost of

culturing and screening organoids requires specialized techniques and

equipment, which limits their wide application in clinical practice.

Currently, there are potential issues with the reproducibility of

organoid screening results. The development of more efficient and

economical organoid culture and screening methods is necessary to

reduce costs and expand the range of organoid applications. Moreover,

larger-scale clinical trials are needed to validate the value of organoid

applications in clinical practice.
Predictive models: organoids for evaluating
personalized treatment responses in CRC

In the conventional approach to oncology, the majority of patients

typically undergo aggressive tumor resection following a cancer diagnosis

(75). However, outcomes can vary significantly among individuals (76).

As the understanding of the molecular heterogeneity of tumors and the

pharmacogenomics of cancer therapies have advanced, the concept of

tailored treatment strategies has become increasingly prominent in the

field of therapeutic innovation (77, 78) (Figure 2A).
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Nevertheless, organoid models provide an invaluable tool for

predicting and assessing therapeutic outcomes, enabling researchers

to elucidate the diverse sensitivities of cancer subtypes to a spectrum

of interventions and to devise patient-specific treatment regimens

(79). These promising approaches have the potential to not only

increase treatment efficacy and minimize adverse effects but also

significantly prolong patient survival. For example, S. N. Ooft and

colleagues cultured colorectal organoids from biopsies and exposed

them to eight different drugs, namely, vistusertib (an mTOR

inhibitor) (80, 81), capivasertib (an AKT inhibitor) (82–84), and

selumetinib (a MEK inhibitor) (85, 86). The objective of this study

was to assess the antitumor activities of gefitinib (an EGFR

inhibitor) (87, 88), palbociclib (a CDK4/6 inhibitor) (89, 90),

axitinib (a VEGFR inhibitor) (91, 92), gedatolisib (a PI3K/mTOR

inhibitor) (93), and glasdegib (a SMO inhibitor) (94). Nineteen

patients exhibited sensitivity to at least one of the drugs, with 16

responding to mTOR inhibitors, 5 to AKT inhibitors, 3 to MEK

inhibitors, 5 to EGFR inhibitors, and 2 to PI3K/mTOR inhibitors.

Furthermore, no patients demonstrated sensitivity to CDK4/6

inhibitors, VEGFR inhibitors, or SMO inhibitors (95).

As organoid culture technology continues to be optimized, its

potential for application as a preclinical predictive model has

increased. Nevertheless, the limited drug screening activity and

nonuniversal predictive ability of organoids, in addition to lower in

vitro growth thresholds, may result in the persistence of tumor

growth. It is essential to determine whether in vitro organoid

sensitivity can be used to predict in vivo clinical response, as well

as to improve culture success and the clinical efficacy of treatments.

In light of the accelerated disease progression observed in patients,

it is imperative to devote greater attention to the design of drug

screening programs (96–98).
Regenerative medicine: novel tissue
engineering materials and functional cell
sources in CRC

Despite the considerable promise of organoid technology for

modeling and regenerating human organs, significant challenges

remain before it can be applied in a clinical setting. In particular, the

majority of organoid culture systems continue to utilize animal-derived

materials, such as matrix gels (99, 100), which limits the extensive range

of potential applications within the human body and presents a

significant challenge for clinical applications. Currently, the field of

biomaterials is actively promoting research and development activities

aimed at creating new materials with practical applications. Hyaluronic

acid-gelatin hydrogels exhibit distinctive biocompatibilities (101). This

represents a significant area of current research interest. For example,

Xiaobei Luo’s research team encapsulated CRC PDOs in a three-

dimensional hyaluronic acid-gelatin hydrogel and subsequently

cocultured them with cancer-associated fibroblasts (CAFs). The

hydrogels were found to maintain the key molecular features of the

original patient tumors in the CRC PDO, as evidenced by RNA and

whole exome sequencing. The initial findings indicated that the

hydrogels were not conducive to the cultivation of CAFs.
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Nevertheless, a subsequent coculture strategy was developed tomaintain

the viability of both CRC PDOs and CAFs (102). The feasibility of

extracting essential biochemical and mechanical characteristics without

relying on biochemically undefined and mechanically invariant animal-

derived matrices has been demonstrated. These findings may facilitate

the development of frozen matrices with tissue-specific properties for

the culture of other types of patient-derived tumor-like organs.

Organoids are increasingly recognized as promising transplantation

media and as a source of functional cells within the field of regenerative

medicine for cellular therapies (Figure 2B) (103).

The feasibility of conducting proof-of-concept studies in animal

models has been demonstrated by experimental evidence (104). A

methodology for the generation of human organoid tissues with

codeveloping resident immune cells has been developed, which can

be employed to simulate inflammatory diseases and organize the

developmental roles of resident immune populations. For example,

Jorge O. Mu employed pluripotent stem cell cultures of human

colonic organoids (HCOs) to successfully differentiate functional

macrophages. The transcriptional properties of HCO macrophages

are analogous to those observed in resident macrophages within

human fetal gut tissue. Macrophages regulate cytokine secretion,

respond to pro- and anti-inflammatory signals, and effectively

phagocytose pathogenic bacteria. Following transplantation into

mice, HCO macrophages remain stable in colonic organoid tissues

and are firmly attached to epithelial cells, with no replacement by

host macrophages (105). This approach demonstrated the capacity

of HCO to generate pluripotent hematopoietic progenitors and

functional tissue-resident macrophages and was also employed to

evaluate the potential of the cells.

Organoids represent a significant advancement in regenerative

medicine. Its high-throughput screening capability has led to the

establishment of an efficient translational research platform for

regenerative medicine. Research and application of organoids have

the potential to facilitate tissue damage repair and organ

regeneration. However, organoids face several limitations, including

the inefficiency of transplantation and reliance on cancer models,

transplantation site limitations, and cellular heterogeneity. It is

important to standardize protocols for organoid transplantation to

improve transplantation efficiency and experimental reproducibility;

broaden the sources of organoids, including other tissues, organs and

human-derived organoids, to meet diverse research needs; and

establish a comprehensive system of functional assessments of

organoids, including intestinal barriers and immune functions, to

ensure their functionality (106).
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Challenges and limitations: organoids
in colorectal cancer research

At present, organoidmodels are confronted with many challenges

and constraints. On the one hand, employing costly growth factors

and animal-derived matrix extracts increases the financial burden

associated with the cultivation process. Conversely, the clinical trial

process necessitates the utilization of specialized equipment,

consumables, and specific technical operations, which results in a

markedly elevated cost in comparison to traditional 2D cell culture

(Table 1). For example, Matrigel, a widely used product produced by

BD Biosciences (107), is more expensive and holds a leading position
TABLE 1 Comparison of colorectal cancer organoids and two-dimensional cell lines.

Tumor
models

Construction
cost

Time consumption
for modeling

Degree of construction
difficulty

Mimicking the tumor
microenvironment

Maintenance
times

organoids
(46)

high long difficult good long

cell
lines (114)

low short easy general short
Comprehensive analyses have demonstrated that organoids display remarkable potential in mimicking the tumor microenvironment and predicting drug responses. However, their high cost,
lengthy culture cycle, and intricate technical requirements have somewhat constrained their popularity and application in several research fields. Despite the limitations of cell lines in the
aforementioned areas, their simplicity of operation and reduced cost have made them pervasive tools in research. The challenge for researchers is effectively weighing the advantages and
disadvantages of the use of organoids and cell lines in future research.
TABLE 2 The primary benefits of organoids in various applications.

Features Patient-
derived

xenografts

Cell
lines

Organoids

biological stability ++ + ++

ease of
downstream assays

+ +++ +++

high-throughput
drug screening

– +++ +++

low-throughput
drug screening

+ +++ +++

genetic manipulation – +++ +++

cost benefits – +++ ++

3D growth +++ +/- +++

cancer
subtype modeling

– + +++

heterogeneity ++ – +

ease of maintenance – +++ ++

personalized
treatment

– – +++

success rate
of initiation

++ + +++

time consumption
for modeling

+++ + +
This table is summarized in [ (24–44)]. +++, Best; ++, suitable; +, possible; –, unsuitable.
Organoids are more suitable for applications in personalized medicine than cell lines and
patient-derived xenograft models, such as success rates of initiation, personalized treatment,
cancer subtype modeling, complexity of disease models, 3D growth, genetic manipulation,
low-throughput drug screening, and high-throughput drug screening.
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in industry. Although colorectal cancer organoids can be constructed

relatively quickly, scaling them up to a scale suitable for high-

throughput drug screening may require an additional 2–4 weeks

and resource investment compared with that of cell lines (108).

A further technical challenge for organoids is the development of a

standardized and reproducible procedure that encompasses the

maintenance, culture, cryopreservation, and processing of organoids.

Because of the significant interpatient heterogeneity of organoids, it is

important to optimize cell culture media to ensure cell survival and

proliferation. In the development of culture protocols, it is essential to

consider the impact of human factors, including operational errors and

differences between laboratory equipment, which may have a

significant impact on the reliability of experimental results.

Furthermore, in high-throughput drug screening, a standardized

seeding step is essential to ensure that the size of the organoid is

relevant to its clinical context (109). Organoids lack the complexity of

living organisms, which limits their use in multiple therapeutic assays

(110). Additionally, heterogeneity in terms of tumor phenotypes,

genotypes, and cellular composition is a crucial parameter (111). For

example, Ning Li et al. revealed the advantages of the PDO in probing

the functional interactions between colorectal cancer and the tumor

microenvironment by mapping the cellular distribution of CRC patient

samples and establishing a CRC tumor model in mice. Furthermore, a

coculture model of CRC patient-derived organoids was employed (45),

suggesting that PDOs can be utilized to explore the functional

interactions between CRC and the tumor microenvironment.

The utilization of automated platforms has become increasingly

prevalent in comparison with traditional organoid cultures, reducing

the requisite time and human resources. However, the application of

this technology is accompanied by several challenges, including

inconsistent volume measurements due to differences in solution

viscosity, sample contamination, and possible damage to the sample

caused by improper pipetting, which can lead to the accumulation of

data errors and reduced reproducibility of experiments (112). For

example, Diana Pinho and colleagues developed a novel low-cost

microfluidic device, the organoid chip, for the culture and

amplification of colorectal cancer organoids. Compared with the

traditional 24-well plate culture method, the organoid chip not only

markedly increased the survival rate and proliferation activity of

colorectal cancer organoids but also significantly improved the

formation efficiency and overall size of the organoids (113).

In conclusion, the CRC organoid model offers a comprehensive

understanding of tumor biology, tumor heterogeneity, and

therapeutic response through the combination of coculture with

multiple cell types and multiomics analyses (97). These findings are

expected to increase the identification of novel drug targets and

diagnostic biomarkers and provide support for in-depth probing of

the mechanism of action of a drug or mechanisms of resistance,

thereby facilitating more efficient clinical translation (39).
Future applications prospects

The field of organoid technology has undergone considerable

advancements and evolution over the past few decades. This has

involved overcoming numerous technical constraints, more
Frontiers in Oncology 07
rigorously assessing the fidelity of colorectal physiology, and

demonstrating the practical utility of this technology. Researchers

have sought to increase the fidelity of organoid physiology by

optimizing culture formats and conditions (115). For example,

organoid microarray technology (116) has been developed for

high-throughput drug screening, whereas microfluidics has been

employed for coculture (117). Inconsistencies in organoid

characteristics have been observed across different culture

protocols, emphasizing the urgent need to establish uniform

criteria to define the characteristics of a true organoid (118).

The advent of new technologies has led to overcoming some of

the earlier technical barriers, including those related to technical

complexity and the necessity for experimental standardization

(119). The experimental methods have now reached a point of

maturity and are beginning to be translated into clinical

applications. These developments are anticipated to facilitate a

multitude of applications across a range of fields, including

angiogenesis and coculture. For example, key domains such as

organoid microarray technology, personalized precision medicine,

drug screening and evaluation, biospecimen library construction,

drug toxicity assessment, gene and cell therapies, regenerative

medicine, and organ transplantation will undoubtedly benefit

from these technological advancements (Table 2) (119, 120). As

organoid technology continues to evolve, its applications in

colorectal cancer research are anticipated to not only become

more diverse but also significantly enhance our comprehension of

the disease and provide invaluable assistance in improving patient

survival rates (121).
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